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Abstract
NNO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other
hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been
attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice
deficient in NADPH phagocyte oxidase (gp91phox2/2 or phox KO) were infected with Y strain of T. cruzi and the course of
infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-c and TNF in
serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed
to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after
infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in
phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure,
implicating NOS2 in this phenomenon. We postulate that superoxide reacts with NNO in vivo, preventing blood pressure
drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox
KO animals, its production would have an important protective effect against blood pressure decline during infection with
T. cruzi.
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Introduction

For a long time, reactive oxygen species (ROS) were considered

the main anti-microbial radical produced by the immune system,

playing a role against bacterial, fungal and protozoa infections.

After the discovery of nitric oxide (NNO), NNO found to play a

major role in host defense, especially against protozoan parasites.

A role against Toxoplasma [1,2], Plasmodium [3] and Leishmania [4,5]

infections was still attributed to ROS, albeit in some cases this role

remains a matter of debate [6,7,8,9].

Since NNO was found to be one of the most important IFN-c-

induced anti-parasitic mechanisms, the studies about its role in

different diseases was intensified. The advent of gene knockout

(KO) technology allowed the dissection of the real extent of NNO

involvement in parasitic diseases. NNO was found to be crucially

important in a variety of infections [10,11], however, NOS2-

deficient animals are less susceptible than ifn-c KO to most

microorganisms studied [12,13,14,15,16]. So, the search for other

mechanisms of host resistance induced by IFN-c started, and the

interest in ROS warmed up again.

Trypanosoma cruzi is an intracellular parasite associated with high

morbidity during both acute and chronic phases of infection.

Resistance to this parasite is mostly driven by IFN-c. This

cytokine mediates the control of parasite proliferation in tissues
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and blood in a NOS2-dependent way. However, NNO may not be

necessary for host resistance to T. cruzi infection when less virulent

strains are used [13]. In addition, previously published data

suggest that NOS2 deficient mice exhibit delayed mortality when

compared to ifn-c KO mice [13,14], denoting an additional

effector mechanism involved in T. cruzi immune resistance.

Further studies suggested IFN-c-induced p47GTPase LRG-47 as

one major factor of resistance to T. cruzi infection along with NNO

[17,18]. Although there is convincing evidence for the effects of

ROS-induced damage to T. cruzi in vitro [19,20], the role of these

reactive species in vivo has not yet been addressed.

In vitro, T. cruzi is readily phagocyted by macrophages and

triggers respiratory burst [19,21]. However, production of ROS

alone is not sufficient to kill parasites inside these cells [20,21], and

activation by IFN-c, induction of NOS2 and production of NNO

are required [20,21,22]. In the infected macrophage, NNO reacts

with superoxide yielding peroxynitrite [21], which is a powerful

oxidant and seems to be the main effector molecule against T. cruzi

[19]. Peroxynitrite is more efficient to kill T. cruzi epimastigotes in

vitro than superoxide or NNO alone [19]. Moreover, evidence of

peroxynitrite production during in vitro and in vivo infection with T.

cruzi is available, as nitrated proteins are found both in

macrophages and in mouse and human tissues [23,24]. Indeed,

it has just been reported that internalized trypomastigotes in

activated macrophages are killed by peroxynitrite-dependent

mechanisms [21]. The importance of nitro-oxidative mechanisms

is underscored by the finding that virulent T. cruzi strains, which

naturally have high peroxiredoxin levels [25], and strains

overexpressing peroxiredoxins [21,26] are protected from perox-

ynitrite and macrophage-dependent nitro-oxidative killing (perox-

iredoxins readily decompose peroxynitrite). Albeit nitration of

proteins in vivo may be achieved independently of peroxynitrite, it

is still dependent on the production of superoxide and NNO

[23,24,27] Hence, parasite damage is dependent not only on ?NO,

but on both superoxide and nitric oxide.

In order to investigate the contribution of ROS in resistance to

T. cruzi infection, mice deficient in the gp91phox (phox KO) subunit

of NADPH oxidase, a model for chronic granulomatous disease

[28], were used. These animals fail to produce ROS in endothelial

cells, causing a defect in endothelium-derived relaxation of arteries

[29,30], and in phagocytic cells, leading to deficient resolution of

bacterial and fungal infections [28]. Although these animals were

found somewhat more susceptible to Leishmania donovani [5], their

susceptibility to L. major is still a matter of debate [4,6]. In the

present study, phox KO mice were found to succumb to infection

with T. cruzi, despite adequate control of parasite replication. The

immunological and physiological functions of ROS in such model

were investigated.

