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Abstract

Background: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human
African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon
subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this
important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene
sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic
units.

Principal Findings: The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies.
However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f.
fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from
Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin
and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers.
Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the
interrelationship of closely related populations.

Conclusion/Significance: We propose that the morphological classification alone is not used to classify populations of G.
fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT)
programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect
limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation
between this population and the flies to be used in the release programme.
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Introduction

Control of Human African Trypansomiasis (HAT) has largely

been based upon the detection and treatment of human cases [1].

Anti-vector interventions, whilst hugely successful in reducing

transmission of Animal African Trypanosomiasis (AAT), have

rarely been implemented on a programmatic scale [2,3]. Part of

the explanation for the relative neglect of anti- vector interventions

is that the majority of cases of HAT are transmitted by flies within

the Glossina palpalis group which are less amenable to control using

natural (insecticide-treated cattle) or artificial (traps and insecti-

cide-treated targets) baits.

The recently launched Pan African Tsetse and Trypanosomiasis

Eradication Campaign (PATTEC) has placed anti-vector interven-

tions back on the agenda for HAT control. This initiative aims to

identify, then eradicate discrete populations of tsetse flies. The

programme is not reliant upon a single intervention but will take an

integrated vector management (IVM) approach which tailors the

interventions to the ecology and bionomics of the target species. Most

interventions, such as aerial spraying, bait and trap methods and

release of sterile irradiated-males (SIT), require a detailed under-

standing of the biology and population genetics of the target species.

As discussed in two recent papers by Solano et al we are beginning to

see population genetic data being used to target and tailor control
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strategies for some species within the palpalis group [4,5]. However,

for Glossina fuscipes s.l., which is thought to vector approximately 90%

of cases of HAT [6], very few molecular genetic studies have been

conducted [7,8,9,10,11].Consequently, at present, our understanding

of the taxonomy and population structure of this ‘‘species’’ is too

incomplete to fully inform intervention strategies.

A recent initiative to develop improved bait technologies for G.

fuscipes spp. flies has revealed marked geographical differences in

the response of flies to both odour and trap design. In Kenya G. f.

fuscipes were unresponsive to any mammalian odour whilst in the

Democratic Republic of Congo (DRC) G. f. quanzensis was

responsive to pig odour [12]. Similarly, studies investigating the

optimal orientation for the insecticide-treated, oblong cloth traps

which are commonly used to control tsetse suggest that the visual

responses of the putative sub-species may differ. Glossina f. fuscipes

was equally attracted to traps in which the longest axis of the

oblong was either parallel (horizontal) or orthogonal (vertical) to

the ground [13] whereas G.f. quanzensis was apparently more

attracted to horizontal oblongs (S. Torr, unpublished). If these,

and other, differences in vision and odourant-mediated behaviour

between the putative fuscipes subspecies reflect genetic differences

population genetic approaches may be used to target interventions

to populations with specific behaviours.

Glossina fuscipes s.l. has an extensive distribution centralised on

the Congo basin but also extending as far north as Ethiopia/

Sudan and as far south as Angola (Figure 1). The sister group to

Glossina fuscipes is the predominantly parapatric Glossina palpalis

complex [9] whose species range lies largely to the west. Machado

revised the systematics of the palpalis group, [14], and described

three G. fuscipes subspecies on the basis of morphology. The first, G.

fuscipes fuscipes inhabits the most humid, equatorial forest habitats

across the northern part of the species range. The second

subspecies, G. f. martinii, inhabits the south Eastern part of the

range, around Lake Tanganyika, and in the drainage of river

Lualaba from the south up to where it is joined by the Luama, and

was described as the most tolerant of low humidity levels of the

three subspecies. The third subspecies, G. f. quanzensis, is

distributed in the south western part of the species range, in the

drainages of the tributaries joining the Congo River south of

Mushie. Machado asserted that the habitat of G. f. quanzensis is

intermediate in character between fuscipes and martinii. Whether

the present distributions are limited by the tolerance of the flies to

different humidity levels is unknown, since only G. f. fuscipes has

been empirically tested for desiccation tolerance [15]. The three

subspecies are thought to have contiguous, non overlapping

distributions. Machado concluded that the three fuscipes subspecies

are probably the result of vicariant (allopatric) speciation events.

