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Abstract

Background: Amoebiasis is a major public health problem in tropical and subtropical countries. Currently, metronidazole is
the gold choice medication for the treatment of this disease. However, reports have indicated towards the possibility of
development of metronidazole-resistance in Entamoeba strains in near future. In view of the emergence of this possibility, in
addition to the associated side effects and mutagenic ability of the currently available anti-amoebic drugs, there is a need to
explore newer therapeutics against this disease. In this context, the present study evaluated the amoebicidal potential of
cryptdin-2 against E. histolytica.

Methods/Principal Findings: In the present study, cryptdin-2 exhibited potent in-vitro amoebicidal activity against E.
histolytica in a concentration dependent manner at a minimum amoebicidal concentration (MAC) of 4 mg/L. Scanning
electron microscopy as well as phase contrast microscopic investigations of cryptdin-2 treated trophozoites revealed that
the peptide was able to induce significant morphological alterations in terms of membrane wrinkling, leakage of the
cytoplasmic contents and damaged plasma membrane suggesting a possible membrane dependent amoebicidal activity.
N-phenyl napthylamine (NPN) uptake assay in presence of sulethal, lethal as well as twice the lethal concentrations further
confirmed the membrane-dependent mode of action of cryptdin-2 and suggested that the peptide could permeabilize the
plasma membrane of E. histolytica. It was also found that cryptdin-2 interfered with DNA, RNA as well as protein synthesis of
E. histolytica exerting the highest effect against DNA synthesis. Thus, the macromolecular synthesis studies correlated well
with the observations of membrane permeabilization studies.

Significance/Conclusions: The amoebicidal efficacy of cryptdin-2 suggests that it may be exploited as a promising option to
combat amoebiasis or, at least, may act as an adjunct to metronidazole and/or other available anti-amoebic drugs.
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Introduction

Amoebiasis is a major public health problem in tropical and

subtropical countries and is considered to be the third leading

cause of death amongst parasitic diseases worldwide [1]. The

incidence of this disease has currently been estimated to be

approximately 50 million people with symptomatic infections

while causing 100,000 deaths annually, essentially in developing

countries [2–4]. Amoebiasis, is manifested by the transmission of

cysts of Entamoeba histolytica through the fecal-oral route from

contaminated water or food. Trophozoites of this primitive

parasite are able to invade the intestinal mucosa causing dysentery,

fever and abdominal pain. These trophozoites often spread to

other organs such as liver thereby causing liver abscesses and

death in severe cases [5].

Metronidazole is the most widely used medication to combat

luminal and hepatic amoebiasis, but it is toxic and might be

mutagenic for patients when used at high doses or as long term

treatment [6]. It is usually well tolerated but may cause nausea,

vomiting and abdominal cramps in addition to its metallic taste

[7,8]. Although drug-resistant amoebae are not as frequently

described as are drug-resistant malaria parasites, differences in

drug susceptibilities among strains of amoebae have been reported

[9,10]. Reports on treatment failure also indicate that drug

resistance may become clinically important in the near future [11].

It provides impetus to the efforts to identify and exploit alternative

anti-amoebic therapies.

A multitude of preliminary studies suggest that cationic

antimicrobial peptides (AMPs) represent a promising route

towards developing new, efficient antiparasitic therapies [12–14].

Among naturally occurring AMPs, defensins form a unique family

of cysteine-rich cationic polypeptides with 3–4 disulfide bridges

[15]. Mouse enteric alpha-defensins, present in Paneth cell apical

granules are called cryptdins (for crypt defensins). Human Paneth

cells code for two a-defensins (HD-5 and HD-6) while six alpha-

defensins (cryptdins 1–6) have been characterized from murine

small intestine [16]. Amongst these cryptdin isoforms, cryptdin-1

and cryptdin-2 are the most abundant peptides [17]. Due to the
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additional pore forming property possessed by cryptdin-2, this

peptide was employed in the present study [18]. Recently, we have

demonstrated that cryptdin-2 possesses a strong in-vivo therapeutic

potential against murine salmonellosis without exhibiting any

toxicity as indicated by liver and kidney function tests [19].

