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Abstract

Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So
far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies
(MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in
various doses individually or as pools of 3–4 MAbs to test their protection against a lethal challenge with mouse- or guinea
pig-adapted EBOV. Each of the 8 MAbs (100 mg) protected mice from a lethal EBOV challenge when administered 1 day
before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial
protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was
significantly prolonged compared to the control group. Moreover, treatment with pools of 3–4 MAbs completely protected
the majority of animals, while administration at 2–3 dpi achieved 50–100% protection. This data suggests that the MAbs
generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that
MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV
infection.
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Introduction

Ebola virus (EBOV) is a filovirus causing severe viral haemor-

rhagic fever in humans and non-human primates (NHPs) [1].

There are five species of EBOV: Zaire ebolavirus (ZEBOV), Sudan

ebolavirus (SEBOV), Cote d’Ivoire ebolavirus (CIEBOV), Reston

ebolavirus (REBOV), and Bundibugyo ebolavirus (BEBOV) [2].

ZEBOV has the highest virulence with a case fatality rate of 60–

90% [1,3]. Although several attempts have been made to treat

EBOV infections [4–8], there are currently no commercially

approved vaccines or effective therapies, therefore new treatments

are needed. Several studies have been conducted to determine the

immune correlates of protection in EBOV infections either by

following natural infections, or in in vivo animal models [9–15].

Both T and B cell immunity was analysed and it was believed that

a strong early humoral immune response may have been a factor

in survival [11,16,17]. Additionally, in fatally infected patients

EBOV-specific IgG was absent, and IgM levels were low in

comparison to the survivors [16]. The passive transfer of immune

sera or whole blood was tested but its effectiveness is still

controversial as it has not consistently provided protection [10].

However, in mice experiments EBOV-specific sera was sufficient

for improving survival [10,18,19].

The key target for developing effective neutralizing antibodies

(NAb) is suspected to be the surface glycoprotein (GP) [20]. EBOV

GP is the only protein on the surface of the virus and is responsible

for receptor binding, viral entry, and cellular tropism [20–24]. GP-

specific NAb generated in several species were protective in some

animal models, however, the NAb titres are low in natural

infections and their effectiveness in humans remains to be

confirmed [10,25–27]. Antibodies blocking viral entry, by binding

the receptor or preventing viral fusion would be ideal candidates

for improving survival. Additionally, the primary pathology of

EBOV haemorrhagic fever is vascular injury and coagulation

abnormalities, and GP has been shown to cause cytotoxicity and

vascular permeability [28,29]. In fact GP-induced cytotoxicity has

been correlated with mortality rates in the different EBOV viral

species [28,30]. Taken together this suggests that prophylactic and

post-exposure treatment strategies involving antibodies specific for

the EBOV GP would be an effective intervention for an Ebola

infection.

Monoclonal antibodies (MAbs) against ZEBOV GP have been

created previously and tested in several animal models as a post-

exposure therapeutic [26,27,31–34]. However, the ability of each

of the MAbs to improve survival in a lethally infected animal

varied considerably. Some MAbs were able to protect mice
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completely yet guinea pigs partially [32,33]. One neutralizing MAb

KZ52 was 100% efficacious in guinea pigs, but did not protect

NHPs [26,35]. Overall, there are a variety of mechanisms employed

by MAbs to improve survival, and the ability of the MAb to

neutralize the virus is not essential. The MAbs tested so far are not

100% efficacious in all animal models therefore further research is

needed for more effective antibodies. The goal of this study was to

test a panel of MAbs specific for the ZEBOV GP for their efficacy in

protecting mice and guinea pigs from a lethal ZEBOV infection.