Methods

Ethics statement
The procedures used in this study were approved by the Animal

Ethics comittee at the Universidade Federal de Minas Gerais,

protocol number 031/09. All care was taken to minimize animal

suferring.

Animals
Inbred C57BL/6 (WT) mice (males and females, 4–6 week old)

were used as controls (CEBIO, Instituto de Ciências Biológicas,

UFMG, Belo Horizonte, MG, Brazil). Animals were kept in a

conventional animal facility at controlled temperature, light/dark

cycles and environmental barriers. The gp91phox-deficient (phox

KO) [28] and IFN-c- deficient (inf-c KO) [31] mice, both in

C57BL/6 background, were purchased from The Jackson

Laboratories (Bar Harbor, ME, USA) and bred under specific

pathogen free conditions at the Gnotobiology Laboratory,

Departmento de Bioquı́mica e Imunologia, ICB, UFMG.

Parasite, infection, cytokines and serum NOx
measurements

T. cruzi (Y strain) was maintained by weekly passage in Swiss

mice. For in vivo experimental infections, mice were inoculated

i.p. with 1000 blood-stage trypomastigotes. The parasitemia was

evaluated by counting parasites in 5 mL of blood drawn from the

tail vein [32]. Mortality of infected mice was monitored daily.

Spleen cell cultures were performed as previously described [32].

Briefly, splenocytes from infected mice were obtained on day 10

after infection, and cultured at 56106 cells/ml, in 24-well plates,

with RPMI 1640 supplemented with 10% FCS, 2 mM L-

glutamine, 0.05 mM 2-mercapto-ethanol, 100 U/ml penicillin,

and 100 mg/ml streptomycin. Cultures were maintained at 37uC
in 5% CO2 atmosphere. Supernatants were harvested 72 hours

later for TNF and IFN-c measurements. Mice were bled on days

0, 10 and 15 after infection and the level of serum cytokines was

evaluated. IFN-c and TNF were measured as described previously

using specific ELISA kits (R&D Systems, Minneapolis, MN, USA)

following the manufacturer’s protocol. Nitrate was reduced to

nitrite in lipid-free serum with nitrate reductase and measured by

the Griess colorimetric reaction [33]. ELISA and immunohisto-

chemistry for 3-nitrotyrosine (or nitrated proteins) was performed

as previously described [24].

Quantification of parasite tissue loads and nos2 mRNA
expression by real-time PCR or real-time RT-PCR

Real-time PCR for parasite quantification was performed as

described previously [34] with minor modifications. Briefly, on

different days after infection, heart, spleen, and liver were digested

with proteinase K, followed by a phenol-chloroform-isoamyl

alcohol affinity extraction. Real-time PCR using 50 ng of total

DNA was performed on an ABI PRISM 7900 sequence detection

Author Summary

When pathogens enter their hosts, they are fought by
several resistance strategies, including capture by phago-
cytes and the production of pathogen-toxic molecules.
Nitric oxide, a free radical, has been extensively studied as
one of these toxic molecules that successfully mediates
intracellular parasite killing, including Trypanosoma cruzi,
the protozoan parasite that causes Chagas’ disease. On the
other hand, reactive oxygen species also mediate resis-
tance to several pathogens, mainly bacterial. In this study,
we addressed the role of reactive oxygen species in the
resistance to T. cruzi using gene-deficient mice, a species
which phagocytes lack the ability to produce (phox2/2
mice). We found that phagocyte-derived reactive oxygen
species are not critical to mediate resistance to parasite in
the knock-out animals. However, phox2/2 mice presented
higher mortality and lower blood pressure due to infection
with T. cruzi than non-deficient mice. The blood pressure
was restored to normal by an inhibitor of nitric oxide
synthesis by phagocytes. We hypothesize that superoxide
(one of the oxygen reactive species) controls blood
pressure during infection with T. cruzi, by reacting with
nitric oxide and preventing its action on blood vessels.
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system (Applied Biosystems) using SYBR Green PCR Master Mix,

according to the manufacturer’s recommendations. The equiva-

lence of host DNA in the samples was confirmed by measurement

of genomic IL-12p40 PCR product levels in the same samples.

