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Abstract

Background: Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and
economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have
been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of
the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to
discover such ES targets.

Methods and Findings: In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational
workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals
(including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-
parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710
proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently
having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong
‘‘loss-of-function’’ phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%)
sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto
Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also
mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family ‘‘transthyretin-like’’ and
‘‘chromadorea ALT,’’ considered as vaccine candidates against filariasis in humans.

Conclusions: We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This
set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on
understanding the biology of parasitic nematodes and their interactions with their hosts, as well as for the development of
novel drugs or vaccines for parasite intervention and control.
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Introduction

Molecules secreted by a cell, often referred to excretory/secretory

(ES) products, play pivotal biological roles across a diverse range of

taxa, ranging from bacteria to mammals [1]. ES proteins can

represent 8620% of the proteome of an organism [1,2]. ES proteins

include functionally diverse classes of molecules, such as cytokines,

chemokines, hormones, digestive enzymes, antibodies, extracellular

proteinases, morphogens, toxins and antimicrobial peptides. Some of

these proteins are known to be involved in vital biological processes,

including cell adhesion, cell migration, cell-cell communication,

differentiation, proliferation, morphogenesis and the regulation of

immune responses [3]. ES proteins can circulate throughout the

body of an organism (in the extracellular space), are localized to or

released from the cell surface, making them readily accessible to

drugs and/or the immune system. These characteristics make them

attractive as targets for novel therapeutics, which are currently the

focus of major drug discovery research programmes [4]. For

example, knowledge of the molecular basis of secretory pathways in

bacteria has facilitated the rational design of heterologous protein

production pathways in biotechnology and in the development of

novel antibiotics. From a more fundamental perspective, proteins

secreted by pathogens are of particular interest in relation to the

pathogen-host interactions, because they are present or active at the

interface between the parasite and host cells, and can regulate the

host response and/or cause disease [5,6].
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ES proteins have long been the focus of biochemical and

immunological studies of parasitic helminths, as such worms secrete

biologically active mediators which can modify or customize their

niche within the host, in order to evade immune attack or to regulate

or stimulate a particular host response [7,8,9,10]. Parasitic

nematodes are responsible for a range of neglected tropical diseases,

such as ancylostomatosis, necatoriasis, lymphatic filariasis, oncho-

cerciasis, ascariasis and strongyloidiasis in humans [11,12], and

others can cause massive production or economic losses to farmers as

well as to animal and plant industries [13].

There have been efforts to identify and characterize ES proteins

in different parasitic nematodes in various studies. For instance,

Robinson et al. [14] used a proteomic approach to identify ES

glycoproteins in Trichinella spiralis, an enoplid nematode (or

trichina) of musculature. In another effort, Yatsuda et al. [9]

undertook an analysis of ES products from Haemonchus contortus

(barber’s pole worm), a parasite of small ruminants; these authors

identified several novel and known proteins but were only able

(based on comparative analysis) to investigate known proteins,

such as serine, metallo- and aspartyl- proteases and the

microsomal peptidase H11, a vaccine candidate, previously

recognised as a ‘‘hidden antigen’’ [15]. The precise role of ES

proteins from parasitic nematodes in mediating cellular processes

is largely unknown due to the difficulty in experimentally assigning

function to individual proteins [14]. In this context, computational

approaches applied to identify and annotate ES proteins have

significantly complemented experimental studies of different cells,

tissues, organs and organisms. For example, in an early study,

Grimmond et al. [16] developed a computational strategy to

identify and functionally classify secreted proteins in the mouse,

based on the presence of a cleavable signal peptide (required for its

entry into the secretory pathway), along with the lack of any

transmembrane (TM) domain or intracellular localization signals,

in full-length molecules. This study was followed by the

computational reconstruction of the secretome in human skeletal

muscle from protein sequence data by Bortoluzzi et al. [17]. Also,

Martinez et al. [18] identified and annotated the secreted proteins

involved in the early development of the kidney in the mouse from

microarray ‘expression’ profiling, using computational strategies.

While expressed sequence tag (EST) data have been mined for

many interesting functional molecules [19,20], predicting ES

proteins from ESTs has been relatively uncommon. For example,

Vanholme et al. [21] identified putative secreted proteins from

EST data sets for the plant parasitic nematode, Heterodera schachtii.

Harcus et al. [22] investigated the signal sequences inferred from

the EST data for the parasitic nematode Nippostrongylus brasiliensis,

and related them to ‘‘accelerated evolution’’ of secreted proteins in

this parasite, compared with host or non-parasitic organisms.

Ranganathan et al. [23] identified ES proteins from EST data for

the bovine lungworm, Dictyocaulus viviparus, whereas Nagaraj et al.

[24] identified and classified putative secreted proteins from

Trichostrongylus vitrinus, a parasitic nematode of ruminants and

suggested some molecules as candidates for developing novel

anthelmintics or vaccines. One of the suggested molecules, Tv-stp1,

was investigated further and functionality established [25].

While single EST or protein data sets have been examined for

the presence of secretory or ES proteins, large-scale analysis has

not been conducted to date, due to the lack of effective high-

throughput, computational pipelines for analysis [16]. Recently,

we designed a high-throughput EST analysis pipeline, ESTEx-

plorer [26] to provide comprehensive DNA and protein-level

annotations. Based on earlier work [23,24], ESTExplorer has been

adapted to predict ES proteins with high confidence, and then

provide extensive annotation, including Gene Ontologies (GO),

pathway mapping, protein domain identification and predict

protein-protein interactions. Our new pipeline, EST2Secretome, is

a freely available web server that can directly process vast amounts

of EST data or entire proteomes.

In the present study, approximately 500,000 ESTs, representing

39 economically important and disease-causing parasitic nema-

todes of humans, other animals and plants, were subjected to a

comprehensive analysis and detailed annotation of inferred ES

proteins using EST2Secretome, with specific reference to

candidate molecules already being assessed as intervention targets.

We compared the predicted ES proteins with those inferred from

the free-living nematode C. elegans, to establish whether these

proteins could be nematode-specific and propose their function-

ality. Also, we examined whether the ES proteins had homologues

in their respective hosts (animal, human or plant), as such proteins

and their genes are less likely to be useful as intervention targets.

Pathway, interactome and literature-based ES protein analyses

have assisted in gleaning sets of candidate molecules for future

experimental studies. The present results lay a foundation for

understanding the functional complexity of ES proteins from

parasitic nematodes and their interactions with other proteins

(within the nematodes) and/or with host proteomes.