Previously, 8 ZEBOV GP-specific MAbs had been generated using

the VSVDG/ZEBOVGP vaccine as the immunogen [36]. A

preliminary study characterizing the MAbs found they all improved

survival in mice infected with a high dose of mouse adapted-

ZEBOV (MA-ZEBOV) [36]. As the MAbs were effective in the

mouse model it is possible that these MAbs could be used as a post-

exposure therapeutic for a ZEBOV infection. In this study

optimization of a post-exposure protocol is undertaken in both the

mouse and guinea pig model in order to determine the various

treatment parameters, including the dose, treatment time, and MAb

combination, that are required to provide complete protection.

Materials and Methods

Ethics Statement
All infectious animal work was performed in the biosafety level 4

biocontainment laboratory at the Public Health Agency of

Canada, and approved by the Canadian Science Centre for

Human and Animal Health Animal Care Committee following

the guidelines of the Canadian Council on Animal Care. Animals

were acclimatized for 10 days prior to the start of the experiment,

and fed and monitored daily pre- and post-infection.

Viruses
The recombinant virus VSVDG/ZEBOVGP containing the Zaire

ebolavirus, strain Mayinga, glycoprotein (GP) in place of the VSV

glycoprotein (G) has been described previously [37]. The mouse-

adapted (MA-ZEBOV) and guinea pig-adapted (GA-ZEBOV)

ZEBOV strain Mayinga viruses were described previously [38,39].

Mice Immunization and MAb Production and Purification
The creation of 8 MAbs (1H3, 2G4, 4G7, 5D2, 5E6, 7C9, 7G4,

10C8) has been described previously [36]. Briefly, 6–8 week old

Balb/C mice were immunized with 107 pfu VSVDG/ZEBOVGP

intraperitoneally (ip), at 0, 4, and 8 weeks. A final boost with Zaire

ebolavirus like particles (eVLPs) was performed before harvesting

spleen cells and fusing with SP2/0 myeloma cells according to

Kohler and Milstein [40]. The generation of the ZEBOV GP/

VP40 eVLPs have been described previously [41].

The hybridomas were grown in Hybridoma SFM (Invitrogen),

1 mM L-Glutamine, 16 Antibiotic-Antimycotic (Invitrogen), in

roller bottles at 37uC, 5% CO2. Supernatant was cleared by

centrifugation and concentrated ten times using an Amicon Stirred

Cell system with a 30 kDA MWCO filter (Millipore). The

antibodies were purified on a HiTrap Protein G HP column(GE

Healthcare) using Protein A Binding Buffer and IgG Elution

Buffer (Thermo Scientific) according to manufacturers’ instruc-

tions. Positive fractions were pooled, concentrated, then buffer

exchanged into PBS using a 10 kDa MWCO Centriprep unit

(Millipore). Antibody purity, assessed by gel electrophoresis and

coomassie blue staining was .98%.

Animal Experiments
The 5–6 week old female Balb/C mice from Charles River,

(Quebec, Canada), were injected ip with the indicated amount of

ZEBOV GP-specific MAbs in 100 ml PBS at the times indicated

either before or after i.p. infection with 1,000 LD50 of MA-

ZEBOV. Female guinea pigs (Hartley strain), approximately

250 g, from Charles River, were challenged with 1,000 LD50 of

GA-EBOV i.p.. At the indicated times post-infection the guinea

pigs were treated i.p. with 1 ml of the MAb diluted in PBS. Naive

control animals received PBS only. Clinical signs of infection and

body weight were monitored for two weeks after challenge and

survivors were followed three times longer than the death of the

last control animal.

VSVDG/ZEBOVGP Plaque Reduction Neutralization Assay
(PRNT50)

ZEBOVGP-specific MAbs were serially diluted from 1/100–1/

12,800 in DMEM. Starting concentrations were 3.75, 3.46,

4.34 mg/ml for 1H3, 2G4, and 4G7, respectively. The MAbs

were added to an equal volume of 104 pfu/ml VSVDG/

ZEBOVGP, diluted with DMEM, in order to provide 200 pfu/

well. The virus-antibody combination was incubated at 37uC for

1 hour before adding 150 ul/well to a confluent 12 well tissue

culture plate seeded with Vero E6 cells. After a 1 hour incubation,

1 ml of MEM 2% FBS, 1% low melting point agarose was added

per well. Plates were incubated at 37uC 5% CO2 for 48 hours

before adding 1 ml of 0.2% w/v crystal violet, 3.7% Formalde-

hyde, 2% Ethanol to each well for visualization of the plaques.