Additionally, it was found to exhibit very low cytotoxicity towards

macrophages even at a concentration twice that of the MBC [19].

The giardicidal effect of cryptdins has been investigated earlier

[20] in addition to their bactericidal [21,22] and anti-viral

properties [23]. However, the paucity of information regarding

the activity of cryptdins against Entamoeba histolytica is surprising in

view of the fact that the protozoan comes in direct contact with

these peptides in the intestinal lumen (where cryptdins are

secreted) during penetration through the mucus layer and entry

into the crypts. Therefore, the present study was designed to assess

the amoebicidal potential of Paneth cell cryptdin-2 against

Entamoeba histolytica.

Materials and Methods

Parasite and culture conditions
Standard strain of E. histolytica (HM1: IMSS) initially procured

from Dr. Alok Bhattacharya, Professor, Jawaharlal Nehru

University, New Delhi, India and being maintained in the

Department of Parasitology, Post Graduate Institute of Medical

Education and Research, PGIMER, Chandigarh, India was used

in the present study. Trophozoites were maintained axenically in

trypticase-yeast extract iron-serum (TYI-S-33) medium in screw-

capped tubes. The media contained tryptone: 2 g, yeast extract:

1 g, glucose: 1 g, NaCl: 200 mg, K2HPO4: 100 mg, KH2PO4:

60 mg, L-cysteine-HCl: 100 mg, L-ascorbic acid: 20 mg, ammo-

nium citrate: 2.28 mg and 75 ml of distilled water. pH was

adjusted to 6.8–7.060.2 using 1N NaOH. Antibiotic mixture

(streptomycin: 0.5 ml, penicillin 0.5 ml and zentamycin

0.2 ml),10% inactivated horse serum and 3% vitamin mixture

were also added to the medium. Serum was inactivated by keeping

it at 56uC for 30 minutes. E. histolytica cultures in log phase were

used for in vitro inhibition assay. Prior to isolation, dead parasites

were removed by aspiration. Live trophozoites were detached by

chilling on ice for 10 min, harvested by centrifugation (300 g,

20 min), and re-suspended at a concentration of 26105 tropho-

zoites/ml in 5 mM HEPES (N-2-hydroxyethylpiperazine- N9-2-

ethanesulfonic acid) (pH 7.5).

Metronidazole and synthetic cryptdin-2
Metronidazole was procured as a pure salt from Sigma-Aldrich

Co., St. Louis, MO., USA. The stock solution (100 mg/L) of the

drug was prepared in dimethyl sulphoxide (DMSO) and stored at

220uC till use. Chemically synthesized peptide with an amino

acid sequence LRDLVCYCRTRGCKRRERMNGTCRKGHL-

MYTLCCR, identical to the sequence of mouse Paneth cell

cryptdin-2 with disulphide linkages between CysI-CysVI, CysII-

CysIV, CysIII-CysV, was obtained from Taurus Scientific, USA. It

was suspended in 0.01% acetic acid, stored as a stock solution of

100 mg/L at 220uC and was used within 3 weeks.

In-vitro susceptibility of Entamoeba histolytica
In vitro susceptibility of E. histolytica to cryptdin-2 and

metronidazole was determined by the method as described by

Cedillo-Rivera and Munioz [24]. Briefly, 56105 trophozoites/ml

of E. histolytica were incubated with different concentrations (0.5–

64 mg/L) of cryptdin-2 and metronidazole in TYI-S-33 medium

at 37u C for 48 h. Control cultures contained the same volume of

0.01% acetic acid. At the end of the treatment period, trophozoites

were counted using a haemocytometer by trypan blue dye

exclusion method and the minimum amoebicidal concentration

(MAC) (at which there was 99.99% inhibition of growth) was

calculated by monitoring the number of trophozoites at various

concentrations with respect to the control after 48 hours of

incubation.