Purified T. cruzi DNA (American Type Culture Collection) was

sequentially diluted for curve generation in aqueous solution

containing equivalent amounts of DNA from uninfected mouse

tissues. The following primers were used for T. cruzi genomic

DNA, TCZ, GCTCTTGCCCACACGGGTGC (forward), and

CCAAGCAGCGGATAGTTCAGG (reverse); and for genomic

il-12p40, GTAGAGGTGGACTGGACTCC (forward) and CA-

GATGTGAGTGGCTCAGAG (reverse).

Total RNA was isolated from spleens of WT and phox KO

infected or non-infected mice and real-time RT-PCR was

performed on an ABI PRISM 7900 sequence detection system

(Applied Biosystems) using SYBR Green PCR Master Mix (Applied

Biosystems) after RT of 1 mg RNA using SuperScript II reverse

transcriptase (Invitrogen Life Technologies). The relative level of

gene expression was determined by the comparative threshold cycle

method as described by the manufacturer, whereby data for each

sample were normalized to hypoxanthine phosphoribosyl transfer-

ase and expressed as a fold change compared with uninfected

controls. The following primer pairs were used: for hypoxanthine

phosphoribosyl transferase, GTTGGTTACAGGCCAGACTT-

TGTTG (forward) and GAGGGTAGGCTGGCCTATAGGCT

(reverse); nos2, CAGCTGGGCTGTACAAACCTT (forward) and

CATTGGAAGTGAAGCGTTTCG (reverse).

Hepatic and pancreatic function
Serum AST and serum Amylase were measured in sera of

infected and control animals using commercially available kits and

following manufactures instructions (KATAL, Belo Horizonte,

MG, Brazil).

Determination of blood pressure by tail-cuff
After exposed for 5 minutes to a white lamp, WT and phox KO

mice were placed in a plastic restrainer. Tail blood pressure (TBP)

from the animals was measured using a pneumatic cuff placed in

the base of the tail with a distally attached pulse sensor. Mice were

allowed to adjust to this procedure three times a week for two

weeks before experiments were performed. TBP values were

recorded on a tail-cuff plethysmography Model MK-2000 using

Windaq software to analyze the data. At least 10 good

measurements for each animal were obtained per time point

and the average of selected 5 bests readings were used as TPB for

an animal (n = 6 animals per group).

Determination of blood pressures by carotid
catheterization

Mean arterial pressure (MAP) was recorded continuously in

anesthetized animals by Biopac System (model MP150 A-CE,

Biopac Systems, CA, USA) like described previously. In brief, mice

were anesthetized by using urethane (1.2 g/kpv) administered by

intraperitoneal injection at different points after infection with T.

cruzi. The adequacy of anesthesia was verified by the absence of a

withdrawal response to nociceptive stimulation of a hindpaw. The

left common carotid artery was exposed through a 1.0- to 1.5-cm

midline incision in the ventral neck region. A catheter from

polyethylene tubing (PE 5 Intramedic, Clay Adams, Becton

Dickinson, Franklin Lakes, NJ, USA) was inserted approximately

0.25 cm into the common carotid artery and connected to

pressure transducers. Supplemental doses of urethane (0.1 g/kg

IV) were administered if necessary. The data were converted from

digital to numeric form using acquisition software. Data were

processed by calculation of 10-min means of MAP variable.

Results are expressed as means 6 SE. (measured in millimeters of

mercury) of 2–6 animals per time point pooled from 3

independent experiments.

Treatment with iNOS inhibitors
Animals were treated with 1400SW, a NOS2 inhibitor (15 mg/

Kg), i.p. on days 15 and 16 after infection with T. cruzi. On day 16,

1400W was administered 1 h before measuring MAP. During

survival experiments, 1400W (20 mg/Kg) was administered i.p.

daily divided in two doses or once a day beginning on day 13 after

infection (a time found to not affect parasite control with NOS2

inhibition [35] and before MAP starts declining) for 10 days. Mice

treated with vehicle were used as controls. Alternatively, animals

were treated with aminoguanidine (1% w/v) in drinking water

from day 13 after infection.

Statistics
The significance of differences between sample means was

determined by Student’s t test to compare WT to phox KO group

or one-way ANOVA if inf KO animals were being compared as

well. A mortality difference was tested using Mantel-Cox test and

groups compared using one-way ANOVA. A value of p,0.05 was

considered significant.