The assay was performed in triplicate, and a positive control (virus

with no antibody) and a negative control (no virus) incorporated.

The percent reduction was calculated by averaging the count of

the triplicate wells and comparing the number of plaques in the

test sample against the number of plaques in the positive control

(12(Test Sample plaques/Positive control plaques))6100 = %

reduction.

Statistics
The log rank statistical test was performed for the Survival curve

using the GraphPad Prism 4 software program. The survival curve

for the MAb treated animals were compared to the survival curve

for the PBS control group.

Author Summary

Ebola virus (EBOV) causes acute hemorrhagic fever in
humans and non-human primates with mortality rates up
to 90%. So far there are no effective treatments available.
This study evaluates the protective efficacy of 8 monoclo-
nal antibodies (MAbs) against the Ebola virus surface
glycoprotein, in mice and guinea pigs. Various combina-
tions and doses of the neutralizing and non-neutralizing
MAbs were tested, and a post-exposure treatment
protocol was determined. There was 100% survival when
guinea pigs received a mix of 3 neutralizing MAbs two
days after a challenge with 1,000 LD50 of guinea pig-
adapted EBOV. This data suggests that the MAbs
generated are effective as a post-exposure therapeutic
for a lethal Ebola virus infection. Development of a post-
exposure therapeutic for an Ebola virus infection is vital
due to the high lethality of the disease, the relative speed
in which it kills, and the fact that no vaccine has been
approved for human use. Additionally, is it unlikely that
preventative vaccines will be employed, because Ebola
virus infections occur primarily in Africa, and to date have
only killed approximately 2,300 people making it finan-
cially unfeasible for a mass vaccination. Therefore, having
an effective therapy in the event of an outbreak would be
extremely beneficial.

Protective Ebola GP-Specific Monoclonal Antibodies
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Results

Characterization of MAbs
Previously, 8 MAbs specific for the glycoprotein (GP) of

ZEBOV had been generated [36]. An initial characterization

demonstrated they bound to a variety of GP segments, and that all

8 MAbs were able to pull down ZEBOV GP1,2 in an

immunoprecipitation assay. In the current study, we further

characterized the MAbs using a plaque reduction neutralization

assay (PRNT50). The PRNT50 demonstrated that MAbs 1H3,

2G4, and 4G7 were neutralizing with a PRNT50 at a 1/200, 1/

800, and 1/6,400 dilution, respectively (Figure 1). All of the other

MAbs were non-neutralizing with 5D2 showing the highest degree

of neutralization at 38% (data not shown).

Protective Efficacy of MAbs in Mice
Preliminary experiments in mice suggested these MAbs would

be effective as a therapeutic for a MA-ZEBOV infection [36].

Figure 1. PRNT50 assay for MAbs. ZEBOVGP-specific MAbs were serially diluted, and added to an equal volume of VSVDG/ZEBOVGP for 1 hour at
37uC before adding to a confluent 12 well tissue culture plate seeded with Vero E6 cells. After 2 days the plaques were stained and counted. The
percent reduction was calculated by determining the percent reduction in plaques at each dilution in comparison to the positive control (virus with
no antibody). The assay was performed in triplicate.
doi:10.1371/journal.pntd.0001575.g001

Table 1. Protective efficacy of MAbs in mice.