Materials and Methods

Description of EST2Secretome
EST2Secretome (http://EST2secretome.biolinfo.org/) is a

comprehensive workflow system comprising carefully selected

computational tools to identify and annotate ES proteins inferred

from ESTs. EST2Secretome provides a user-friendly interface and

detailed online help to assist researchers in the analysis of EST

data sets for ES proteins. The workflow can be divided into three

phases, with Phase I dedicated to pre-processing, assembly and

conceptual translation, similar to that of ESTExplorer (details

described in Nagaraj et al. [26]). In Phase II, putative ES proteins

are identified based on the presence of signal sequences and the

Author Summary

Excretory-secretory (ES) proteins are an important class of
proteins in many organisms, spanning from bacteria to
human beings, and are potential drug targets for several
diseases. In this study, we first developed a software
platform, EST2Secretome, comprised of carefully selected
computational tools to identify and analyse ES proteins from
expressed sequence tags (ESTs). By employing EST2Secre-
tome, we analysed 4,710 ES proteins derived from 0.5 million
ESTs for 39 economically important and disease-causing
parasites from the phylum Nematoda. Several known and
novel ES proteins that were either parasite- or nematode-
specific were discovered, focussing on those that are either
absent from or very divergent from similar molecules in their
animal or plant hosts. In addition, we found many
nematode-specific protein families of domains ‘‘transthyre-
tin-like’’ and ‘‘chromadorea ALT,’’ considered vaccine candi-
dates for filariasis in humans. We report numerous C. elegans
homologues with loss-of-function RNAi phenotypes essen-
tial for parasite survival and therefore potential targets for
parasite intervention. Overall, by developing freely available
software to analyse large-scale EST data, we enabled
researchers working on parasites for neglected tropical
diseases to select specific genes and/or proteins to carry out
directed functional assays for demystifying the molecular
complexities of host–parasite interactions in a cell.

ES Proteins from Parasitic Nematode ESTs
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absence of transmembrane helices. Phase III contains a compre-

hensive annotation layer, comprising a suite of bioinformatic tools

to annotate the ES proteins inferred in Phase II. ESTs can be

submitted to Phase I for EST pre-processing, assembly and

conceptual translation, followed by the identification of putative

ES proteins in Phase II and annotation in Phase III. Alternatively,

instead of EST data, protein sequences may be submitted directly

to Phase II to identify putative ES proteins and functionally

annotate them in Phase III.

Phase I of EST2Secretome shares SeqClean, RepeatMasker and

CAP3 (contig assembly program) programs with ESTExplorer [26],

based on the analysis presented elsewhere [20]. The contig and

singleton sequences generated by CAP3 are transferred to the

program ESTScan [27] for conceptual translation into proteins,

using the genetic code from the nearest organism. EST2Secretome

currently implements the genetic codes for 15 organisms, covering

the most studied organisms, including human, mouse, rat, pig, dog,

chicken, rice, wheat, thale cress (Arabidopsis thaliana), zebrafish, fly,

yeast and a free-living roundworm (Caenorhabditis elegans) (Figure 1).

In Phase II, putative ES proteins are identified from the protein

sequences generated in Phase I, using the two programs SignalP

[28] and TMHMM [29] (Figure 1). SignalP first checks whether a

signal sequence [30] is predicted both the artificial neural network

and the hidden Markov model probability scores (SignalPNN and

SignalP-HMM), using default parameters that can be modified by

experienced users. Subsequently, all proteins with signal sequences

are passed on to TMHMM [29], a hidden Markov model-based

transmembrane helix prediction program, to ‘‘filter out’’ of

transmembrane proteins. The subset lacking transmembrane

helices is selected as ES proteins for further annotation.

Phase III is the annotation layer, comprising a suite of six

computational tools for the functional annotation of ES proteins,

of which the first three (Gene Ontology using BLAST2GO,

InterProScan and pathway mapping using KOBAS) are also

implemented in ESTExplorer and described elsewhere [26]. The

other three components are unique to EST2Secretome and

incorporate protein BLAST searches against three different data

sets derived from Wormpep [31] for locating nematode homo-

logues, IntAct [32] for protein-protein interaction data and a non-

redundant known secreted protein database (SecProtSearch)

derived from the literature, the secreted protein database, SPD

[33] and the manually curated signal peptide database, SPdb [34].

Mapping to Wormpep gives a list of homologous proteins in C.

elegans, linked to WormBase [31]. Homologues from the IntAct

database are determined using the concept of interlogs (evolu-

tionarily conserved interactions identified by conservation among

homologous proteins in different species) and are linked to all

molecular interaction partners of homologous proteins. EST2Se-

cretome provides a link to the relevant interlog page at IntAct,

containing all interaction partners. The interaction data culled

from these interlogs can be extrapolated to predict protein

interactions of the query sequence, for validation by complemen-

tary double-stranded RNA interference (RNAi), gene deletion or

fluorescence-based interaction studies. The final module compares

the query sequence to a specialised data set of known secreted

proteins (SecProtSearch), in order to identify orthologous secreted

proteins, which would provide a second level of validation for the

ES protein dataset. Phase III (Figure 1) thus allows extensive

characterization and validation of ES proteins predicted by

EST2Secretome.

Once an EST (or a protein dataset) has been submitted to

EST2Secretome, a status page is accessible, for the monitoring of

the progress of the analysis, at the program level. As each selected

program is completed, the status page is updated and the output

from that program becomes available. The outcome from each

run is summarized, with links to output files from each selected

program being listed. When a large dataset is analysed using a

workflow, it is challenging to collate the results of the analysis from

multiple steps. To address this issue, EST2Secretome provides a

summary file for each ES protein, comprising the assembled

contig/singleton sequence, the peptide sequence and all the

annotations (such as homologous proteins, protein domains,

pathways and interaction partners).

Implementation of EST2Secretome
The details of the EST2Secretome workflow, including the

software and hardware used, are provided on the website. A

detailed tutorial, frequently asked questions (FAQ) and sample

EST and protein datasets are available online for the effective use

of EST2Secretome.