From the work of Vanderplank there is evidence for barriers to

mating between some of the subspecies [16]. Glossina fuscipes fuscipes

(then called palpalis fuscipes) from Uganda were reciprocally crossed

with G. fuscipes martinii from Zambia [16]. In the female G.f.

fuscipes6male G. f. martinii the superior claspers of the male

genitalia punctured the female abdomen leading to death of the

female. The reciprocal cross showed partially sterility, with

approximately10 times fewer pupae produced than in intraspecific

crosses. The area the subspecies inhabit has long been problematic

to sample due to a combination of physical and socio-political

difficulties and hence classical approaches of crossing different

putative species are scant. In this paper by collecting samples over

a wide geographical range and using molecular genetic approach-

es we attempt to determine whether the subspecies of G. fuscipes

sensu Machado [14] are supported or if there is evidence for

alternative genetic stratification within G. fuscipes. Given that

methods of tsetse control often exploit species-specific behaviours

there is a pressing need to establish the taxonomic status and

ranges of the taxa within G. fuscipes s.l.

Materials and Methods

Specimen collection and identification
G. fuscipes were collected using biconical traps or pyramidal traps

[17,18] at the locations and dates shown in table 1 and figure 1.

After preliminary morphological identification in the field, flies

were stored in either acetone or 90% ethanol. In the laboratory

samples were assigned to the three morphological subspecies

proposed by Machado [14] using the identification key of Jordan

[19].

DNA extraction and amplification
For mitochondrial and nuclear sequence data, DNA was

extracted from three legs per tsetse using a modified version of

the Ballinger-Crabtree protocol [20,21]. The same method was

used to extract DNA from tsetse abdomens for the amplification of

DNA from the tsetse symbiont Wigglesworthia glossinidia. The

abdomen was used because Wigglesworthia is concentrated in a

specialized organ, the bacteriome, on the tsetse midgut. Table S1

details which loci were examined in each specimen (Accession

numbers HQ387026–HQ387133). The sequencing-based analy-

ses were conducted at the Liverpool School of Tropical Medicine

whilst microsatellite analyses were conducted at the Institut de

Recherche pour le Développement. A Chelex method [22] was

used to extract DNA from 3 legs of individuals used solely for

microsatellite analysis.

An 850 bp fragment of the 39 end of the Glossina mitochondrial

Cytochrome Oxidase 1 gene, a 764 bp fragment of the Glossina

mitochondrial NADPH dehydrogenase 2 gene, and a 618 bp fragment

of Glossina ribosomal internal transcribed spacer 1 (ITS1) were

amplified as described previously [9] using primer pairs COI-

CULR, TW-N1284- N2-J586 and Glossina ITS1for- Glossi-

naITS1rev respectively.

Putative Glossina period gene sequences were identified from

genome reads produced by the Wellcome Trust Sanger Institute

available from http://www.sanger.ac.uk/resources/downloads/

vectors/glossina-morsitans-morsitans.html using tBLASTn with

the Drosophila melanogaster period protein sequence (NP_525056) as

Author Summary

Glossina fuscipes s.l. tsetse flies are responsible for
transmission of approximately 90% of the cases of Human
African Typanosomiasis in Sub Saharan Africa. It was
previously proposed on the basis of morphology that G.
fuscipes is composed of three sub-species. Using genetic
evidence from G. fuscipes nuclear, mitochondrial and
symbiont DNA, we show that the morphological subspe-
cies do not correspond well to genetic differences
between the flies and morphologically similar flies may
have arisen more than once in the evolution of this
species. Instead, we found at least 5 main allopatrically
distributed groups of G. fuscipes flies. The most genetically
distinct group of flies originated from Ethiopia, where a
sterile insect release programme is planned. Given that
tsetse control often exploits species-specific behaviours
there is a pressing need to establish the taxonomic status
and ranges of these five groups. Moreover given that we
were only able to perform limited sampling in many parts
of the species distribution further groups within G. fuscipes
are likely to be awaiting discovery.

Multiple Taxa within Glossina fuscipes s.l.
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a query seqeuence. period was selected as it is a single copy nuclear

gene in Drosophila and other insects and has been previously used

to study closely related taxa [23,24]. tBLASTn hits to the G. m.

morsitans genome (downloaded from Sanger website in February

2008, cut off probability 16e220) were assembled using Codon-

Code aligner (CodonCode corporation) together with the cDNA

GMsg-3911 found using a description search of ‘‘period’’ in

GeneDB (http://old.genedb.org/genedb/glossina) [25]. A possi-

ble intron-exon structure was inferred by comparison with

Drosophila cDNA and genomic DNA, and the protein sequences

of other insect period genes. Primers Perfor1 (GATTTCGTT-

CATCCCAAGGA) and Perrev1 (GAGGCTAAAGCCTGA-

CAACG) were designed to amplify a fragment at the 59 end of

the putative Glossina period gene up to the highly conserved PAS

domain (due to a gap in the blast hits, the precise length of the

fragment was determined by PCR and sequencing to be 1026 bp).