MAb Treatment timea Mean time to deathb No of survivors/total Survival (%)

1H3 21 6.6060.61 (n = 10) 0/15 0

+1 8.1060.74 ( n = 9) 6/15 40

2G4 21 7.8660.74 ( n = 14) 1/15 7

+1 8.00 ( n = 6) 9/15 60

4G7 21 7.0860.74 ( n = 14) 1/15 7

+1 8.2560.43 ( n = 4) 11/15 73

5D2 21 8.0061.00 ( n = 2) 13/15 87

+1 N/Ac 15/15 100

5E6 21 8.2560.43 ( n = 4) 11/15 73

+1 7.00 ( n = 1) 14/15 93

7C9 21 7.7560.43 ( n = 4) 11/15 73

+1 8.0060.82 ( n = 3) 12/15 80

7G4 21 8.0760.59 ( n = 14) 1/15 7

+1 N/Ac 15/15 100

10C8 21 7.6461.17 ( n = 14) 1/15 7

+1 8.5060.50 ( n = 2) 13/15 87

PBS 21 6.6060.80 ( n = 5) 0/5 0

+1 5.0060.60 ( n = 10) 0/10 0

aMice were treated i.p. with 100 mg of MAb at the indicated days before or after challenge with 1000 LD50 of the mouse-adapted Ebola virus.
bData for animals that died (number of animals in calculation).
cN/A: not applicable.
doi:10.1371/journal.pntd.0001575.t001
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Therefore, a variety of parameters were assessed in order to

establish the most effective treatment protocol. An in vivo mouse

model was utilized to determine the protective efficacy of the

individual MAbs (Table 1). Each MAb was injected either 1 day

before (21) or after (+1) a MA-ZEBOV infection (1,000 LD50) in

Balb/C mice. All control mice receiving PBS only had a mean

time to death of 6.6 and 5.0 days for the 21 and +1 day treatment,

respectively. In contrast, mice treated with MAbs (100 mg)

demonstrated either partial or complete protection. For the 21

day protocol, the MAbs 5D2, 5E6, 7C9 were most effective with a

73–87% survival rate, in comparison to the other 5 MAbs (1H3,

2G4, 4G7, 7G4, 10C8) where survival rates ranged from 0–7%.

Alternatively, every MAb performed better when given at 1 day

post-infection (dpi), with survival rates ranging from 40–100%.

Overall, the level of protection against lethality varied with each

MAb, and it appears that, in general, the MAbs are more effective

when given 1 day after a lethal MA-ZEBOV infection.

Dose-Dependent Protective Efficacy of the MAbs in Mice
Since the MAbs were most effective when given 1 day after the

lethal MA-ZEBOV infection, this treatment protocol was used to

determine the most effective dose for protection (Table 2). A dose

response was observed, and some MAbs were more potent than

others for a given dose. The lowest doses providing complete

protection from lethality for 5D2, 5E6, 7C9, and 7G4 were 12.5,

25, 50, and 100 mg, respectively. MAbs 4G7 and 10C8

demonstrated an 83% survival rate at the highest dose of

100 mg. MAbs 1H3 and 2G4 were not included as they were

not very effective at the highest dose in the first experiment

(Table 1). In the partially protected groups of mice, the mean time

to death ranged from 6.40 to 8.20 days in comparison to the

control mice (5.80 days). Overall, the various MAbs varied in their

potency in providing protection against a lethal MA-ZEBOV

infection in mice.

Table 2. Dose-dependent protective efficacy of MAbs in mice.

MAba Dose (mg/treatment) Mean time to deathb (days) No. of survivors/total Survival (%)

