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Abstract: The Japanese encephalitis virus (JEV), an
arthropod-born Flavivirus, is the major cause of viral
encephalitis, responsible for 10,000–15,000 deaths each
year, yet is a neglected tropical disease. Since the JEV
distribution area has been large and continuously
extending toward new Asian and Australasian regions, it
is considered an emerging and reemerging pathogen.
Despite large effective immunization campaigns, Japa-
nese encephalitis remains a disease of global health
concern. JEV zoonotic transmission cycles may be either
wild or domestic: the first involves wading birds as wild
amplifying hosts; the second involves pigs as the main
domestic amplifying hosts. Culex mosquito species,
especially Cx. tritaeniorhynchus, are the main competent
vectors. Although five JEV genotypes circulate, neither
clear-cut genotype-phenotype relationship nor clear
variations in genotype fitness to hosts or vectors have
been identified. Instead, the molecular epidemiology
appears highly dependent on vectors, hosts’ biology,
and on a set of environmental factors. At global scale,
climate, land cover, and land use, otherwise strongly
dependent on human activities, affect the abundance of
JEV vectors, and of wild and domestic hosts. Chiefly, the
increase of rice-cultivated surface, intensively used by
wading birds, and of pig production in Asia has provided
a high availability of resources to mosquito vectors,
enhancing the JEV maintenance, amplification, and
transmission. At fine scale, the characteristics (density,
size, spatial arrangement) of three landscape elements
(paddy fields, pig farms, human habitations) facilitate or
impede movement of vectors, then determine how the
JEV interacts with hosts and vectors and ultimately the
infection risk to humans. If the JEV is introduced in a
favorable landscape, either by live infected animals or by
vectors, then the virus can emerge and become a major
threat for human health. Multidisciplinary research is
essential to shed light on the biological mechanisms
involved in the emergence, spread, reemergence, and
genotypic changes of JEV.

Introduction

The incidence of zoonotic diseases, transmitted to humans from

wild or domestic animals, has noticeably increased during the past

few decades and currently represents 70% or more of emerging

diseases [1]. Japanese encephalitis virus (JEV), an arbovirus of the

Flavivirus genus, family Flaviviridae, is transmitted by mosquitoes

from animals to humans. In humans, this zoonotic disease is the

largest worldwide cause of epidemic viral encephalitis [2,3]. The

pathogenesis of the JEV and the clinical manifestations of the

disease, including severe neurological syndromes, depend on

several factors that have been deeply reviewed elsewhere [4,5].

The incubation period ranges from 5 to 15 days; JE infections are

lethal in about 25–30% of cases, mostly in infants, and lead to

permanent sequelae in about 50% of cases.

JE was first described in 1871 in Japan, and first characterized

in 1935 [6]. Despite an effective vaccine developed in 1941, and

the subsequent national immunization campaigns that have

greatly reduced the incidence of JE in several countries, sporadic

cases continue to be reported, and JEV continues to spread widely

in South, East, and Southeast Asia and Australasia [7]. Currently,

more than three billion people live in JE-endemic countries [5].

There, though people of all ages may be exposed to JEV, the JE

incidence is higher in children because most adults are immune

[8]. Now, about 68,000 JE cases are estimated to occur annually,

causing at least 10,000–15,000 deaths in more than 20 Austral-

asian countries [8,9].

Aims and Methodology

This review aims at offering an overview of the factors affecting

JEV epidemiology. It discusses the current state of knowledge on

JEV diversity, molecular epidemiology, and ecology, and examines

how environmental variables and modifications, especially those

associated with agriculture, affect the landscape characteristics and

JEV ecology. The literature review was achieved by using both

general web search engines and scientific web search engines such as

PubMed, Springerlink, ScienceDirect, and Web of Science. It

focused on the literature available on virology, molecular and spatial

epidemiology, entomology, and landscape and behavioral ecology.
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JEV Genotypes

Five JEV genotypes have been distinguished by nucleotide

sequencing of the C/PrM and E (capsid, precursor membrane, and

envelope) genes [10]. Genotypes I, II, and III are distributed

throughout Asia, while genotype IV is restricted to Eastern

Indonesia [11]. Genotype V was long restricted to Malaysia but

isolates were recently found in China and in the Republic of

Korea [12,13]. Genotypes IV and V form the oldest JEV lineage,

which appears to have originated from an ancestral virus in the

Indonesian-Malaysian region. JEV therefore probably originally

spread from this region [4,11]. Genotypes I, II, and III are the

most prevalent, having accounted for 98% of the strains isolated

from 1935 to 2009 [14].