This fragment was initially amplified and sequenced from G. m.

morsitans genomic DNA, and the same primers were subsequently

Figure 1. Distribution of the three putative subspecies of G. fuscipes and the sample sites of the 13 study populations. The right panel
is a larger scale map of the Uganda/ Kenya region. Abbreviations on the left hand panel; Kin: Kinshasa; Mad: Madimba; Kis: Kisantu; Ben: Bena
Tshibangu; Kig: Kigoma; Moy: Moyo; Gog: Gogara. Abbreviations on the right hand panel; Buv: Buvuma Island; Bus: Busime; Bun: Bunghazi; Rus:
Rusinga Island; Man: Manga Island; Ung: Ungoye. The approximate distribution of the G. f. fuscipes is shaded red, G. f. quanzensis is shaded yellow and
G. f. martinii is shaded blue.
doi:10.1371/journal.pntd.0001266.g001

Table 1. Summary of G. fuscipes s.l. material collection locations.

Town/Region Country
Morphological
Identification

Coordinates
North/South

Coordinates
East/West Date collected Sample size1

Kinshasa (Kin) DRC quanzensis 4u289S 15u169E March 2007 and
December 2007

N = 43

Madimba (Mad) DRC quanzensis 4u599S 15u69E October 2007 N = 29

Kisantu (Kis) DRC quanzensis 5u89S 15u59E Novermber 2007 N = 11

Bena Tshibangu (Ben) DRC quanzensis 6u119S2 23u389E2 September 2009 N = 38

Gogara ,Deme and
Kulano Rivers (Gog)

Ethiopia fuscipes 6u349N 37u339E November 2007 N = 30

Moyo (Moy) Uganda fuscipes 3u399N 31u439E May 2009 N = 40

Busime (Bus) Uganda fuscipes 0u149N 33u579E September 2007 N = 23

Bunghazi (Bun) Uganda fuscipes 0u569N 33u589E September 2007 N = 30

Buvuma Island (Buv) Uganda fuscipes 0u149N 33u169E May 2007 N = 50

Ungoye (Ung) Kenya fuscipes 0u369S 34u 59E September 2007 N = 35

Manga Island (Man) Kenya fuscipes 0u219S 34u159E August 2007 N = 35

Rusinga Island (Rus) Kenya fuscipes 0u219S 34u139E September 2007 N = 30

Kigoma (Kig) Tanzania martinii 4u529S2 29u379E2 April and October 2009 N = 38

1Refers to the number of specimens screened in the microsatellite study.
2Only approximate coordinates were available for the sampling site as only the name of the nearest village was recorded. G. f. martinii were captured in the Gombe
Stream nature reserve near Kigoma. Both these locations are at least 640 km from the nearest neighbour.

doi:10.1371/journal.pntd.0001266.t001
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used to amplify the same region from G. fuscipes genomic DNA.

25 ml reactions contained 1 ml template, 0.8 mM dNTP, 3 mM

MgCl2, each primer at 0.5 mM and 0.08 ml (0.4 units) Kapa Taq

polymerase. 30 amplification cycles of 94uC for 30 seconds, 60uC
for 30 seconds and 72uC for 2 minutes were used. Primers and

reaction conditions for the less variable 39 region are given in the

table S2 and Text S1.

Wigglesworthia. Genes for use as G. fuscipes genotyping markers

were identified by comparative genomics between W. glossinidia -

G. brevipalpis [26] and W. glossinidia - G. m. morsitans genomes (Serap

Aksoy, pers. comm.). No W. glossinidia - G. fuscipes genome was

available and differential gene loss in symbiont lineages was

anticipated. To allow for the different gene content orthologous

single copy genes were identified between E. coli (K1), W. glossinidia

from G. brevipalpis and G.m. morsitans, using ORTHOMCL [27]. A

total of 355 genes were found to be single copy and present in all

three genomes. The gene orthologous groups where aligned using

MUSCLE [28], only five genes showed high levels of divergence at

the nucleotide level in genome regions with conserved synteny.

Degenerate primers were designed to all regions, but the

hypothetical protein YcfW was the only one which yielded

amplicons of the selected size. The gene encoding the hypothetical

protein, YcfW, was initially amplified using degenerate primers

DG11F (59-ACWTGGATKTYAAAATACGG-39) and DG11R

(59-ACWCCTGAWAARTAYATTGG-39) based upon sequences

of W. glossinidia from G. brevipalpis (genome accession number:

NC_004344) and G.m. morsitans (Serap Aksoy, pers. comm.). The

degenerate primers amplified a 600 bp fragment from G. fuscipes

derived material which was then sequenced and used to design

specific primers for G. fuscipes Wigglesworthia (Gp11fusc_for 59-

GCGCTATTTTAATATCTTTTATTTTTG-39; Gp11fusc_rev

59-TGGATTWTCAGAACAAATDGTTAATC-39). YcfW was

amplified for 35 cycles of 94uC for 30 seconds, 58uC for

30 seconds and 72uC for 30 seconds from roughly 40 ng of

template DNA extracted from either abdomen or the whole fly,

with primers 0.5 mM each, MgCl2 3 mM, dNTP, 0.8 mM. These

primers amplified a 499 bp fragment and were also used for direct

sequencing.