4G7 100 7.00 (n = 1) 5/6 83

50 7.00 (n = 1) 5/6 83

25 6.00 (n = 3) 3/6 50

12.5 6.80 (n = 5) 1/6 17

6.25 8.20 (n = 5) 1/6 17

5D2 100 N/Ac 6/6 100

50 N/Ac 6/6 100

25 N/Ac 6/6 100

12.5 N/Ac 6/6 100

6.25 7.50 (n = 2) 4/6 67

5E6 100 N/Ac 6/6 100

50 N/Ac 6/6 100

25 N/Ac 6/6 100

12.5 6.50 (n = 2) 4/6 67

6.25 6.67 (n = 3) 3/6 50

7C9 100 N/Ac 6/6 100

50 N/Ac 6/6 100

25 7.00 (n = 1) 5/6 83

12.5 7.00 (n = 1) 5/6 83

6.25 6.50 (n = 4) 2/6 33

7G4 100 N/Ac 6/6 100

50 7.50 (n = 1) 4/6 67

25 7.00 (n = 1) 5/6 83

12.5 7.60 (n = 5) 1/6 17

6.25 6.60 (n = 5) 1/6 17

10C8 100 7.00 (n = 1) 5/6 83

50 7.00 (n = 1) 5/6 83

25 7.50 (n = 4) 2/6 33

12.5 7.00 (n = 5) 1/6 17

6.25 6.40 (n = 5) 1/6 17

PBS 5.80 (n = 5) 0/5 0%

aMice were treated i.p. with various doses of the MAb 1 dpi with 1000 LD50 of the MA-ZEBOV. The survival of the mice was followed.
bData for animals that died (number of animals in parentheses).
cN/A: not applicable.
doi:10.1371/journal.pntd.0001575.t002
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Time-Dependent Protective Efficacy of MAbs in Mice
Using the most effective MAb dose of 100 mg, the treatment

time was extended in both directions in order to determine the

optimal time for treatment, and to see how late treatment can be

given before the survival rate declines (Table 3). A single dose of

100 mg for each MAb was injected either 1 or 4 days before a

Table 3. Time-dependent protective efficacy of MAbs in mice.

MAb Treatment timea Mean time to deathb No of survivors/total Survival (%)