JEV Molecular Epidemiology

Until recently, genotypes I and III were mostly associated with

epidemic diseases in temperate regions of Asia, while genotypes II

and IV were associated with endemic diseases in tropical regions.

It was therefore postulated that the JEV epidemiology differed

with genotypes [15]. However, more recent observations show that

genotypes can be found indifferently within epidemic or endemic

areas. Indeed, genotype I has been isolated in Australasia within

the tropical region [16], genotype II has been shown to have

circulated in the Republic of Korea within the temperate region

before the 1970s [17,18], and genotype III, the only one in India

so far, has circulated both in the south Indian peninsula

(characterized by endemic activity) and in the north (characterized

by epidemic activity) [7,19].

Differences in the JEV genome might explain phenotypic

variations of the disease. Experimental changes in the E gene have

indeed been shown to be associated with loss or gain of

neuroinvasiveness and neurovirulence in mice and monkeys [20–

23]. Even so, experimental studies of the neurovirulence of wild

JEV strains in mice showed no clear-cut genotype-phenotype

relationship [24], and there is still no firm evidence that the JEV

genotypes circulating differ in their virulence (Figure 1). However,

the dengue virus type 2, another closely related Flavivirus, has been

shown to possess interesting genotype-dependent characteristics

such as human viral pathogenicity or midgut viral replication in

Aedes aegypti [25,26]. The JEV molecular markers previously and

currently studied might not be sufficient and need further

investigation.

Rather than by viral genetic determinants solely, the JEV

epidemiological pattern appears to be actually influenced by a

complex set of variables, including several environmental,

ecological, and immunological factors [7] (Figure 1).

JEV Spatial Epidemiology

The distribution area of JEV has consistently enlarged.

Sometimes, the genotypes of JEV isolates changed locally. In

northern Vietnam and Thailand, a shift from genotype II to

genotype I was reported [27,28]. In northern temperate regions

(i.e., Japan, South Korea, and Northeast China), genotype I

progressively replaced genotype III and became the main

genotype [29]. It is now very probably the most widespread

genotype in Asia, which was otherwise found to be lethal for

humans [9,29–33]. However, to date, vaccines are only derived

from genotype III strains; whereas protective levels of cross-

reactive neutralizing antibodies of these vaccines were found

against the various circulating genotypes, variations between

genotypes call for further studies [34,35]. In particular, since the

immune response against genotype I was less pronounced, its

duration should be addressed [34].

JEV Ecology: Vector- and Host-Virus Interactions

Vectors
Over 30 mosquito species (family Culicidae) belonging to the

Aedes, Anopheles, Armigeres, Culex, and Mansonia genera are

recognized to potentially carry JEV, but not all are equally

competent for virus transmission [7]. Susceptibility and compe-

tence vary among and within mosquito species [36], but also

possibly covariate with genotypes, as has been shown for dengue

[26,37] and Chikungunya virus strains [38]. However, no

variations in vector competence and transmissibility by various

mosquito species for different JEV genotypes have yet been

demonstrated.

Culex species are the most competent JEV vectors, in the

same way that Aedes species are the most competent Dengue

viruses vectors [39]. This low plasticity of the virus to vectors

may be explained by the vector ecology, especially host-feeding

preferences, as few species feed on JEV reservoir-amplifying

hosts. For example, in mainland Australia Cx annulirostris, a

competent JEV vector, feeds predominantly on marsupials, and

thus remains outside the JEV transmission cycle [40,41]. JEV

is transmitted by Cx. annulirostris, Cx. annulus, Cx. fuscocephala,

Cx. gelidus, Cx. sitiens, Cx. vishnui species complex, and the rice

field–breeding mosquitoes Culex tritaeniorhynchus [42]. Cx. tritae-

niorhynchus is the major JEV vector because it is highly

competent and is largely distributed all over the JEV-endemic

regions [3,43]. JEV vectors are highly zoophilic, tending to

prefer wading birds, cattle, and pigs to humans [42,44,45].

Therefore, vector trophic preferences are a major ecological

factor affecting the fitness of the virus.

Variations of competence may be due to differences in the

susceptibility to infection of mosquito midgut and salivary glands,

and then to differences in the efficiency of virus secretion and

transmission [46]. Susceptibility to JEV infection is partly

dependent on the E gene sequence of the virus. This gene encodes

a protein involved first in virus cellular entry through attachment

to membrane receptors and second in the fusion of both JEV and

host-cell membranes [47]. However, despite some study on the

subject [48], no data demonstrates there are important variations

in vector competence and transmissibility between various

mosquito species for different JEV genotypes.