Results

Mice deficient in functional NADPH oxidase control T. cruzi

proliferation, but do not survive infection. T. cruzi infection is

known to induce a strong oxidative stress in the host with high

production of ROS and NO leading to nitration of serum and

target organs proteins [24]. Results from our lab have shown that

not only the ROS production is deficient in gp91phox NADPH

oxidase (phox KO) genetically deficient mice as described before

[28], but the level of nitration of serum proteins induced by T. cruzi

infection in phox KO mice is only 25% of that observed in WT

controls (data not shown). To better investigate the role of ROS in

T. cruzi infection in vivo, phox KO animals were inoculated with

the Y strain of T. cruzi. Because this is a reticulotropic strain, it is

more appropriate to evaluate the effects of ROS deficiency in

phagocytes in vivo. WT and phox KO mice displayed similar

parasitemia, which peaked around 9 days post-infection (Fig. 1A)

and was subsequently controlled. In contrast, ifn-c KO mice

presented uncontrolled parasite counts throughout the infection.

WT mice presented 60–70% of survival after day 50 of infection

and all IFN-c-deficient mice died by day 15 of infection.

Surprisingly, phox KO animals exhibited high mortality when

compared to WT controls, starting at day 15 and reaching 100%

mortality by 21 days of infection (Fig. 1B). This unexpected result

led us to investigate a possible parasite proliferation in tissues.

Coherently with the parasitemia data, tissue parasitism was

controlled by phox KO and WT groups at 15 days post-infection

in spleens, livers, and heart; ifn-c KO animals exhibited high

parasite proliferation in these organs (Fig. 2).

phox KO and WT mice presented similar immune
responses and pathology

The immune response from both WT and phox KO groups was

analyzed. Both mouse strains displayed similar levels of TNF and

IFN-c in sera at 9 and 15 days post-infection (Fig. 3A). In addition,

splenocytes from both groups produced expressive and equivalent

levels of IFN-c and TNF after 9 days of infection (Fig. 3B).

Importantly, tissues from both animals exhibited similar quanti-

ROS and T. cruzi-Mediated Circulatory Collapse
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tative and qualitative cellular infiltration in spleens, livers and

hearts (not shown). Hepatic and pancreatic proofs were slightly

increased after infection, but similar in both groups (Table 1).

NOx levels were exacerbated in phox KO mice with
possible involvement in hemodynamic disturbances

Nitrate and nitrite (NOx) levels were evaluated in serum of

infected mice. Phox KO mice exhibited about two fold higher levels

when compared to WT-infected controls (Fig. 4A). Of note, NOx

levels were increased in the phox KO group at the same time that

mice began to die, about 15 days post-infection. The expression of

nos2 gene in the liver was measured by real-time RT-PCR and

both WT and phox KO mice displayed similar levels of mRNA

(Fig. 4B). Because NOx levels closely relate with pressoric

regulation, the blood pressure was evaluated in the tail (TBP)

using the non-invasive tail-cuff method and in the carotid artery by

catheterization, at different time points (Fig. 5). When we

evaluated the blood pressure in the tail, we observed that WT

mice presented a good control of pressure variation as infection

progressed, but phox KO mice exhibited dramatic oscillations of

TBP after peak parasitemia (Fig. 5A). In order to have a more

accurate picture of this phenomenon, we investigated the mean

arterial pressure (MAP) in a central vessel, the carotid artery. As

can be observed in figure 5B, the MAP of phox KO mice dropped

from levels between 80–90 mmHg before infection to 70–

60 mmHg by the time the NOx levels starts to increase in the

serum, at day 8 post-infection, and further down as infection

progressed. WT group displayed a good control of MAP till day 12

post-infection, but a drop in the blood pressure at day 14 to a level

similar to that observed in the phox KO group occurred. While

WT mice restored blood pressure to normal levels, phox KO

counterparts were unable to restore physiological MAP (Fig. 5B).

In order to verify the role of NNO produced by NOS2 in the drop

of blood pressure and in mortality, phox KO mice were treated with

1400W, a selective inhibitor of NOS2. Injections with 1400W were

able to inhibit NNO levels in the blood (data not shown) and to

restore blood pressure levels (Fig. 5C). However, animals treated

daily (not shown) or every 12 hours with 1400W displayed similar

mortality rates to that of control mice (Fig. 5D). We treated the

animals with a less selective NOS2 inhibitor (aminoguanidine) in the

drinking water (1% w/v) from day 13 of infection and no effect was

observed on the mortality of phox KO infected mice (data not

shown). These treatments did not impact the control of parasite

proliferation in either WT or phox KO animals, nor changed the

outcome of the disease in WT mice (data not shown).