Effect of ionic strength on amoebicidal activity of
cryptdin-2

This was done by the similar method as described above with a

slight modification.Various concentrations of NaCl and/or KCl

(i.e 10, 50, 100 and 200 mM) were added to TYIS-33 medium in

order to evaluate the effect of monovalent cations on the

amoebicidal activity of cryptdin-2. Similarly, the divalent cations,

CaCl2 and/or MgCl2 were added at various concentrations (1, 2,

5, 10, and 20 mM) to TYIS-33 the medium and MAC was

calculated after 48 h of incubation.

Effect of pH and bile salts
The effect of pH and bile salts on the amoebicidal activity of

the cryptdin-2 was tested by determining its MACs in the

presence of bile salts and at various pH values by the method as

described above with a slight modification. The pH of the assay

medium was altered by adding either 5 M HCl or NaOH. The

amoebicidal activity was tested at pH values ranging from pH 5

to pH 8. Similarly, for evaluating the effect of bile salts, TYI-S-33

medium used in the above assay was supplemented with 0.3% of

sodium taurocholate and sodium deoxycholate and MAC was

calculated.

Morphological alterations induced by cryptdin-2 in E.
histolytica

To assess the effect of cryptdin-2 on the morphology of

Entamoeba histolytica, 36103 trophozoites/ml were incubated with

2 mg/L of cryptdin-2 (sub-lethal concentration) for 60 min at

Author Summary

Intestinal amoebiasis, caused by Enatmoeba histolytica
continues to be a major public health problem in tropical
and subtropical countries and is considered to be the third
principal parasitic disease responsible for mortality in the
world. In addition to the mutagenic ability and known
toxicity of conventional anti-amoebic drugs, there are
reports indicating the emergence of treatment failures to
these drugs. Therefore, there has been a considerable
interest in exploring the potential of various antimicrobial
peptides having higher efficacy and lower toxicity to
combat such parasitic infections. Herein, we present the
amoebicidal efficacy of cryptdin-2, a Paneth cell alpha-
defensin against E. histolytica. Cryptdin-2 was found to
decrease the number of trophozoites of E. histolytica in a
concentration dependent manner. By and large, cryptdin-2
could retain its amoebicidal activity in the presence of
cations, bile salts and at various pH values. Microscopic
analysis and N-phenyl napthylamine (NPN) uptake assay
revealed membrane dependent amoebicidal action of the
peptide. It was also demonstrated that cryptdin-2 has the
potential to target the intracellular macromolecular
synthesis machinery of Entamoeba. Based on these results,
cryptdin-2 seems to be a promising agent for the
development of novel therapeutics against amoebiasis or
at least may act as an adjunct to conventional antibiotics
against E. histolytica.
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37uC and effect on morphology of the amoebae was examined by

simple light microscope (4006) as well as phase contrast

microscope (6006). Trophozoites incubated with 0.01% acetic

acid served as controls. The ultrastuctural changes induced by

cryptdin-2 were studied by scanning electron microscopy (SEM).

For the SEM study, trophozoites were fixed in 2% glutaraldehyde

(1 h at room temperature), postfixed in 2% osmium tetroxide

(30 min in the dark), dehydrated in a series of graded alcohol

baths, and then subjected to critical-point drying in CO2. Finally

the samples were mounted on aluminium stubs, coated with gold-

palladium at a thickness of 200Au, and examined for the change in

morphology by scanning electron microscope (JEOL JEM 1600

model).