1H3 24 6.7060.61 ( n = 10 ) 0/10 0

21 6.6060.61 ( n = 10 ) 0/15 0

+1 8.1060.74 ( n = 9 ) 6/15 40

+2 6.6060.80 ( n = 5 ) 5/10 50

+3 6.4060.97 ( n = 10 ) 0/10 0

2G4 24 7.4060.63 ( n = 10 ) 0/10 0

21 7.8660.74 ( n = 14 ) 1/15 7

+1 8.0060.00 ( n = 6 ) 9/15 60

+2 7.3060.47 ( n = 3 ) 7/10 70

+3 5.7061.13 ( n = 10 ) 0/10 0

4G7 24 7.4260.46 ( n = 7 ) 3/10 30

21 7.0860.74 ( n = 14 ) 1/15 7

+1 8.2560.43 ( n = 4 ) 11/15 73

+2 N/Ac 10/10 100

+3 5.6761.34 ( n = 9 ) 1/10 10

5D2 24 7.00 ( n = 1 ) 9/10 90

21 8 .0061.00 ( n = 2 ) 13/15 87

+1 N/Ac 15/15 100

+2 7.0060.00 ( n = 4 ) 6/10 60

+3 6.3061.05 ( n = 10 ) 0/10 0

5E6 24 7.0060.00 ( n = 2 ) 8/10 80

21 8.2560.43 ( n = 4 ) 11/15 73

+1 7.00 ( n = 1 ) 14/15 93

+2 6.00 ( n = 1 ) 9/10 90

+3 5.861.03 ( n = 10 ) 0/10 0

7C9 24 7.00 ( n = 1 ) 9/10 90

21 7.7560.43 ( n = 4 ) 11/15 73

+1 860.82 ( n = 3 ) 12/15 80

+2 7.00 ( n = 1 ) 9/10 90

+3 6.160.67 ( n = 10 ) 0/10 0

7G4 24 8.260.71 ( n = 10 ) 0/10 0

21 8.0760.59 ( n = 14 ) 1/15 7

+1 N/Ac 15/15 100

+2 7.1060.57 ( n = 9 ) 1/10 10

+3 6.7060.44 ( n = 10 ) 0/10 0

10C8 24 7.8360.64 ( n = 6 ) 4/10 40

21 7.6461.17 ( n = 14 ) 1/15 7

+1 8.5060.50 ( n = 2 ) 13/15 87

+2 6.8360.37 ( n = 6 ) 4/10 40

+3 6.3061.13 ( n = 10 ) 0/10 0

PBS 24 5.4061.43 ( n = 10 ) 0/10 0

21 6.6060.80 ( n = 5 ) 0/5 0

+3 5.0060.60 ( n = 10 ) 0/10 0

aMice were treated i.p. with 100 mg of each MAb at indicated days before or after infection with 1000 LD50 MA-ZEBOV. The survival of the mice was followed.
bData for animals that died (number of animals in calculation).
cN/A: not applicable.
doi:10.1371/journal.pntd.0001575.t003
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lethal MA-ZEBOV infection, or at 1, 2, or 3 dpi, and survival

followed. Pre-treatment of the mice 4 days before infection with

1H3, 2G4, or 7G4 did not result in survival, whereas the other

MAbs provided 30–90% protection. In the majority of cases,

treatment 1 day before infection resulted in lower survival rates

than 4 days before infection. Of the 8 MAbs, the most effective

MAbs for pre-treatment were 5D2, 5E6, and 7C9. They had the

highest survival rates (73–90%) and worked almost equally well on

both days 24 and +1.

Extending the start of treatment after infection also had

noticeable effects upon survival. Treating the mice on 1 or 2 dpi

was the most effective treatment time, with some MAbs (5D2;

100%, 5E6; 93%, 7G4; 100%, 10C8; 87%) being more protective

when given at 1 dpi, and the others (1H3; 50%, 2G4; 70%, 4G7;

100%, 7C9; 90%) when given at 2 dpi. Delaying the treatment to

3 dpi resulted in no survival for all MAbs except for 4G7 (10%

survival rate). In general post-exposure treatment worked better

than prophylactic treatment for the majority of the MAbs, except

5D2, 5E6, 7C9 which were highly effective at improving survival

in mice both before and after the infection.

MAb Treatment Protects Guinea Pigs from a Lethal GA-
ZEBOV Infection

All MAbs were once again tested individually in the guinea pig

model. The MAbs were given i.p. at 1 dpi with 1,000 LD50 of GA-

ZEBOV, and survival followed (Table 4). The PBS controls all

died with a mean time to death of 7.7 days. In those groups

receiving treatment, with the exception of 2G4 and 4G7, none of

the guinea pigs survived, but the mean time to death was

significantly extended (range of 9.4–11.7 days, p,0.050). For 2G4

or 4G7, the survival rate was 60%, demonstrating that the MAbs

can provide levels of protective efficacy individually in the more

stringent guinea pig model.

Since individual MAbs were partially protective in the guinea

pig, a second injection of the 3 neutralizing MAbs (1H3, 2G4, and

4G7) was included on 2 dpi (Figure 2). The guinea pigs were

divided into 6 groups (n = 6), with one control group receiving only

PBS, and 5 groups each receiving one of the non-neutralizing

MAbs at 1 dpi, followed by the neutralizing MAb combination at

2 dpi. The PBS control treated animals all died with a mean time

to death of 7 days. In contrast, all of the MAb treated groups

demonstrated complete survival, except for 10C8 (83%). The

treatment also improved morbidity as the MAb-treated groups

maintained their weight in contrast to the controls that lost 6–7%

of their weight by 4 and 5 dpi. This demonstrates that a

combination of MAbs is an effective post-exposure treatment in

guinea pigs.

Neutralizing Mabs Alone Improve Survival in Guinea Pigs
Infected with GA-ZEBOV

As two of the neutralizing antibodies were shown to be more

effective at improving survival in guinea pigs (Table 4), the 3

ZEBOV GP-specific neutralizing MAbs were delivered as a

combination alone to see if they would be sufficient as a therapy

for an EBOV infection (Table 5). The combination of neutralizing

MAbs (1.5 mg 1H3+1.5 mg 2G4+2 mg 4G7) was given to guinea

pigs either 1 day before, or 1, 2 or 3 days after a 1000 LD50 GA-

ZEBOV infection, and survival followed. The PBS control group

all died, with a mean time to death of 6.5860.59 days. In contrast

all animals receiving the neutralizing MAb combination at 2 dpi.

survived. When the treatment was given on 3 dpi the percent

survival dropped to 66.7% with a mean time to death of

11.1763.09 days. Receiving the combination either one day

before or after resulted in a survival rate of 50%, with the

meantime to death of 11.1763.09 and 7.9260.42, respectively.