Identification and analysis of ES proteins
452,134 ESTs (as at 18 December 2007) from 39 parasitic

nematodes (7 from human, 18 from other animals and 14 from

plants, Table 1) were downloaded from dbEST [19]. ESTs from

each organism were submitted to Phase I of EST2Secretome,

Figure 1. Schematic representation of EST2Secretome work-
flow. EST2Secretome analysis comprising Phase I: pre-processing,
assembly and conceptual translation, Phase II: identification of putative
excretory-secretory (ES) proteins and Phase III: annotation of ES proteins
using a suite of computational tools.
doi:10.1371/journal.pntd.0000301.g001

ES Proteins from Parasitic Nematode ESTs

www.plosntds.org 3 September 2008 | Volume 2 | Issue 9 | e301



where they were pre-processed (SeqClean and RepeatMasker),

aligned/clustered using CAP3 [35], with a minimum sequence

overlap length ‘‘cut-off’’ of 30 bases and an identity threshold of

90%, for the removal of flanking vector and adapter sequences,

followed by assembly. These high quality contigs and singletons

were conceptually translated using ESTScan [27], based on a

‘‘smat’’ matrix, generated from available mRNA data for each

organism. When the smat file for a specific organism is not

available, the nearest well-studied organism has to be selected as a

reference, based on taxonomy, and its smat file is used instead. We

used data (25,481 cDNA sequences) from C. elegans (as it is the best

studied nematode) for the generation of the smat file. The

conceptually translated peptide data were transferred to Phase II

of EST2Secretome, for the prediction of ES proteins, by

sequentially running the SignalP [28] and TMHMM [29]

programs. For SignalP, the threshold values for the D-score and

the Signal peptide probability were both set to 0.5, based on a

validation carried out for 1946 sequences of experimentally

verified signal peptides from the recently updated SPdb [34],

with an accuracy of prediction of 98.1%. Any protein that

simultaneously fulfilled the threshold set for both the D-score and

the Signal peptide probability score, was classified as a secretory-

excretory (ES) protein. Inferred ES proteins were then tested for

the presence of transmembrane domains using the transmembrane

helix and membrane topology prediction program, TMHMM

[29] and sequences containing predicted transmembrane regions

were eliminated to yield only those proteins that were predicted as

destined for secretion.

Annotation of ES proteins
Inferred ES proteins were annotated by selecting all of the

programs in Phase III of the EST2Secretome. Gene Ontology

(GO) [36] terms were assigned using BLAST2GO (v 1.6.2) [37].

Sequences were then mapped to biological pathways employing

the KEGG Orthology-Based Annotation System (KOBAS) [38],

with C. elegans data selected for the construction of background

pathway maps. The query sequences were then compared using

BLASTP against Wormpep v183 (e-value threshold of 1e-05). For

each predicted ES sequence, the protein domain/family/motif

was mapped using InterProScan [39], including 13 member

databases, and the results were tabulated in decreasing order of

abundance. Inferred ES protein sequence data were queried

against the IntAct database (version 1.7.0) [32] to retrieve all

interaction partners (e-value threshold of 1e-05). A comparison of

homologues, based on BLAST scores from three different datasets,

can be efficiently compared and presented visually using the

program SimiTri [40]. In the case of parasitic nematodes, we

generated BLAST-indexed datasets for the host organisms

(human, other mammals or plant), C. elegans as the primary

reference organism for nematodes and parasitic nematodes, based

on NCBI protein datasets (defined by keyword), followed by local

processing to add or remove selected organisms.

Results/Discussion

Identification of ES protein sequences from parasitic
nematode ESTs

EST2Secretome made possible the large-scale analysis and

annotation of all publicly available EST data for nematodes that

are parasitic in humans, other animals and plants. In total, 452,134

ESTs from 39 parasitic nematodes were downloaded from dbEST

[19]. The organisms were broadly categorised on the basis of the

host(s) they infect (Table 1) with seven, 18 and 14 nematodes

parasitic in humans, other animals and plants, respectively, being

selected for secretome analysis. Putative ES proteins were identified

in the first two phases of EST2Secretome (see Figure 2). Phase I pre-

processing and assembly resulted in a total of 152,702 representative

ESTs (rESTs) comprising 53,377 contigs and 99,326 singletons, with

152,702 rESTs being conceptually translated into 101,514 peptide

sequences. In Phase II, these conceptually translated peptide

sequences were first analysed for the presence of N-terminal signal

peptide, followed by the absence of transmembrane helices. We thus

identified a total of 4,710 putative soluble ES proteins (2,632 in

animal-, 1,292 in plant- and 786 in human-parasitic nematodes) (see

Table 2), representing 4.6% of the total number of putative

sequences identified. This result is comparable with earlier single

organism studies of the bovine lungworm, D. viviparus [23], in which

85 secreted proteins were identified (representing 5.0% of 1685

peptides) and T. vitirinus [24], in which 40 secreted proteins were

identified (representing 6.2% of 640 proteins). We manually

examined the ES protein sequence data and found that 14 of 4710

entries were low quality sequences containing predominantly long

stretches of unknown amino acids (X’s), as a result of repeat masking,

followed by conceptual translation. These sequences were from

organisms like Meloidogyne chitwoodi and Pratylenchus vulnus which lack

repeat libraries. These 14 sequences were functionally analysed and

annotated in the EST2Secretome pipeline but could not be assigned

any function. This step represents one of the challenges involved in

the computational analysis of single pass reads from any organism

which is not well characterized based on genomic data.

We employed EST2Secretome for the analysis of the entire

proteome (23,624 sequences) of the model free living nematode, C.

elegans, in the Wormpep database (18th February 2008). 2,649

(11.2%) sequences were predicted to be ES proteins, which is in

the range of 8–20% suggested by Grimmond et al. [16]. These

results independently validated the ability of the EST2Secretome

pipeline to correctly identify ES proteins, using the Phase II

filtering steps. The lower percentage of 4.6% ES proteins from

EST data compared to 11.2% in C. elegans could be due the low

coverage of the entire protein-coding gene set, compared to entire

proteome comprising full length protein sequences in C. elegans, or

to the low quality of some ESTs in public databases.

Analysis of putative excretory-secretory proteins
We carried out a comprehensive analysis of the 4,710 ES proteins

predicted, using all relevant components of Phase III in EST2Se-

cretome as well as some additional bioinformatic tools specific to

nematodes (Figure 2). Functional annotation comprised the

assignment of GO terms and pathway associations using KEGG

pathways; mapping protein domains/motifs, with a particular focus

on nematode-specificity and identifying protein interaction partners.

Subsequently, we used comparative genomics approaches to identify

orthologues in the free-living nematode C. elegans, with their

associated loss-of-function RNAi phenotypes. From database

comparisons with human, other animal and plant host sequences,

we predicted several ES proteins that were either absent from their

host or distantly related to host homologues, which might represent

potential novel drug or vaccine targets for parasite intervention.

Results of these analyses are described in the following sections.

Functional classification of excretory-secretory proteins
Gene Ontology (GO). GO has been used widely to predict

gene function and classification. It provides a dynamic vocabulary

and hierarchy that unifies descriptions of biological, cellular and

molecular functions across genomes. BLAST2GO [37], is a

sequence-based tool to assign GO terms, extracting them for each

BLAST-match obtained by mapping to extant annotation

associations. Using the BLAST2GO module of EST2Secretome,

ES Proteins from Parasitic Nematode ESTs
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we could functionally assign GO terms to 1,948 (41%) of 4,710

putative ES proteins. The efficacy of GO annotations reported

here is comparable to 43% obtained for ES proteins from 80,551

A. caninum ESTs. A total of 551 ES and 15,221 non-ES proteins

were defined, to which our pipeline could assign function GO

terms to 43% and 51%, respectively. The difference in the extent

of functional annotation could be attributed to many

uncharacterized (appear to be novel) proteins in ES proteins

compared to non-ES proteins.