Membrane permeabilization assay
The ability of cryptdin-2 to permeabilize the membrane of E.

histolytica was investigated using N-phenyl napthylamine (NPN)

uptake assay [25]. To evaluate the effect at different peptide to

lipid ratios, sub-inhibitory as well as higher concentrations of

cryptdin-2 were used. Briefly, 20 ml of mid-log phase trophozoites

of E. histolytica (16106 trophozoites/ml) were suspended in 100 ml

of 5 mM HEPES (pH 7.4) containing 10 mM NPN in 1.5 ml

tubes. After 5 min of incubation, cryptdin-2 (0.5 MAC, MAC and

2MAC) was added, and the increase in fluorescence of NPN was

monitored at an excitation and emission wavelength of 340 nm

and 415 nm respectively, with slit widths of 5 nm. 10 mM EDTA

(a known membrane permeabilizer) was added to the control

tubes. The emission and excitation wavelength were determined

after analyzing the fluorescence spectrum of NPN in presence of

Enatamoeba histolytica trophozoites (without any membrane permea-

bilizer) at different excitation wavelengths using a LS55- Perkin-

Elmer luminescence spectrophotometer. Relative fluorescence

units (fluorescence value of cell suspension with the test substance

and NPN subtracted with the corresponding value of the cell

suspension and NPN without the test substance) were measured at

different time intervals.

Effect on macromolecular synthesis (pulse labeling
studies)

The effect of cryptdin-2 on the incorporation of [3H] thymidine,

[3H]- uridine, and [3H] leucine (Board of Radiation and Isotope

Technology (BRIT, India) in amoebic DNA, RNA, and proteins

respectively, was also studied. In brief, mid-log phase cultures

with16106 trophozoites/ml were incubated with 0.5MAC, MAC

and 26 MAC of cryptdin-2 in presence of 2.5 ml/ml of either

[methyl-5-3H] thymidine (18000 mCi/mmol), [5-3H] uridine

(16000 mCi/mmol), or C14-[L-leucine (210 mCi/mmol) for

different time points. After the incubation, trophozoite suspensions

were added to ice-cold 10% trichloroacetic acid, mixed well, and

allowed to stand on ice for 40 min. Samples were then collected

onto nitrocellulose filters. The filters were washed thoroughly with

5% trichloroacetic acid and 70% ethanol, dried , placed in 7 ml

scintillation cocktail (Sigma Aldrich Chemicals, St. Louis, MO,

USA) and the bound radioactivity was then counted in liquid

scintillation counter for 1 min for each filter. (Counts per minute,

cpm). The radioactivity incorporated in the trophozoites was

calculated using a standard curve plotted between cpm and

radioactivity (mCi) for all the three radiolabelled precursors (at

various concentrations. The calculated radioactivity was then

converted to molar concentrations of each of the precursor by

using the following formula:

Moles of precursor incorporated = Calculated radioactivity/

specific activity (for each precursor)

Statistical Analysis
Data were expressed as mean 6 standard deviation of three to

five independent experiments. Statistical analysis was done by

Student’s unpaired t test and one way analysis of variance

(ANOVA) followed by pair wise comparison procedures (Tukey

test) using Jandel Sigma Stat Statistical Software, version 2.0. In all

cases, statistical significance was defined as p#0.05.

Results

Amoebicidal activity of cryptdin-2
Cryptdin-2 and metronidazole inhibited the growth of E.

histolytica trophozoites in a concentration dependent manner while

an increase in trophozoite count was observed in control as

compared to the initial count after 48 hours. Minimum amoebi-

cidal concentrations of cryptdin-2 and metronidazole were

evaluated to be 4 mg/L and 4.5 mg/L respectively as more than

99.9% decrease (p,0.001) in trophozoite counts at this concen-

tration was observed as compared to the control (Fig. 1).

Effect of ionic strength on amoebicidal activity
The MAC was not found to be influenced in the presence of

10 mM NaCl. However, the values increased to 8 mg/L, 16 mg/

L (p,0.05), 32 mg/L (p,0.05) at 50, 100 and 200 mM NaCl

concentrations (Fig. 2A). Similarly, no antagonistic effect of

10 mM KCl (a concentration much higher than its approximate

plasma physiological concentrations) on the MAC values was

observed [26], though the MAC values increased at higher

concentrations of KCl (Fig. 2B). Overall, the results exhibited that

although the MAC values were increased at higher concentrations

of both the monovalent cations, complete loss of activity was not

observed at any of the concentrations tested. Similarly, the MAC

value was not found to be affected at 2 and 5 mM MgCl2 (Fig. 2C)

or CaCl2 (Fig. 2D), concentrations higher than the physiological

plasma concentrations of both these divalent cations [26].