Overall, the neutralizing MAb combination improved survival in

all treatment protocols with the 2 dpi treatment protocol being the

most effective.

Discussion

In this study 8 ZEBOV GP-specific MAbs were tested for their

efficacy in protecting against a ZEBOV infection in both a mouse

and guinea pig model; and a post-exposure protocol for guinea

pigs was optimized. Individually, each MAb extended survival

partially, or completely after a lethal dose of MA-ZEBOV in mice,

whereas only the 2G4 or 4G7 treated groups demonstrated a 60%

survival rate against a GA-ZEBOV infection in guinea pigs. The

dose response in the mouse experiment suggests some MAbs were

more potent than others at improving survival, with 100%

protection with 12.5 mg 5D2 in comparison to an 83% survival

rate with 100 mg of 4G7 or 10C8 (Table 2). In general, the MAbs

worked best for both animal models when given after the start of

the infection, particularly at 1 and 2 dpi, before efficacy started to

decrease at 3 dpi This suggests that there may be a limited time

Table 4. Prolonged survival seen in MAb-treated guinea pigs.

MAba Mean time to deathb (days) No of survivors/total Survival (%) Student’s T-test

1H3 11.7062.18 ( n = 5 ) 0/5 0 p = 0.018

2G4 11.5061.50 ( n = 2 ) 3/5 60 N/Ac

4G7 10.5061.50 ( n = 2 ) 3/5 60 N/Ac

5D2 9.4061.02 ( n = 5 ) 0/5 0 p = 0.024

5E6 10.8061.47 ( n = 5 ) 0/5 0 p = 0.009

7C9 9.6060.80 ( n = 5 ) 0/5 0 p = 0.006

7G4 9.6060.80 ( n = 5 ) 0/5 0 p = 0.006

10C8 9.4061.20 ( n = 5 ) 0/5 0 p = 0.043

PBS 7.6760.75 ( n = 6 ) 0/6 0 N/Ac

aGuinea pigs were treated i.p. with 5 mg of the MAb as shown in the table on day 1 after infection with 1000 LD50 of the GA-ZEBOV. Survival of the guinea pigs was
followed. The Student’s T-test compared the MAb treatment group to the PBS control.
bData for animals that died (number of animals in calculation).
cN/A: not applicable.
doi:10.1371/journal.pntd.0001575.t004
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period in which to begin treatment after becoming infected.

Within this 2 day time span, some MAbs were more effective when

given at 1 dpi (5D2, 5E6, 7G4 and 10C8), and others at 2 dpi

(1H3, 2G4, 4G7, and 7C9) in the mouse model. It is possible that

since the MAbs and virus were both injected ip that the MAbs

might inhibit ZEBOV infection of cells and extend life. As the

MAbs were only partially effective when given individually in the

guinea pig model, a combination of 3 neutralizing MAb (1H3,

2G4, 4G7) at 2 dpi was tested in guinea pigs and found to provide

complete protection, and prevent morbidity. Each of these MAbs

binds to different regions of GP1,2. 1H3 and 4G7 bind to the N-

and C-terminus of GP1, respectively, whereas 2G4 binds to GP2

[36]. Targeting multiple regions of GP appears to be a successful

strategy. It is possible that a variety of mechanisms for preventing

infection are employed by the 8 MAbs that is reflected in the

differing amounts of MAbs needed, and the time of treatment in

which they are most effective. Some MAbs may have more affinity

for their epitope, or the epitope may be more accessible in the

natural conformation. There is precedence for this as two

ZEBOV-specific neutralizing MAbs KZ52 and JP3K11 were

found to neutralize ZEBOV by distinct mechanisms [42]. Based

on the various studies using ZEBOV-specific MAbs as a therapy

for EBOV infections, it appears that there is no way of predicting

which MAb would provide complete protection. However, initial

testing must begin in mice and guinea pigs in order to make the

initial determination about what therapeutic approach might be

best to test in NHPs and humans.