For our parasitic nematode dataset, the 1,948 ES sequences

with GO annotations could be annotated further, with 1,092 being

assigned biological process (BP), 1,210 molecular function (MF)

and 779 cellular component (CC) GO terms. A summary of GO

annotation by biological process, cellular component and

molecular function is provided in Figure 3. When we examined

the GO terms in detail, we found that more than half of the

sequences (420/779) were annotated specifically with terms

pertaining to the extracellular region (GO: 0005576), including

extracellular matrix (GO: 0031012), extracellular matrix part

(GO: 0044420), extracellular space (GO: 0005615) and extracel-

lular region part (GO: 0044421). While each sequence was

annotated with multiple cellular component terms, leading to 18%

overall instances of ‘‘extracellular’’ among the total 2285 cellular

component terms, these annotations strengthened the computa-

tional prediction of ES proteins from EST datasets. We also

validated the GO terms for overall instances of the GO term

‘‘extracellular’’ by comparing with 2,649 inferred ES proteins

derived from C. elegans proteome. We assigned GO terms to these

ES proteins and found an overall percentage of 29% of

‘‘extracellular’’ GO terms in the C. elegans proteome (data not

shown). The higher percentage in C. elegans dataset could be due to

the use of full-length protein sequences from C. elegans, compared

with the dataset analysed, which is derived exclusively from ESTs.

Amongst the most common GO categories representing biological

processes were metabolic process (GO: 0008152) and cellular

process (GO: 0009987). The largest number of GO terms in

molecular function was binding (GO: 0005488) and catalytic

activity (GO: 0003824), both of which are significant from the

viewpoint of identifying novel drug or vaccine candidates. A

complete listing of GO mappings assigned to ES protein data is

provided in Table S1.

Pathway mapping. Biochemical functionality can also be

categorised by assigning sequences to biological pathways using

the Kyoto Encyclopedia of Genes and Genomes database (KEGG)

[41]. We utilised KEGG orthology (KO) terms and predicted

putative functionality by mapping putative ES proteins to KEGG

Figure 2. Identification and analysis of putative excretory-secretory proteins from parasitic nematode EST datasets. The ‘‘input’’ EST
dataset and the results obtained from each step of the workflow are shown. All of these steps, excluding two nematode-specific steps
(WormHomolog and RNAi-Phenotype), are currently incorporated within EST2Secretome.
doi:10.1371/journal.pntd.0000301.g002
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pathways, using the KOBAS [38] module in EST2Secretome,

with an e-value cut-off of 1.0e-5 (default). A total of 573 (12.2%)

sequences were mapped to 138 KEGG pathways. The top 25

‘highly represented’ pathways, ranked according to number of

putative ES proteins mapped, are shown in Table 3. Molecular

entities linked to protein folding and associated processing (n = 43)

or antigen processing and presentation (n = 41) had the highest

representation for the sequences mapped to KEGG pathways.

Some of the other pathways that were well represented by ES

proteins included the ribosome pathway (n = 17), the MAPK

Table 2. Summary of EST2Secretome’s Phase I and Phase II results for human, other animal and plant nematode parasites.

Number Parasitic nematode ESTs Contigs Singletons rESTs Putative peptides Putative ES proteins
Percentage of ES
proteins /species

Human parasites

1 Ancylostoma ceylanicum 10712 1241 2111 3351 2873 212 7.3

2 Ascaris lumbricoides 1863 247 565 812 379 18 4.7

3 Brugia malayi 26215 2309 8108 10417 4240 149 3.5

4 Necator americanus 5032 728 1650 2378 1533 118 7.7

5 Onchocerca volvulus 14974 1143 4804 5947 2863 188 6.5

6 Strongyloides stercoralis 11392 1510 2743 4253 3434 61 1.7

7 Wuchereria bancrofti 4847 395 1562 1957 1152 39 3.3

Parasites of other animals

1 Ancylostoma caninum 80551 10823 11960 22783 15731 510 3.2

2 Ascaris suum 40771 2936 5455 8391 5314 366 6.8

3 Dirofilaria immitis 4005 521 1166 1687 999 22 2.2

4 Dictyocaulus viviparus 4469 475 2194 2669 1550 80 5.1

5 Haemonchus contortus 21975 1910 2422 4332 3589 344 9.5

6 Litomosoides sigmodontis 2699 372 1123 1495 1188 54 4.5

7 Nippostrongylus brasiliensis 8238 969 1960 2929 1898 197 10.3

8 Ostertagia ostertagi 7006 786 1465 2251 1735 110 6.3

9 Oesophagostomum dentatum 328 133 314 447 374 44 11.7

10 Onchocerca ochengi 60 4 48 52 26 1 3.8

11 Parastrongyloides trichosuri 7963 941 2280 3221 2346 98 4.1

12 Strongyloides ratti 14761 1392 3353 4745 2716 74 2.7

13 Teladorsagia circumcincta 6058 736 1392 2128 1733 259 14.9

14 Toxocara canis 4889 617 854 1471 994 74 7.4

15 Trichinella spiralis 25268 3274 3894 7168 5328 211 3.9

16 Trichuris muris 2714 436 1067 1503 1262 87 6.8

17 Trichuris vulpis 3063 363 953 1316 944 76 8.0

18 Trichostrongylus vitrinus 1000 324 388 712 555 26 4.6

Plant parasites

1 Globodera pallida 4378 482 2585 3067 2064 92 4.4

2 Globodera rostochiensis 11851 2008 2258 4266 3301 121 3.6

3 Heterodera glycines 24444 3735 4800 8535 7019 260 3.7

4 Heterodera schachtii 2818 449 821 1270 1014 40 3.9

5 Meloidogyne arenaria 5018 655 1944 2599 1635 39 2.3

6 Meloidogyne chitwoodi 12218 1275 3787 5062 2339 65 2.7

7 Meloidogyne hapla 24452 2938 3936 6874 4153 143 3.4

8 Meloidogyne incognita 20334 2462 3236 5698 3940 111 2.8

9 Meloidogyne javanica 7587 946 2558 3504 1836 61 3.3

10 Meloidogyne paranaensis 3710 722 936 1658 1085 27 2.4

11 Pratylenchus penetrans 1928 251 186 437 406 26 6.4

12 Pratylenchus vulnus 5812 490 2243 2733 1232 47 3.8

13 Radopholus similis 7380 1152 2896 4048 2809 75 2.6

14 Xiphinema index 9351 1227 3309 4536 3925 185 4.7

Details of the EST data obtained from dbEST, the contigs and singletons generated by preprocessing, overall representative ESTs (rESTs), peptides from conceptual
translation and putative excretory-secretory (ES) proteins identified are provided.
doi:10.1371/journal.pntd.0000301.t002
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signalling pathway (n = 13), glutathione metabolism (n = 12),

starch and sucrose metabolism (n = 12) and purine metabolism

(n = 10). In the range of 1–5 entries, ES proteins were mapped to

several pathways, including signal transduction mechanisms;