However, an increase in MAC values was observed at higher

concentrations of both these divalent cations.

Effect of pH and bile salts
Cryptdin-2 decreased the trophozoite count in a concentration

dependent manner in presence of bile salts and exhibited no

change in its amoebicidal activity against E. histolytica. No change

in MAC value was exhibited between the pH ranges of 6.5 to 7.5

while an increase in MAC value to 8 mg/L was observed at pH 8.

At pH values 5 and 5.5, the observed MAC values were 32 mg/

Land16 mg/L respectively.

Morphological alterations induced by cryptdin-2
There was a marked change in the morphology of trophozoites

treated with sub-inhibitory concentrations of the peptide with

respect to controls which was quite evident from simple light

(Fig. 3A–B), phase contrast (Fig. 3C–D) as well as scanning

electron microscopic (Fig. 4A–C) studies. The deformation of

trophozoites was clearly revealed by simple light as well as phase

contrast microscopic techniques. Untreated Entamoeba trophozoites

had smooth, normal surface morphology without any visible

membrane abnormalities (Fig. 3A, 3C, 4A). It was indicated that

cryptdin-2 could lead to complete disintegration of the cells after

1 h of treatment period and a majority of the cells appeared to

have lost their membrane integrity (Fig. 3B, 3D, 4B, 4C). Scanning

electron microscopic studies exhibited cell swelling and distortion

of trophozoite morphology (Fig. 4B, 4C) and the damage to the

plasma membrane was also apparent. It was interesting to note

that in some of the cryptdin-2 treated trophozoites, the

cytoplasmic components appeared to be bursting (Fig. 4B). The

Amoebicidal Potential of Paneth Cell Cryptdin-2
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micrographs shown in Fig. 3 and Fig. 4 are representative of the

ultra-structural damage of trophozoites, however, the damage was

observed in each one of the fields analyzed.

Membrane permeabilization assay
The series of emission spectra obtained with different excitation

wavelengths (slit width, 5 nm) for NPN in presence of E. histolytica

trophozoites exhibited an absorption maximum at approximately

415 nm. The most effective excitation wavelength was found to be

340 nm; an almost similar response was also obtained by exciting

at 330 or 350 nm (Fig. 5). In the absence of Entamoeba

trophozoites, NPN in HEPES buffer yielded a weak fluorescence

peaking at 457 nm (excitation at 340 nm, data not shown).

Incubation of the cells with NPN in presence of cryptdin-2 resulted

in a marked blue shift in emission peak with increased magnitude

of fluorescence intensity as compared to the intensity of the peak

observed when the cells were incubated with NPN in absence of

the peptide (Fig. 6A). Thus these results suggested that cryptdin-2

has the ability to permeabilize the membrane of E. histolytica.

Moreover, relative fluorescence units (Fig. 6B) were also found to

be significantly increased in a dose and concentration dependent

manner in the presence of cryptdin-2 indicating the increased

permeabilization of cryptdin-2 with time (as compared to controls).

Effect on macromolecular synthesis
To investigate whether cryptdin-2 affect macromolecular syn-

thesis of E. histolytica, the incorporation of radioactive precursors viz

[methyl-3H] thymidine, [5-3H] uridine and L-[4, 5-3H (N)] leucine

into DNA, RNA and protein was studied in the presence of

0.5MAC, MAC and 2MAC of cryptdin-2. A dose and time

dependent inhibition of DNA synthesis by cryptdin-2 was observed.