Hosts also play a central role in virus ecology, according to their

viraemia and availability within the immediate vector flight range.

Ultimately, two types of JEV transmission cycle can be drawn: a

bird-associated wild cycle and a pig-associated rural domestic

cycle.

Bird-Associated Wild Cycle
Although in the wild a wide range of animals (bats, birds,

rodents, snakes, wild boars…) may be infected by JEV, with high

seroprevalence rates in several mammal and bird species, most of

them are dead-end hosts and are unable to infect mosquitoes [2,3].

However, over 90 bird species are known to be amplifying and

reservoir hosts of JEV. Among them, wild wading birds, in

particular egrets (Egretta garzetta) and herons (Nycticorax nycticorax) of

the Ardeidae family, are highly susceptible to JEV infection. They

represent the primary effective animal hosts, since they have a high

virus titer, and are an outstanding source of infection for

mosquitoes [3,7,9]. As many of them are widely distributed and

migratory, ardeid species are suspected of being responsible for

several virus introductions, from China to Japan, and from the

PLOS Neglected Tropical Diseases | www.plosntds.org 2 September 2013 | Volume 7 | Issue 9 | e2208



Indochinese peninsula to northern Asia [27]. Several additional

wild animal species are considered part of alternative JEV cycles:

wild boars have been suspected to be the source of sporadic

human cases of JE in Singapore [49], wild peridomestic mammals

(raccoons, wild boars, raccoon dogs) in Japan, and flying foxes in

Australia tested positive for JEV reacting antibodies [50,51]. In

China, JEV has been isolated from two bat species [52].

In the wild cycle, JEV vectors, although highly zoophilic, are

largely opportunistic blood feeders and their feeding pattern relies

more likely on the host availability within the given landscape than

on innate preferences [40,53]. Humans in the vicinity of this cycle

could be accidentally infected.

Pig-Associated Rural Domestic Cycle
In the JEV rural domestic cycle, cattle, chicken, dogs, ducks,

goats, horses, and pigs may be infected, but only a few of them

are efficient virus amplifiers [2]. This domestic cycle occurs

mainly within rural landscapes, with pigs acting as the primary

domestic amplifying host. Some other domestic mammals (cattle,

dogs, goats) also display high seroprevalence rates, as pigs do;

however, pigs replicate the virus quickly and have the highest

viraemia [3,54]. Due to intensive pig farming in East and

Southeast Asia (http://faostat3.fao.org/), pigs are the main

component of the domestic cycle [6]. In particular, the

industrialization of pig farming, which has broadly developed

for several decades in many countries (China, Myanmar,

Thailand, Vietnam) [6], has enhanced the amplification of the

JEV within dense pig herds, and thus contributed to increase the

risk of JEV transmission. Therefore, the high proximity between

humans and livestock became the main risk factor for human

infection [6,55].

Interaction between domestic host and pathogen depends on

several host genetic, physiologic, and agricultural factors. First, for

many diseases, resistance (defined as the ability to resist infection

or moderate pathogen lifecycle) and tolerance (defined as an

asymptomatic infection) in livestock have a genetic component,

including breeds’ genetic traits ([56,57]; examples given by Gibson

[58]). While resistance to infection limits the circulation and

maintenance of pathogens in a population, tolerance on the

contrary does not limit the virus transmission [56]. The

replacement of indigenous breeds by exotic ones (Landrace, Large

White, or Duroc) might potentially have changed the susceptibility

to JEV infection in domestic pigs. However, data on susceptibility

or differences in the ability to amplify JEV between exotic

imported or indigenous pig breeds are lacking. Second, variations

in the attractiveness of pig hosts between farms depends on

physiological and agricultural factors (e.g., sows are more often

bitten than piglets, as are encaged pigs) [59,60]. Third, the

Figure 1. Overview of the drivers of the JEV ecology and epidemiology. Arrows from one driver (ex: climate) to another (ex: vectors
abundance) illustrate the influence of the first on the second. Lines are dotted when the link between two drivers is uncertain. Question tags
underscore uncertain aspects of the JEV cycle. The JEV is represented in red in the zoonotic cycle in the middle of the figure. Humans, as they stay
outside of the JEV cycle, do not enter the cycle. Major drivers influencing the JEV ecology and ultimately the epidemiology in humans are framed.
These drivers and their influences are colored as follow: in green, agriculture; in blue, climate and natural disasters; in purple, host/vector genetics; in
yellow, JEV genetics; urbanization, which is a priori not relevant to the JEV life cycle, appears in gray. Vaccine, as one major nonenvironmental driver
influencing the risk of JEV transmission and infection to humans, is in light blue. ‘‘multi-scale’’ is annotated when one driver has a multiple spatial
scales effect on another.
doi:10.1371/journal.pntd.0002208.g001
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intensity of circulation in farms depends on the amount of pigs