There have been several attempts at producing MAbs against

ZEBOV GP however no clear pattern has emerged suggesting

which primary sequence domain of GP is most immunogenic or

whether neutralizing antibodies are more successful [26,27,31–

34]. To date only neutralizing MAbs 133/3.16, 226/8.1 and

KZ52 have shown the capacity to improve survival in guinea pigs

[32,33,35]. MAbs 133/3.16 and 226/8.1 only provided partial

protection, while 25 mg/kg of KZ52 was completely protective in

guinea pigs when given at 21 or +1 hours, but had later failed to

protect NHPs [26]. Individually, none of the MAbs in this study

were as effective as KZ52 in the guinea pig model. However, a

combination of MAbs was more effective, and the treatment could

be delivered as late as 2 days after infection. This is a significant

extension from the 1 hour post-infection required for KZ52. This

is an important consideration as it is often difficult to begin

treatment as early as 1 hour after an infection.

All 8 MAbs in this study were originally selected by screening

for their SSS coating antigen [36]. Theoretically, the ability to

bind to the natural conformation may be more advantageous as it

is more likely that the epitopes would be available and not hidden,

or that the MAbs would be able to interfere with events required

for viral entry such as receptor binding, and membrane fusion.

Preventing entry into the cell would decrease the overall infection

levels thereby giving the immune system a better chance at

controlling the infection. There are many characteristics that make

Figure 2. A treatment regimen using a combination of MAbs
improves survival in GA-ZEBOV-infected guinea pigs. Guinea
pigs were infected with 1000 LD50 of GA-ZEBOV i.p., then treated on
1 dpi with 3 mg of one of the non-neutralizing MAb i.p. (5D2, 5E6, 7C9,
7G4, or 10C8), followed by an i.p. treatment on 2 dpi with a
combination of the 3 neutralizing MAbs ( 2 mg 4G7+1 mg 1H3+1 mg
2G4). The control animals received PBS i.p.. The percent survival (A) and
average percent of the group weight (B) was determined.
doi:10.1371/journal.pntd.0001575.g002

Table 5. Protective Efficacy of MAbs in Guinea Pigs Infected with GA-EBOV.

Treatment Treatment timea Meantime to deathb (days) No. of survivors/totalc Survival (%)

Neutralizing MAb Combination 21 11.1763.09 (n = 3) 3/6 50

Neutralizing MAb Combination +1 7.9260.42 (n = 3) 3/6 50

Neutralizing MAb Combination +2 N/Ad 6/6 100

Neutralizing MAb Combination +3 11.1763.09 (n = 4) 4/6 67

PBS +2 6.5860.59 (n = 6) 0/6 0

aGuinea pigs were treated i.p. with a neutralizing MAb combination (2 mg 4G7+1.5 mg 1H3+1.5 mg 2G4) on the indicated days before or after challenge with 1000 LD50

GA-EBOV. The survival of the guinea pigs was followed.
bAverage time to death. (No. of animals in calculation).
cNumber of survivors at 28 dpi.
dN/A: not applicable.
doi:10.1371/journal.pntd.0001575.t005
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an antibody effective and it may not be the same mechanism for

any two MAbs. Overall, the MAbs generated in this study and the

optimized protocols demonstrate their potential as a post-exposure

therapeutic against a ZEBOV infection. Because previous KZ52

antibody treatments that proved effective in guinea pigs later failed

to protect NHPs, it is vital that further evaluation of the

neutralizing MAb combination protocol should be conducted in

NHPs.
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