However, after 60 minutes of exposure, DNA-synthesis was found

to be increased in the control cells which were not exposed to the

peptide. The percentage inhibition of incorporation of thymidine

after 60 min was evaluated to be 45.69% (p,0.05), 89.34%

(p,0.05) and 96.63% (p,0.05) in presence of 2 mg/L (0.5MAC) ,

4 mg/L (MAC) and 8 mg/L (2MAC) respectively of cryptdin-2

(Fig. 7A). Similarly, the incorporation of RNA was also inhibited at

Figure 2. Effect of ionic strength on amoebicidal activity of cryptdin-2. A) Minimum amoebicidal concentrations (MACs) of cryptdin-2 in
presence of various concentrations of NaCl (mM) *p,0.05 vs. MAC in absence of NaCl. B) Minimum amoebicidal concentrations (MACs) of cryptdin-2
in presence of various concentrations of KCl (mM) *p,0.05 vs. MAC in absence of KCl. C) Minimum amoebicidal concentrations (MACs) of cryptdin-2
in presence of various concentrations of CaCl2 (mM) *p,0.05 vs. MAC in absence of CaCl2. D) Minimum amoebicidal concentrations (MACs) of
cryptdin-2 in presence of various concentrations of MgCl2 (mM) *p,0.05 vs. MAC in absence of MgCl2.Values are Mean 6 SD of five independent
experiments.
doi:10.1371/journal.pntd.0001386.g002

Figure 1. Minimum amoebicidal concentration of cryptdin-2. Decrease in trophozoite count of E. histolytica in the presence of various
concentrations of cryptdin-2. Values are expressed as mean 6 SD of five independent experiments.*p,0.001 vs. number of trophozoites in control
(after 24 hours).
doi:10.1371/journal.pntd.0001386.g001
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the sublethal as well as higher concentrations of cryptdin-2. The

percentage inhibition of uridine incorporation was 14.5%, 80.7%

(p,0.05) and 90.43% (p,0.05)% in presence of 0.5MAC, MAC

and 2MAC respectively of cryptdin-2 as compared to the control

cells (Fig. 7B). Cryptdin-2 also exhibited a profound effect on

protein synthesis by Entamoeba histolytica as the percentage inhibition

of incorporation of leucine after 60 min was found to be 27%

(p,0.05),89% (p,0.05) and 96% (p,0.05) in presence of 2 mg/L

(0.5MAC), 4 mg/L (MAC) and 8 mg/L (2MAC) respectively of

cryptdin-2 (Fig. 7C). Therefore, it can be concluded from these

results that cryptdin-2 exerts the most significant effect on DNA

synthesis followed by protein and RNA synthesis.

Discussion

The lack of a useful alternative class of molecules against

amoebiasis provides impetus to the efforts to identify and exploit

alternative anti-amoebic therapies. Therefore, the present study

evaluated the parasiticidal potential of cryptdin-2 against E.

histolytica. Earlier, various cryptdin isoforms have been reported to

exhibit parasiticidal activity against Giardia lamblia and it has been

suggested that cryptdin-2 possesses the most potent giardicidal

activity [20]. In the present study also, cryptdin-2 was able to

inhibit the growth of E. histolytica in a concentration dependent

manner. Interestingly, the amoebicidal concentrations of cryptdin-

2 and metronidazole against E. histolytica were found to be at par in

the current study. It can be inferred from this observation that

cryptdin-2 can be exploited as an adjunct to metronidazole at

lower concentrations against Entamoeba as has been reported

recently against Salmonella [27]. The anti-amoebic activity (4 mg/

L) observed in the present study seems to be comparatively higher

than the giardicidal activity (20 mg/L) as reported previously [20].