GnRH signaling pathway; linoleic acid metabolism; N-glycan

biosynthesis; ATP synthesis; aminosugar metabolism; galactose

metabolism; glycine, serine and threonine metabolism. Even

though not well represented, their identification as potential

players in biological pathways could improve our understanding of

nematode biology and assist in identifying essential proteins

required in each pathway. Proteins (n = 41) predicted to be

involved in antigen processing and presentation proteins or

Figure 3. Assignment of Gene Ontology (GO) terms for putative excretory-secretory proteins. Components, such as Biological Process,
Molecular Function and Cellular Component, are indicated. Individual GO categories can have multiple mappings. Percentages shown reflect the total
categories annotated and not the total sequences annotated under each component.
doi:10.1371/journal.pntd.0000301.g003
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complement and coagulation cascades (n = 6) might play critical

roles in host-parasite interactions. Although at this point, the

precise roles of such molecules in the parasite-host interplay are

unclear, some of them could be involved in manipulating or

evading the immune response(s) in the host or associated with the

parasite’s immune response, suggesting avenues for future

experimental work. Furthermore, we identified families of

proteins representing serine, cysteine and metallo-proteinases as

well as proteinase inhibitors (also supported by domain analysis).

These categories have been considered as important targets for

parasite invention and control [42,43,44]. Their occurrence in

available EST data sets suggests that they are candidates for in vitro

and in vivo studies. While these enzymes are inferred to mediate or

modulate proteolytic functions, which, in turn, may facilitate tissue

migration and other interactions with host cells, the proteinase

inhibitors might protect the parasite against digestion by

endogenous or host-derived proteinases [45]. A complete listing

of the KEGG mappings to all the pathways and corresponding ES

proteins is available as supplementary data (Table S2).

Analysis of protein domains and motifs using

InterProScan. Assignment of protein function is strengthened

by matching the query sequence to specific secondary databases

containing information on protein domains/motifs/signatures, as

this step adds value to the annotation by pin-pointing a domain/

motif or region in a protein sequence characteristic for a particular

protein family. In this study, we interrogated all 13 InterPro

member databases [46] using the InterProScan [39] module of

EST2Secretome, to map protein domain/motifs for the entire ES

protein dataset. The top 20 representative protein families with

species coverage are given in Table 4, and a full list of all of the

protein families, domains, active sites is provided in Table S3. The

‘‘transthyretin-like’’ family of proteins was amongst the most

represented, comprising 153 ES protein entries and being present

in 31 species. This family has been classified as nematode-specific

and is also called ‘‘family 2’’, based on a pioneering genome-wide

study of C. elegans by Sonnhammer and Durbin [47]. The inferred

proteins showed a weak homology to transthyretin (formerly called

pre-albumin) which transports thyroid hormones [47]. Another

highly represented group of domains was the ‘‘chromadorea ALT

family’’, identified in 90 ES proteins in seven species (Table 4).

This family consists of several ALT protein homologues, found

specifically in nematodes [48]. Two well-known members of this

family, ALT-1 and the closely related ALT-2, have been found to

be candidates for a vaccine against human filariasis [48]. Some of

the other well-represented domain families in the present datasets

were papain peptidase C1A, protease inhibitor I35, peptidase A1

and galectin, which were not predicted to be parasite- or

nematode-specific unlike the nematode fatty acid retinoid

binding family. However, there is enormous redundancy in the

InterProScan results, due to the overlap in the family, domain,

pattern and motif definitions from the member databases. For

example, we note that the allergen V5/Tpx-1 family contains the

Ves allergen family (Table S3) and is also the ‘‘parent’’ (using

InterPro nomenclature) of the highly represented SCP-like

extracellular domain (131 sequences from 23 species) which

form part of the superfamily of the pathogenesis-related proteins

(PRPs) [49,50]. Similarly, the papain peptidase C1A family

(Table 4) contains the papain C-terminal domain of peptidase

C1A as well as the cysteine peptidase active site (Table S3), while

the globin-like family (14 members, Table 4) contains the globin

family (11 members, Table S3). While studying such molecules

could deepen our understanding of host–parasite relationships, the

interdependencies between the various functional assignments

afforded by InterProScan need to be unravelled to ascertain the

exact significance of these functional domain definitions.

Identification of interaction partners: the parasite

interactome. Although each protein sequence was annotated

individually, it is important to study proteins as part of larger

protein complexes and pathways within a cell. By studying each

protein and its binding partners in the context of a network,

insights into possible functions within a cell can be gleaned.

Moreover, protein interactions provide a valuable resource for the

elucidation of cellular function, and there is enormous interest in

identifying protein interaction partners as a means of

understanding the complexities of a cell. In the context of the

current analysis, it is even more important to study protein–

protein interactions, as a complex interplay exists between the

cellular environments of the parasite and its host during the course

of invasion and infection. Furthermore, the understanding of the

host and parasite interactions at the protein level could identify

novel ‘‘cross-talk’’ between previously unlinked pathways as well as

facilitate the discovery of new drug targets. Molecular interactions

of protein pairs in one organism are expected to be conserved in

other related organisms and can be derived based on sequence-

based searches for conserved protein–protein interactions or

‘‘interlogs’’ [51]. Interspecies comparative studies among human,

yeast, free-living worm (C. elegans) and fly have conserved protein

interactions and, in turn, conserved sub-networks [52,53]. Using a

similar approach, we initially obtained protein interaction data

from the IntAct database [32], and queried the 4,710 protein

Table 3. Top 25 selected metabolic pathways in excretory-
secretory proteins mapped using KEGG database.