Figure 1. NADPH oxidase deficient-mice control parasitemia,
but succumb to infection with T. cruzi. WT, phox KO and inf-c KO
mice were infected with 1000 blood-born trypomastigotes of Y strain of
T. cruzi. Parasitemia (A) and mortality (B) were accessed daily. (A) Points
represent mean 6 SE of 5 animals per group of one from three different
experiments performed with similar results. Asterisks represent P,0.05
by Student’s t test. (B) Mortality curve is pooled from three different
experiments and P,0.05 among all groups in the graph.
doi:10.1371/journal.pntd.0001492.g001

Figure 2. phox KO mice control parasite proliferation in target organs. WT, phox KO and inf-c KO mice infected with T. cruzi were sacrificed
on days 10 and 15 post-infection and tissue parasitism in spleen, heart and liver evaluated by real-time PCR as described in material and methods.
Bars represent mean 6 SE of four animals per group. Arrows indicate P,0.05 between WT and phox KO animals. The parasitism of ifn-c KO group is
statistically different from WT and phox groups in all organs and times analyzed, except for the heart at day 10 post-infection.
doi:10.1371/journal.pntd.0001492.g002
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Discussion

The involvement of ROS in host resistance against infectious

diseases is well known [36], especially for bacterial and fungal

infections. However, while some reports suggest the involvement

of ROS in protozoa infections [1,2,3,4,5], others fail to find a

major effect of these radicals in control of infections with L. major

[6], T. gondii [37] and Plasmodium [9]. Importantly, chronic

granulomatous disease patients are known to suffer from severe

bacterial and fungal infections [38], but rarely from severe

protozoa infections [39]. Interestingly, data from our laboratory

suggests that infection with T. cruzi can induce a strong oxidative

state in the host with production of NNO, ROS and superoxide

causing nitration of proteins in serum and target tissue [24] (and

data not shown). ROS is known to be produced by macrophages

following in vitro T. cruzi infection and to be one of the major

oxidative agents on T. cruzi, reducing its viability dramatically

[19,21,40]. In this study, we investigated the role of ROS on T.

cruzi infection in vivo and surprisingly we found an important

physiological effect of ROS, unrelated to the control of parasite.

In the present study, we found that animals deficient in gp91phox

subunit of NADPH oxidase, a mouse model for chronic

granulomatous disease [28], were able to efficiently control

proliferation of Y strain of T. cruzi. Hence, parasitemia and

parasite loads in spleen, liver and heart were similar in phox KO

and WT mice. This result could suggest that ROS play a minor

role in restriction of protozoal infection during in vivo infections. On

the other hand, when carefully examined in vitro, the effects of ROS

on parasite control can be appreciated, especially the effect of

peroxynitrite. For example, macrophage-derived ROS and perox-

ynitrite were found to cause major oxidative burden on T. cruzi,

reducing its viability dramatically [19,21,40]. Indeed, the virulence

of different parasite strains can be predicted by the expression of

some enzymes involved in the parasite anti-oxidant network such as

TcTS, TXN, TcMPX, TcAPX and FeSOD-A [25]. The fact that

macrophage-derived ROS were found to have little involvement in

parasite control in phox KO mice may be related to other

mechanisms of resistance operating in vivo such as compensatory
NNO production, p47GTPases expression [17,18], CD8 T cells

involvement [41] and alternative cellular sources of superoxide and

peroxynitrite. Regarding this last point, we should indicate that

normally, in activated macrophages, phagocyte-derived superoxide

reacts with NNO to yield peroxynitrite [21]; thus, in wild type

animals superoxide from inflammatory cells plays a key role in NNO-

dependent cytotoxicity towards T. cruzi [20]. However, in the phox

KO mice, the lack of macrophage-derived superoxide, increases the
NNO levels diffusing into the parasite, which in turn, inhibit the

parasite mitochondrial respiration and secondarily enhance mito-

chondrial superoxide formation [25]. Overall, these processes lead

to intramitochondrial formation of peroxynitrite and T. cruzi

cytoxicity. Indeed, the exceeding available NNO in phox KO could

be responsible for parasite control, including the formation of

peroxynitrite in parasite mitochondria [20] or by NOX4, recently

found in macrophages [42]. Higher levels of NNO found in sera from

phox KO mice could not be attributed to higher expression of

NOS2. This could be explained simply by the fact that NNO is not

reacting with superoxide to yield peroxinitrite in phox KO. Another

possibility is raised by the fact that superoxide facilitates uncoupling

of NOS and oxidation of tetrahidrobiopterin, therefore in its

absence NOS would be more active and produce more NNO [43].