The differing parasiticidal potency of cryptdin-2 against Entamoeba

Figure 3. Morphological alterations induced by cryptdin-2 in E. histolytica. A) Phase contrast micrographs of normal untreated trophozoites
of E. histolytica showing normal morphology without any alterations in structure and an intact plasma membrane (6006). B) Phase contrast
micrographs of E. histolytica trophozoites treated with cryptdin-2 for an hour exhibiting altered morphology (arrows). The damage to the plasma
membrane of the trophozoites is visible (arrows) (6006). C) Simple light photomicrographs of normal (untreated) trophozoites of E. histolytica as
observed under simple light microscope at a magnification of 4006. D) Simple light photomicrographs of trophozoites of E. histolytica treated with
cryptdin-2 for an hour as observed under simple light microscope at a magnification of 4006.The damage to plasma membrane is visible (arrows).
doi:10.1371/journal.pntd.0001386.g003
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and Giardia can be attributed to the relative efficacy of binding to

the trophozoite surface.

The peptide-target interactions are reported to be inhibited by

divalent and to a lesser extent by monovalent cations. Therefore, in

the current study, the stability of the peptide was also evaluated at

approximate physiological concentrations of monovalent and

divalent cations in colonic lumen [26,28,29]. MAC value was found

to be increased to 32 mg/L in presence of 100 mM NaCl. Extracts

from human intestinal biopsies containing AMPs have also been

reported to exhibit diminished antimicrobial activity at 150 mM

NaCl [30]. However, the amoebicidal activity was not affected at

approximate physiological concentrations of bile salts, K+, Mg2+

and/or Ca2+ as well as at a broad pH range indicating its stability

under in-vivo physiological conditions. Moreover, within the

intestinal microenvironment (where the critical interaction of

trophozoites and cryptdins occurs), the functional duality displayed

by cryptdin-2 in terms of amoebicidal and immunomodulatory

activity might be operative thereby combating the infection even in

the presence of constantly differing concentrations of these salts [29].

To investigate the possible mechanism by which cryptdin-2

exerts its amoebicidal activity, morphology of peptide-treated

trophozoites was examined. After 60 min of incubation with

cryptdin-2, E. histolytica trophozoites revealed membrane wrinkling

and probably leakage of cytoplasmic contents through the

damaged cytoplasmic membrane. Although similar effects of other

AMPs have been reported against various bacterial pathogens

[31–34], this is the first report on cryptdin-2 induced morpholog-

ical alterations in Entamoeba histolytica trophozoites. AMPs that

disrupt membranes of pathogenic organisms are sometimes toxic

to eukaryotic cells which questions their recommendation to be

used as systemic drugs [35,36]. Interestingly, cryptdin-2 exhibits

very low cytotoxicity towards murine macrophages even at

concentrations much higher than its effective microbicidal

concentrations [19]. This difference in susceptibility has been

attributed to the presence of cholesterol on eukaryotic cell

membrane which stabilizes the lipid bilayers thereby protecting

the eukaryotic cells from AMP-induced damage [37].

NPN permeabilization studies further evidenced this mem-

brane-dependent mechanism of amoebicidal action of cryptdin-2.

NPN fluoresces weakly in an aqueous environment but strongly in

the hydrophobic interior of cell membranes. Upon destabilization

of the cellular membrane by antimicrobial agents, the dye enters

Figure 4. Scanning electron micrographs of cryptdin-2 treated E. histolytica cells. A) E. histolytica trophozoites showing normal morphology
(50006) B) Trophozoites showing the apparent leakage of cytoplasmic contents and the damaged plasma membrane after 60 minutes of treatment
with cryptdin-2 (50006). C) Trophozoites showing membrane wrinkling and abnormalities in surface morphology after incubation with cryptdin-2 for
60 min (30006).
doi:10.1371/journal.pntd.0001386.g004
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Figure 5. Fluorescence spectra of 1-N-phenylnaphthylamine (NPN). Fluorescence spectra obtained from a suspension of E. histolytica
trophozoites in 5 mM/L HEPES buffer, pH 7?2 supplemented with 10 mM NPN. The measurement was done on a Perkin-Elmer luminescence
spectrophotometer with a 5-nm excitation slit width.
doi:10.1371/journal.pntd.0001386.g005