Number KEGG Pathway ES proteins

1 Protein folding and associated processing 43

2 Antigen processing and presentation 41

3 Arachidonic acid metabolism 17

4 Ribosome 17

5 MAPK signaling pathway 13

6 Glutathione metabolism 12

7 Starch and sucrose metabolism 12

8 Amyotrophic lateral sclerosis (ALS) 10

9 Purine metabolism 10

10 Other amino acid metabolism 9

11 N-Glycan biosynthesis 9

12 Oxidative phosphorylation 9

13 VEGF signaling pathway 8

14 Pyrimidine metabolism 8

15 GnRH signaling pathway 8

16 Linoleic acid metabolism 7

17 Complement and coagulation cascades 6

18 Pores ion channels 6

19 Ether lipid metabolism 6

20 Fc epsilon RI signaling pathway 6

21 Neuroactive ligand-receptor interaction 6

22 Glycerophospholipid metabolism 6

23 ATP synthesis 6

24 Calcium signaling pathway 6

25 Long-term depression 6

doi:10.1371/journal.pntd.0000301.t003
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sequences in this database using BLASTP (with an e-value

threshold of 1e-05). From the ES dataset for parasitic nematodes,

1,774 (37.6%) sequences had homologues in IntAct data, with at

least one interaction partner (Table S4). The most similar IntAct

sequences (with an e-value #1e-100) and all of their corresponding

interaction partners are listed in Table 5. In the present analysis,

different levels of complexity were found in the patterns of

interactions. Heat-shock proteins, cathepsins, ribosomal protein

subunits and enzymes, such as glyceraldehyde-3-phosphate

dehydrogenase 3, dolichyl glycosyltransferase, were highly

connected through primary interaction partners and, in turn, to

several secondary interaction partners. Interestingly, we found a

small number of partially characterized, yet to be studied entries,

such as cpl-1, egl-21, ile-1, ccg-1, gln-6, cut-3 and pdi-3 in the range of

one to four interaction partners. Finally, we also found proteins

commonly present in parasitic nematodes, such as calreticulins,

calumenin-like proteins and aspartyl proteases that had 2 to 10

interaction partners. A graphic representation of the interaction

network of cathepsin Z protein 1 and its primary and secondary

interaction partners is shown in Figure S1. While these data are

useful, each of these interactions needs to be investigated

experimentally to understand the role of these molecules in vivo.

Comparison with the free-living nematode, C. elegans,
and associated RNAi phenotype information

C. elegans represents the best characterized nematode in many

respects, particularly in terms of its genome, genetics, biology,

physiology and biochemistry [31,54,55]. In addition, C. elegans

(non-wild-type or loss-of-function) RNAi phenotypes may provide

indications of the relevance and function(s) of homologous genes in

other nematodes (of animals) for which the complexity of an

obligate parasitic life cycle and the lack of an effective in vitro

culture system and/or an RNAi assay make high-throughput

screening impractical [56]. Moreover, the set of genes with RNAi

loss-of-function phenotypes constitutes a pool of significant and

potentially essential C. elegans genes. The RNAi phenotype data,

comprising, ,62,000 entries (on 10 January 2008), is available to

download through WormBase [31]. In this study, we compared

the 4,710 predicted ES proteins to the C. elegans proteome using

BLASTP program and predicted 2,490 (52.8%) homologues in C.

elegans (threshold e-value of 1e-05). From these 2,490 C. elegans

homologues, we retrieved exclusively protein entries that had been

reported with any one of the following observed strong RNAi

phenotypes: Emb (embryonic lethal, including pleiotropic defects

severe early emb), Lvl (larval lethal), Lva (larval arrest), Stp (sterile

progeny), Ste (maternal sterile) and Gro (slow growth). In the

present dataset (available from Table S5), 267 C. elegans

homologues were identified that had one or more observed

‘‘strong’’ loss-of-function phenotype in RNAi; selected examples

are listed in Table 6. The latter RNAi phenotypes were selected as

they have been inferred to be essential for nematode survival or

growth [56,57], also representing potential drug and/or vaccine

targets.

Comparative analyses of ES proteins
Sequence-based searches were performed to classify the ES

proteins, to identify the presence or absence of putative

homologues in C. elegans, and to infer nematode-specific and

parasite-specific genes. For parasitic nematodes, Parkinson et al.

[40,58] suggested previously that it is beneficial to make

simultaneous three-way comparisons (using SimiTri) of a specific

organism or a group of organisms with homologues in C. elegans (the

‘model nematode’), other nematode species as well as the host

organism. Such an analysis provides a means for the rapid

identification of genes/proteins conserved between any two datasets

compared (e.g., between parasitic nematodes and free-living ones, or

Table 4. Top 20 nonredundant protein families of known function found in excretory-secretory proteins.

Number InterProScan ID Description Type ES sequences Species coverage

1 IPR001534 Transthyretin-like Family 153 31

2 IPR001283 Allergen V5/Tpx-1 related Family 111 21

3 IPR013128 Peptidase C1A, papain Family 96 23

4 IPR008451 Chromadorea ALT Family 90 7

5 IPR002544 FMRFamide-related peptide Family 35 17

6 IPR001820 Proteinase inhibitor I35, tissue inhibitor of metalloproteinase Family 25 10

7 IPR001461 Peptidase A1 Family 22 12

8 IPR008632 Nematode fatty acid retinoid binding Family 18 13

9 IPR009050 Globin-like Family 14 7

10 IPR004947 Deoxyribonuclease II Family 14 5

11 IPR002198 Short-chain dehydrogenase/reductase SDR Family 14 11

12 IPR001211 Phospholipase A2 Family 13 8

13 IPR000889 Glutathione peroxidase Family 12 10

14 IPR001547 Glycoside hydrolase, family 5 Family 12 8

15 IPR000215 Proteinase inhibitor I4, serpin Family 12 6

16 IPR008597 Destabilase Family 11 10

17 IPR000480 Glutelin Family 11 10

18 IPR001580 Calreticulin/calnexin Family 11 10

19 IPR000720 Peptidyl-glycine alpha-amidating monooxygenase Family 11 9

20 IPR001079 Galectin, galactose-binding lectin Family 10 10

doi:10.1371/journal.pntd.0000301.t004
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between parasitic nematode and its host). In the present study, we

systematically compared inferred ES protein data with those

available in three relevant databases. For the three ES protein

datasets from nematodes parasitic in humans (786 proteins), animals

(2,632 proteins) or plants (1,292 proteins), we selected C. elegans and

parasitic nematode databases as well as databases specific to the host

organisms for comparative analysis. For instance, data for parasitic

nematodes of humans were matched with those of the human host,

C. elegans and parasitic nematodes from other hosts. Similarly, ES

proteins predicted for nematodes parasitic in animals or plants were

compared against host datasets. Protein sequences available in the

following three datasets (i) C. elegans (from Wormpep [31]), (ii)

parasitic nematodes (constructed locally) and (iii) respective hosts

(human, other animal and plants sequences from NCBI non-

redundant protein database) were processed. Three-way comparison

of the parasitic nematode database with homologues in C. elegans,

their principal definitive host organism (human, other animal or

plant) and the database of all available parasitic nematodes, have

been presented using SimiTri [40] in Figure 4. In all three datasets

for parasitic nematodes, inferred ES proteins congregated with

parasitic nematodes rather than with C. elegans or with the host

species (lower right hand corner of each triangle, coloured in red in

Table 5. Identification of interaction partners: selected entries identified during the comparison and their interaction partners
obtained using IntAct database.