In addition to their anti-infection role, ROS are involved in

enhancing TLR signaling. Recently, it was demonstrated that ROS

production is activated by TLR signaling through MyD88 and via the

p38 MAPKinase cascade [44]. After their production is activated by

TLR-dependent or independent pathways, ROS are able to enhance

TLR4 expression on the cell surface [45] and to strength NF-kB

activation [46]. The resistance to infection with T. cruzi is known to

depend on appropriate MyD88 signaling [32] after stimulation of

TLR2 and TLR9 [47], and TLR4 [48]. Although this function of

Figure 3. WT and phox KO mice produce similar levels of IFN-c and TNF. (A) WT and phox KO animals infected with T. cruzi were bled at days
10 and 15 post-infection for cytokine measurements. (B) Infected mice were sacrificed at 10 days post-infection and spleen cells isolated and cultured
for 72 hours, when supernatants were harvested. IFN-c and TNF were measured by ELISA as described in material and methods. Bars represent mean
6 SE of at least 4 animals per group. Experiment was repeated once with similar results.
doi:10.1371/journal.pntd.0001492.g003

Table 1. Serum AST and amylase in WT and phox KO mice
infected with T. cruzi.

Days of
infection: 0 8 12 15

ASTa WT 60.7610.6 219.9639.1 139.7634.0 119.9678.5

Phox KO 73.065.0 207.6635.9 225.5622.5 136.3687.0

Amylaseb WT 259.2683.4 506.2685.1 506.9673.5 507.4691.8

Phox KO 246.46113.3 520.66161.9 526.1647.9 486.66146.2

Values from AST and amylase are combined from 3 independent experiments
with n = 3 for each independent experiment.
aAST values are expressed in IU/L;
bAmylase values are expressed in U/L.
doi:10.1371/journal.pntd.0001492.t001
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ROS could result in improved immunity to T. cruzi, it seemed to have

no critical role in our system. Our results show that phox KO mice

exhibited no immune impairment, producing equivalent amounts of

IFN-c and TNF in response to infection and presenting similar

histopathology (data not shown) to their WT partners.

Surprisingly, despite the ability of phox KO mice to restrict T.

cruzi infection and mount an efficient immune response, they

completely succumbed to infection by day 20 post-inoculation with

T. cruzi. Further investigation showed that both WT and phox KO

animals exhibited increased levels of NOx in sera from day 8 to 15

post-infection. However, the levels of nitrogen intermediates were

higher in phox KO at day 15, coinciding with the initiation of

mortality. NNO is produced by three different isoforms of nitric

oxide synthase (NOS1 or neuronal NOS, NOS2 or inducible and

Figure 4. Augmented NOx levels in phox KO mice infected with T. cruzi, when compared to WT. (A) T. cruzi-infected mice were bled at 10
and 15 days post-infection and levels of nitrate and nitrite evaluated. Bars represent mean 6 SE of 4 animals per group. Asterisks indicate P,0.05 by
Student’s t test. (B) Spleens from infected animals were harvested at 10 and 15 days post-infection and used for RNA extraction and real-time RT-PCR
as described in material and methods. NOS2 expression was evaluated after normalization with HPRT constitutive gene.
doi:10.1371/journal.pntd.0001492.g004

Figure 5. T. cruzi- infected phox KO mice display dramatic blood pressure variations. WT and phox KO animals were infected with T. cruzi
and blood pressure evaluated in the tail (TBP) (A) or in the carotid artery (MAP) (B). Values represent mean 6 SE of 6 mice of one from two performed
(A) or 2–6 mice per time point pooled from 3 independent experiments (B). Asterisks represent P,0.05. (C) Drop in blood pressure is reverted by
iNOS-specific inhibitor 1400SW. phox KO animals were infected with T. cruzi and blood pressure evaluated in the carotid artery (MAP) 16 days post-
infection. Mice treated with 1400W received 15 mg/kg 24 and 1 hour before measurements. Values represent mean 6 SE of 4 mice of one from two
performed. Asterisks represent P,0.05. (D) 1400W did not revert mortality in phox KO mice. Mice were treated with 20 mg/kg of 1400W ip daily in
single dose or divided in 2 doses starting on day 13 post-infection for 14 days. Mortality was accessed daily. Points represent mean cumulative
mortality of 18–20 animals per group. Pool from 3 experiments performed with similar results (two experiments using one dose per day regime and
one using two doses per day regime).
doi:10.1371/journal.pntd.0001492.g005
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NOS3 or endothelial) and is known to play a pleiotropic role in