reared by farm, their age at slaughter, their reproduction rate, and

the vaccination effort [59]. Subsequently, the epidemiology of JEV

in the domestic reservoir host follows a complex multifactorial

pattern that needs to be brought to light.

The mosquito vector species present in the wild transmission

cycle are also greatly implicated in the rural domestic cycle.

Although most mosquito species usually consume bird, cattle, and

pig blood [61], Cx. quinquefasciatus, whereas opportunistic, seems

also very anthropophilic on account of its use of various domestic

water collections and wastewater from pig farms as breeding sites

[2,45,55,62,63]. Because it has been shown to naturally carry the

JEV and to be experimentally capable of transmitting it [48,63],

Cx. quinquefasciatus is another potential vector of the JEV domestic

cycle. It represents an important potential source of infection for

humans, so much the more it has emerged in areas where it was

absent before following urbanization and human expansion, and

increases in number in urban households with human density and

pig keeping [64,65].

Evolutionary Ecology of the JEV
Until recently, the factors influencing the historical and

geographical emergence and spread of JEV genotypes were not

clearly understood. In fact, genotypes’ emergence and spread

appear to have a complex pattern relevant with the role of

environmental factors. Some emerge in areas where they were

absent before (e.g., genotype V in Tibet, a cold and high-altitude

region that was considered free of JEV [12,66], and genotype I in

the Australasian region [16]), whereas some replace the dominant

genotype (e.g., genotype III to genotype I shift).

It is thought that these changes are due to the JEV fitness to a

new competent vector (e.g., genotype V, besides being isolated

from Cx. tritaeniorhynchus, seems associated with a new JEV vector

in the Republic of Korea: Cx. bitaeniorhynchus [13]) or to new host

availability (e.g., increasing pig farming in Tibet [12]). More likely,

environmental factors (e.g., mosquito dispersal by wind in

Australia), animal ecology (e.g., migration of animals), human

activity (e.g., pig trade introducing genotype I in Australia [16]),

and climatic changes [67] are variables independent to JEV

genetics that may modify the distribution area of JEV and its

genotypes.

Environmental Factors: Drivers of JEV
Epidemiology

The (re)emergence of vector-borne and zoonotic diseases as well

as variations in disease risk and incidence are strongly driven by

environmental factors. Among the most relevant factors are

climate but also land cover and land use, respectively the

biophysical attributes of the earth’s surface and the human

purpose or intent applied to these attributes [68]. However, these

variables occur at several different geographic ranges, and hence

multi-scale studies are a major stake for the understanding of the

spatial epidemiology of diseases [69].

For a long time, JEV epidemiology has exclusively been

broached at the global scale and primarily on the basis of

climatic variables (i.e., rainfall and temperature) because they

indeed strongly affect vector density [67]. Recently, Miller et al.

[70] identified an optimal range of temperature during the wet

season that is favorable to the Cx. tritaeniorhyncus biology. As

they also found that most of JE cases were located in areas of

high probability of vectors, they underlined the link between

climatic covariables, vector ecology, and human health.

Moreover, temperature might affect the competence of a

vector-genotype couple over another, as shown for the West

Nile virus [71].

In our previous study [14], six Asian and Australasian regions

were identified according to anthropogenic, biological, geograph-

ic, and physical factors including not only climatic conditions, but

also biomes and land use. The regional history of JEV genotypes

was analyzed (i.e., the number of JEV isolates and the proportion

of each genotype). Then we emphasized the two regions of

intensive JEV circulation: the Paleartic biogeographic realm [72]

comprising Eastern Russia, Japan, Korea, and Northern China,

and a tropical region characterized by large cover of rice fields

comprising the Indochinese peninsula (Cambodia, Lao PDR,

Myanmar, Thailand, and Vietnam), South China, and Taiwan

[73].