Sequence ID E-value
Top homolog in IntAct
database (ID) Description

Number of
interaction partners

Ancylostoma_caninum_Contig10288 1.00E-144 EBI-312868 uncharacterized protein 5

Ancylostoma_caninum_Contig4711 1.00E-133 EBI-320128 Calumenin-like protein 1

Ancylostoma_caninum_Contig7345 0 EBI-319290 fumarate hydratase 2

Ancylostoma_caninum_Contig9959 1.00E-154 EBI-315239 Cathepsin z protein 1 3

Ancylostoma_ceylanicum_Contig10 1.00E-112 EBI-317252 uncharacterized protein ccg-1 1

Ancylostoma_ceylanicum_Contig113 1.00E-123 EBI-315917 Heat shock 70 kDa protein C precursor 2

Ancylostoma_ceylanicum_Contig153 0 EBI-319290 fumarate hydratase 2

Ancylostoma_ceylanicum_Contig249 0 EBI-323711 Protein disulfide-isomerase 2 precursor 2

Ancylostoma_ceylanicum_Contig364 1.00E-105 EBI-314435 Calreticulin precursor 7

Ancylostoma_ceylanicum_Contig669 1.00E-159 EBI-315958 uncharacterized protein cpl-1 8

Ancylostoma_ceylanicum_Contig713 0 EBI-318186 uncharacterized protein egl-21 2

Ascaris_suum_Contig2628 1.00E-138 EBI-314454 Fructose-bisphosphate aldolase 2 8

Brugia_malayi_Contig1642 1.00E-119 EBI-316122 60S ribosomal protein L3 10

Brugia_malayi_Contig2261 1.00E-114 EBI-314435 Calreticulin precursor 7

Dictyocaulus_viviparus_Contig403 1.00E-112 EBI-315261 Aspartyl protease protein 2, isoform a 4

Globodera_pallida_Contig133 1.00E-101 EBI-319315 N-acetylgalactosaminyltransferase 8 2

Haemonchus_contortus_Contig1874 1.00E-135 EBI-314435 Calreticulin precursor 7

Heterodera_glycines_Contig1053 1.00E-109 EBI-315958 uncharacterized protein cpl-1 8

Heterodera_glycines_Contig609 1.00E-104 EBI-358866 Dolichyl-diphosphooligosaccharide–protein
glycosyltransferase 48 kDa subunit precursor

16

Litomosoides_sigmodontis_Contig142 1.00E-136 EBI-318186 uncharacterized protein egl-21 2

Meloidogyne_arenaria_Contig265 1.00E-139 EBI-330517 uncharacterized protein cut-3 1

Meloidogyne_hapla_Contig1559 1.00E-131 EBI-198835 Vacuolar ATP synthase subunit B 4

Meloidogyne_incognita_Contig2289 1.00E-122 EBI-322730 uncharacterized protein 1

Meloidogyne_paranaensis_Contig210 1.00E-130 EBI-330517 uncharacterized protein cut-3 1

Necator_americanus_Contig405 0 EBI-318186 uncharacterized protein egl-21 2

Nippostrongylus_brasiliensis|EH361309 1.00E-121 EBI-320128 Calumenin-like protein 1

Onchocerca_volvulus_Contig549 1.00E-110 EBI-314435 Calreticulin precursor 7

Ostertagia_ostertagi_Contig746 1.00E-123 EBI-313057 Temporarily assigned gene name protein 196 1

Strongyloides_ratti_Contig1052 1.00E-131 EBI-314435 Calreticulin precursor 7

Strongyloides_ratti_Contig356 1.00E-135 EBI-323711 Protein disulfide-isomerase 2 precursor 2

Strongyloides_stercoralis_Contig19 1.00E-151 EBI-322448 Heat shock 70 kDa protein A 5

Teladorsagia_circumcincta_Contig366 1.00E-102 EBI-323711 Protein disulfide-isomerase 2 precursor 2

Teladorsagia_circumcincta_Contig443 1.00E-115 EBI-315239 Cathepsin z protein 1 3

Trichinella_spiralis_Contig698 1.00E-110 EBI-1049597 Calreticulin precursor 7

Trichuris_muris|BM174688 1.00E-111 EBI-352338 Serine/threonine-protein phosphatase PP1-beta
catalytic subunit

6

Wuchereria_bancrofti_Contig268 1.00E-114 EBI-314435 Calreticulin precursor 7

doi:10.1371/journal.pntd.0000301.t005
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Figure 4). Overall, 320 (40.7%), 789 (29.7%) and 581 (44.9%) ES

proteins inferred from human-, other animal- and plant-parasitic

nematodes were associated exclusively with parasitic nematodes and

are interpreted to be parasite-specific, based on the data currently

available. Of the homologues predicted to be nematode-specific

(along the side of the triangle connecting C. elegans and parasitic

nematodes), 585 (74.4%), 1,511 (57.4%) and 1,034 (80.0%) of the

inferred ES proteins were confined to nematodes (based on currently

available datasets). Based on these comparisons, we illustrate that a

significant percentage of these proteins in parasitic nematodes are

either parasite- or nematode-specific and are either absent from or

very divergent in sequence from molecules in their host(s). These

molecules might represent candidate targets for novel anthelmintics

for parasite intervention. Importantly, their apparent specificity to

Figure 4. Comparison of ES proteins with the respective C. elegans, parasitic nematodes and host orthologues using SimiTri. Data for
parasitic nematodes of A. humans, B. other animals or C. plants are presented, compared with their respective host organism. The numbers at each
vertex indicate the number of ES proteins matching only the specific database. The numbers on the edges indicate the number of ES proteins
matching the two databases linked by that edge. The boxed number within each triangle indicates the number of ES proteins with matches to all
three datasets compared: C. elegans, parasitic nematodes and host databases.
doi:10.1371/journal.pntd.0000301.g004
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parasitic nematodes or different groups within the phylum

Nematoda renders them as important groups of molecules for

future study, particularly in relation to the roles of these molecules in

the host-parasite interplay, their involvement in inducing immune

responses and disease in the host.

Inferring potential drug/vaccine candidates from ES
proteins

Based on evidence from the literature, we selected candidate

molecules from parasitic nematodes which have already proven to

be therapeutic or vaccine targets for scrutiny. Such targets are

either in early phases of clinical trials or have been identified as

candidates following detailed experimental study. Firstly, promi-

nent anti-parasite vaccine candidates have been identified through

the Human Hookworm Vaccine Initiative and include a family of

pathogenesis-related (PR) proteins, such as the Ancylostoma-secreted

proteins (ASPs) [59]. This initiative has characterized Na-ASP-2, a

PR-1 protein, from Necator americanus [59] which is in Phase II

clinical trials [60] and Ac-ASP-1 from Ancylostoma caninum which

exhibits 97% identity to Na-ASP-2 [61]. Secondly, cathepsin L and

Z-like cysteine proteases (known to have been implicated in

moulting and tissue remodelling in free-living and parasitic

nematodes) represent potential targets for onchocerciasis and have

been studied in significant detail in Onchocerca volvulus [62,63,64].