Figure 6. NPN uptake assay. A) Fluorescence spectrum of 10 mM 1-NPN excited at the wavelength of 340 nm (a) 1-NPN + cryptdin-2 (8 mg/L) (b)
1- NPN+EDTA, both at a concentration of 10 mM (c)) 1-NPN alone B) Increase in relative fluorescence units of10 mM 1-NPN at various time intervals a)
1-NPN+ cryptdin-2 (8 mg/L) (b) 1-NPN+ cryptdin-2 (4 mg/L) (c) 1-NPN+ cryptdin-2 (2 mg/L).
doi:10.1371/journal.pntd.0001386.g006
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the damaged membrane, where it emits stronger fluorescence

[38]. The marked blue shift accompanied by an increase in

fluorescence intensity observed in the emission spectrum of NPN

in presence of cryptdin-2 indicated the movement of NPN into a

more hydrophobic environment. These observations were consis-

tent with ultra structural findings indicating that cryptdin-2 was

able to permeabilize the cytoplamsic membrane even at sub-lethal

concentrations. Furthermore, a time and dose dependent increase

in fluorescence was also observed in cells incubated with cryptdin-

2 thereby indicating that the peptide treatment influenced

membrane permeability. Therefore, both ultrastructural as well

as fluorescence studies provided evidence that the surface of E.

histolytica trophozoites was being modified by cryptdin-2 in order to

exert it amoebicidal action. This finding confirms the earlier

reports that Paneth cell cryptdins are natural pore forming

peptides and may also be capable of mediating the transport of

various therapeutic molecules inside the target cells [39].

In addition to membrane disruption, many studies have focused

on intracellular effects through which AMPs bring about cell

death. The cytoplasm contains an abundance of polyanionic

molecules, such as nucleic acids and proteins, which may be the

possible interaction sites for the cationic AMPs. In the present

study, DNA, RNA and protein synthesis of E. histolytica was

inhibited by cryptdin-2 in a time and dose dependent manner. It

was also revealed that cryptdin-2 was more effective in inhibiting

the incorporation of thymidine followed by leucine and uridine

suggesting that DNA synthesis is more sensitive to its amoebicidal

action. It is possible that membrane permeabilization affects the

macromolecular synthesis due to leakage of cell contents and

essential ions which are required for the activity of intracellular

enzymes thereby interfering with essential metabolic processes

inside the target cells [40]. Earlier also, inhibition of macromo-

lecular synthesis has been reported for various AMPs like

bactenectins [41], human neutrophil peptide-1 [42], pleurocidin

[43] derived peptides and the epididymal defensin DEFB118 [44].

In conclusion, we report that cryptdin-2 exerts amoebicidal

activity by inducing striking morphological changes in E. histolytica

which is consistent with its membrane dependent mechanism of

action. In addition to membrane permeabilization, its amoebicidal

mechanism involves inhibition of DNA, RNA and protein

synthesis. Given the antibacterial [19] as well as antiprotozoal

efficacy of cryptdin-2, this peptide may be exploited as a broad

spectrum antimicrobial agent. It may also be inferred that

cryptdin-2, if not alone, may at-least be used in conjunction with

metronidazole and/or other available anti-amoebic drugs in near

future.

Figure 7. Effects of cryptdin-2 on macromolecular synthesis in E. histolytica. (A) [3H] - thymidine incorporation into DNA (B) [3H] uridine
incorporation into RNA (C) L-[4, 5-3H (N)] leucine incorporation into protein were measured. The peptide was added at 0.56 MAC (2 mg/L), MAC
(4 mg/L) and 26MAC (8 mg/L). The results for control sample with no peptide are also shown. #p , 0.05 vs DNA synthesis in control at 20 minutes,
*p,0.05 vs DNA, RNA and protein synthesis in control at 30 min, { p,0.05 vs DNA, RNA and protein synthesis in control at 40 min, { p,0.05 vs DNA,
RNA and protein synthesis in control at 50 min, **p,0.05 vs DNA, RNA and protein synthesis in control at 60 min. Data representative of five separate
experiments are shown.
doi:10.1371/journal.pntd.0001386.g007
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