host physiology [49,50,51,52]. In addition to having potent anti-

microbial properties, NNO is involved in neurotransmission, gene

expression and blood pressure regulation. For example, hyper-

production of NNO has severe consequences to the host, being the

cause of hypotension during septic shock [49]. During T. cruzi

infection, uncontrolled immune response has been proven to be

deleterious to the host, as is the case of infection in the absence of

IL10 [53,54]. In phox KO animals excess NNO was associated with

peripheral blood pressure variations, not observed in WT controls

and, more importantly, with early and permanent drop in central

MAP. An important drop in MAP of WT animals was also

observed, but this hypotension happened later than in phox KO

mice and was transitory, lasting for no longer than 3 days.

Although WT mice showed death rate of 40% starting on day 20

post-infection, we do not think this mortality is associated with the

levels of NNO since it starts after full recovery of blood pressure

levels. From this study, we can conclude also that several factors

might be involved in death associated with experimental T. cruzi

infection. For example, the fact that treatment with 1400W

prevented blood pressure drop in phox KO mice implicates NOS2.

However, treatment was not able to prevent death. Inhibition of

NOS using NOS inhibitors early in T. cruzi infection results in

higher mortality due to infection [24,55]. In contrast, treatment of

T. cruzi-infected mice with NOS inhibitors in the chronic phase of

the infection (Tulahuen strain) was not detrimental to the host’s

ability to control parasitism [35]. In addition, NOS2-deficient

animals, in contrast to ifn-c KO mice, can survive if treated with

suboptimal doses of benzonidazole during peak of parasitemia

even if the drug is withdrawn after parasite control [14]. We

followed parasitemia in animals treated with NOS2 inhibitors after

parasitemia was controlled and we did not observe recrudescence

of parasite proliferation. These data suggest that NNO may have an

important role especially in the acute phase of the infection, in

contrast to chronic phase when other IFN-c-dependent mecha-

nism controls the infection. The fact that NOS2 inhibition,

although improving blood pressure, did not prevent mortality in

our experiment could suggest that the cause of death may be

multi-factorial possibly involving changes in hematological pa-

rameters (infection associated anemia and leucopenia) [56] or

cardiac function [57,58] and demands further investigation.

However, data from shock models show that restoring blood

pressures to normal levels may not rescue animals from death. The

reason for this failure would be that the iNOS inhibition enhances

the accumulation of activated leukocytes into vital organs, thus

increasing tissue lesions. Also, inhibition of iNOS reduces the

perfusion of the organs [59,60,61,62,63].

Another very interesting side of ROS actions started to be

depicted recently. ROS have been shown to regulate vasoactive

properties of NNO. Nitric oxide is known to react with the heme

group of guanylate cyclase activating the production of cGMP that

promotes vasodilation [64]. Accordingly, some inhibitors of

guanylate cyclase, such as methylene blue, induce ROS produc-

tion. In addition, ROS derived from endothelial NAPDH oxidase

containing gp91phox is a potent vasoconstrictor because it scavenges
NNO before NNO activates guanilate cyclase [29,30]. Hence, one

unifying hypothesis to explain an important part of our

observations is that T. cruzi infection stimulates a strong

production of NNO and phox KO animals cannot produce ROS

in order to counteract the systemic effect of NNO. Coherently,

despite elevated levels of NOx detected in sera of phox KO

animals, they expressed similar levels of NOS2 by real-time RT-

PCR in the spleen. This fact and the finding that IFN-c and TNF

are not increased in phox KO animals suggest that it is not likely

that elevated NOx in serum is due to augmented production, but

may be related to impaired ROS production and its role in

scavenging NNO. We propose that the reaction of ROS and NNO to

generate peroxynitrite, in addition to strengthening the killing

effects of NNO by augmenting its oxidative properties [21], has an

important role in regulating NNO signaling and its systemic effects

during T. cruzi infection.
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