Also, astacin-like metalloproteases (MTP) was selected, as L3s of

parasitic nematodes secrete MTPs that are considered critical to

invasion and establishment of the parasite in the host [65,66].

Astacin-like MTPs, such as MTP-1, have been characterized

mainly in Ancylostoma caninum and are secreted by infective

hookworm larvae [66,67]. The sequences for four such proteins

were retrieved from NCBI and matched to the present ES dataset

using BLASTP. We discovered likely homologues for all of these

proteins in parasitic nematodes of humans, other animals and

plants (Table 7); organisms for which there is published

information on these proteins are indicated (in bold font). Based

on the present analysis, we identified 12 homologues of

Ancylostoma-secreted proteins (ASPs) (above the threshold e-value

of 1e-05) in the datasets in following nematodes (Strongylida):

Necator americanus, Ancylostoma duodenale, Ancylostoma caninum, Hae-

monchus contortus and Teladorsagia circumcincta. Of these, published

reports are available for only Necator americanus, Ancylostoma caninum,

Haemonchus contortus and Ostertagia ostertagi [7,61,65,66], while the

analysis, based exclusively on available data, showed that this

group of proteins (inferred from ESTs) occurs in the parasitic

nematodes Teladorsagia circumcincta and Meloidogyne chitwoodi.

Moreover, we identified eleven cathepsin L-like cysteine proteases,

nine cathepsin Z-like cysteine proteinases and eight astacin-like

metalloproteases in ES protein datasets, providing novel, yet

unpublished evidence for the presence of these proteins in a

number of key parasitic nematodes of socio-economic importance.

Conclusion
In this study, based on a comprehensive, targeted analysis of

almost 0.5 million publicly available ESTs, we have inferred and

functionally annotated 4,710 putative ES proteins from 39

parasitic nematodes infecting humans, other animals or plants,

using the EST2Secretome, a new workflow developed for the

large-scale processing of EST and complete proteome data.

Furthermore, EST2Secretome has been developed as a multi-

purpose, high-throughput analysis pipeline for diverse applica-

tions. For instance, it is possible to conduct analyses of all

predicted proteins containing only signal sequences by selecting

only SignalP and deselecting the TMHMM option, or select only

the TMHMM program to investigate transmembrane proteins.

The option to enter protein sequence data alone into the pipeline

is also useful following the direct sequencing of proteins in

proteomic studies.

Detailed annotations of inferred ES proteins revealed several

parasite-specific (being absent from C. elegans and the host) and

nematode-specific molecules as potential drug or vaccine candi-

dates. Included in this set of molecules are pathogen-related

protein (PRP) domains and several novel, nematode-specific

protein domains. Gene Ontology (GO) annotations, at the level

of molecular function, revealed an overwhelming representation of

binding (63.4%) and catalytic activity (54.1%), supporting the

further biochemical, proteomic and/or functional characterization

of the ES proteins inferred herein. Predicted protein interaction

data for each ES protein enables the classification of molecules as

Table 7. Example excretory-secretory proteins selected as
potential drug/vaccine candidates based on literature
evidence.

Molecules
Number of excretory-
secretory proteins Organisms represented

secreted protein 12 Ancylostoma caninum

ASP-2 Haemonchus contortus,

Meloidogyne chitwoodi,

Necator americanus

Ostertagia ostertagi

Teladorsagia circumcincta

cathepsin L-like
cysteine protease

11 Ancylostoma ceylanicum

Ascaris suu

Brugia malayi

Dictyocaulus viviparus

Heterodera glycines

Meloidogyne javanica

Ostertagia ostertagi

Strongyloides ratti

Teladorsagia circumcincta

Trichuris muris

Wuchereria bancrofti

cathepsin Z-like
cysteine proteinase

9 Ancylostoma caninum

Haemonchus contortus

Parastrongyloides trichosuri

Teladorsagia circumcincta

Trichuris muris

Xiphinema index

astacin-like
metalloprotease

8 Ancylostoma caninum

Ancylostoma ceylanicum

Necator americanus

Ostertagia ostertagi

Strongyloides stercoralis

Trichinella spiralis

The table shows their occurrences in different nematode parasites inferred from
ES protein analysis. Organisms with published evidence of these genes/proteins
are shown in bold.
doi:10.1371/journal.pntd.0000301.t007
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essential for parasite existence or survival, with relative potential to

serve as target for parasite intervention, based on the number of

primary and secondary interaction partners, as well as those

interactions that are specific to parasites, rendering such ‘‘hub

proteins’’ as potential targets for functional studies. In order to

predict which ES proteins are essential, we also categorised

molecules according to ‘‘strong’’ loss-of-function RNAi phenotypes

for corresponding homologues in C. elegans. ES proteins homol-

ogous to these ‘‘loss-of-function’’ phenotypes are considered the

best candidates for functional characterization, and possibly linked

to the survival of the parasites. Finally, we selected some proteins

for further characterization based on their similarity to proteins

currently under evaluation as vaccines or drug targets. The

present, systematic approach of inferring ES protein data from

EST data sets represents a starting point for understanding the role

ES proteins in parasitic nematodes and serves as a useful tool for

the future study of essentially any eukaryotic organism.

Supporting Information

Table S1 Assignment of Gene Ontology (GO) terms for putative

excretory-secretory (ES) proteins, categorized according to Bio-

logical Process, Molecular Function and Cellular Component.

Note that individual GO categories can have multiple mappings.

Found at: doi:10.1371/journal.pntd.0000301.s001 (0.04 MB XLS)

Table S2 Metabolic pathways in excretory-secretory proteins,

mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)

data.

Found at: doi:10.1371/journal.pntd.0000301.s002 (0.56 MB XLS)

Table S3 Representative protein domains/families found in

excretory-secretory proteins identified using InterProScan.

Found at: doi:10.1371/journal.pntd.0000301.s003 (0.11 MB XLS)

Table S4 Identification of interaction partners: List of putative

ES protein above the E-value threshold using top homologues

from IntAct database.

Found at: doi:10.1371/journal.pntd.0000301.s004 (0.32 MB XLS)

Table S5 Comparison of excretory-secretory proteins with C.

elegans proteome and identification of non-wild-type RNAi

phenotypes obtained using WormBase.

Found at: doi:10.1371/journal.pntd.0000301.s005 (0.52 MB XLS)

Figure S1 Primary and secondary interaction partners for

example ES protein, Cathepsin z protein 1: 137 molecules, 140

interactions.

Found at: doi:10.1371/journal.pntd.0000301.s006 (0.37 MB TIF)
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