Actually, land cover and land use changes have been driving the

JE risk and incidence. In Asia, paddy field surfaces have constantly

extended since the early 1960s (http://faostat3.fao.org/). Given

paddy fields provide long-term Culex sp. breeding sites and attract

many wading birds for foraging and resting, they enhance the

circulation and expansion of mosquito and wading bird popula-

tions [74]. Thus, in areas where rice-irrigated farming is

widespread, the JEV transmission might become less dependent

on rainfall [75,76]. Likewise, because the amount of live pig heads

has increased since the 1960s (http://faostat3.fao.org/), both

backyard and industrial pig farming have provided a continuous

increasing, outstanding potential source of blood meals for

mosquitoes.

Additionally, a finer-scale spatial analysis (i.e., local or regional

landscape) helps to better picture how landscape structure affect

the JEV epidemiology. At fine scale, JEV ecology is indeed largely

affected by both land cover and land use as these factors affect

vectors’ and hosts’ ecology (Figure 1). Once the JEV is introduced,

its ecological sustainability indeed relies on its growth within the

susceptible host population and on its transmission between hosts

through vectors. Then the risk of incidental infection to humans

depends on the likelihood of disease transmission within the

surrounding landscape [77]. To be transmitted to humans, JEV

needs: 1) competent mosquito vectors, 2) reservoir-amplifying

hosts, and 3) nonimmune humans within the range of the JEV-

competent vector and animal hosts. In this process, the three

major landscape elements are paddy fields, pig farms, and human

habitations. In the landscape, they are distributed in habitat

patches. Their density, size, and spatial arrangement are key

factors determining the degree to which the landscape facilitates or

impedes movement of vectors among them (i.e., the landscape

connectivity) [78] (Figure 1). Within a given landscape, this

biological connectivity may strongly affect the JEV transmission

dynamics.

Nonenvironmental Factors of JEV Epidemiology

Vaccination is the most effective way to reduce the incidence of

JE in humans, yet it has no effect on the JEV transmission cycle.

Vaccination of livestock, especially pigs, would in contrast reduce

the amplification of the virus, the rate of mosquito infection, and

subsequently the risk of transmission to humans. Yet, vaccination

of pigs is generally not used to prevent JE because it is costly,

hardly feasible logistically, and not necessarily effective in piglets

(they must be immunized after the disappearance of maternal

antibodies) [6,79]. Moreover, pigs represent a relevant sentinel

model, the surveillance of which could predict a potential JE

outbreak in a human population nearby [54]. Immunizing sentinel

pigs would also impede the detection of such a threat. Other

factors have strong effects on the JEV and genotype circulation
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within infected landscapes and their emergence in nonendemic

landscapes and regions. There are, among them, the movements

of either naive or infected animals such as the migrations of flying

vertebrates and trading and transportation of domestic animals.

These movements modify human exposure to JEV and thus

require the particular attention of the health system. In

southeastern Asia, trade of live animals occurs between farms,

local markets, and more importantly within the Indochinese

peninsula and China, and also to Hong Kong and Singapore [80].

Viremic birds, for instance, may have been responsible for JEV

spread and introductions [4,27] into India [81], Taiwan [82], or

Papua New Guinea [83]. Over long distances, migratory birds are

the most likely spreader of the JEV as some species, such as Egretta

garzetta and Nycticorax nycticorax, have a complex migration system

over a large geographical area (http://maps.iucnredlist.org).

However, the large-scale movement patterns of the main wading

birds species implicated in JEV transmission are little known.

Additionally, JEV may disperse through wind-blown infected

mosquitoes, as is assumed to be the cause of the JEV introduction

from Papua New Guinea to north Australia [84] or from China to

Japan [85].

Moreover, there is no evidence that JEV requires adaptation to

shift between the bird-associated wild cycle and the pig-associated

rural domestic cycle [2,3]. The JEV may easily be transferred from

one to another if competent vectors feeding on both wild and

domestic hosts are present in JEV-infected areas where both hosts

are in close proximity.

Conclusion

For more than a half century, human activities have led to

changes of land use and land cover and subsequent deep

environmental changes of habitats. These modifications have

modified the risk of infection for humans. The ecology of

arthropod-borne diseases, noticeably JE, remains complex since

they are highly dependent on various biotic and abiotic

environmental factors and on the spatial scale of study. To assess

and predict JE emergence therefore remains difficult. Multidisci-

plinary research focusing on virology, molecular and spatial

epidemiology, landscape and behavioral ecology, history, and

socioeconomic studies are essential to shed light on the biological

mechanisms involved in the emergence, spread, reemergence, and

genotypic changes of JEV.
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