Sanger sequencing of PCR products was performed by

Macrogen Korea using an ABI3730XL sequencer. PCR products

were purified prior to sequencing using Sureclean (Bioline)

according to the manufacturer’s instructions.

Microsatellites
All the individuals studied were genotyped using 5 microsatellite

loci with dinucleotide repeats, using a LI-COR sequencer. All

these microsatellite loci were originally isolated by Alan Robinson

(Entomology Unit, Food and Agricultural Organization of the

United Nations/International Atomic Energy Agency, Austria).

GfA3, GfB8, and GfB101 were redesigned to produce smaller

amplicons [29]. The PCR reactions were carried out in a

thermocycler (MJ Research, Cambridge, UK) in 20 ml final

volume using 10 ml of the diluted supernatant from the extraction

step. After PCR amplification, allele bands were routinely resolved

on a 4300 DNA Analysis System from LI-COR (Lincoln, NE)

after migration in 96-lane reloadable (36) 6.5% denaturing

polyacrylamide gels. This method allows multiplexing by the use

of two infrared dyes (IRDyeTM), separated by 100 nm (700 and

800 nm), and read by a two channel detection system that uses two

separate lasers and detectors to eliminate errors due to

fluorescence overlap. To determine the different allele sizes, a

large panel of about 70 size markers was used. These size markers

had been previously generated by cloning alleles from individual

tsetse flies into pGEM-T Easy Vector (Promega Corporation,

Madison, WI, USA), by sequencing the cloned alleles to determine

their exact size. PCR products from these cloned alleles were run

in the same acrylamide gel as the samples, allowing the allele size

of the samples to be determined accurately [30]. Allele sizes were

scored twice by two independent readers using the LI-COR

SagaGT genotyping software. Primers, repeat motifs, allele size

ranges and the dye used are given in table S2.

Sequence data analysis
Sequence data: An incongruence length difference (ILD)/

partition homogeneity test [31] was performed in PAUP [32] to

determine whether Cytochrome oxidase 1 and NADH dehydrogenase 2

sequences could be used together for estimating phylogenetic trees.

No significant difference was detected between tree lengths of the

COI:ND2 partition compared to random partitions of the same

size, so subsequent tree inference was performed on the combined

data set.

JModeltest [33,34] was used to perform a hierarchical likelihood

ratio tests on all markers to find which substitution model best

describes their evolution. Using the Akaike information criterion

(AIC), the Tamura Nei 1993 model [35] was specified for the

COI+ND2 dataset. This model was used to make maximum

likelihood (ML) trees using PhyML online [36]. Neighbour joining

trees were inferred using PAUP version 4.0 [32]. Other than

specifying the substitution model and a gamma distribution of

rates among sites, PAUP settings for distance trees were default

except that base frequencies were determined empirically from the

data, tree searching was heuristic with a random order of sequence

addition repeated 10 times, and 2000 bootstrap replicates were

performed. Using JModeltest, the ‘‘Transversion’’ model was

specified for YcfW (AIC). This model is equivalent to the

Generalised time-reversible (GTR) model but with only one

transition rate. We therefore used the similar GTR model for

neighbour joining trees in PAUP and for ML tree inference in

PhyML.

Bayesian phylogenies of COI+ND2, YcfW and Period and ITS1

were made using MrBayes [37], in each case the substitution

model was selected using the Bayesian information criterion in

JModeltest [33,34]. For COI+ND2 each gene was designated as a

partition of the dataset. Both YcfW and COI+ND2 were allowed 6

substitution rates with a gamma distribution of rates across sites

and a proportion of invariable sites allowed. Period was permitted 2

substitution rates and no variation of rates among sites or

invariable sites. ITS1 was permitted one substitution rate and no

variation of rates among sites or invariable sites. The rate prior

was set to variable (dirichlet), with other priors left on default. Two

runs of four chains were run for 2000000 generations, sampling

every 100 generations. The first 100000 generations (1000

samples) were discarded as burn-in. Runs and burn-in of this

length gave good convergence as assessed by examining plots of

log probability against generation and observing that potential

scale reduction factor for all parameters was close to 1. The

analysis was repeated three times with different seeds for the

random number generator.

For period full length sequences Jmodeltest specified the

TPM3uf+G [38] substitution model under the Bayesian informa-

tion criterion, and TIM3+G under the AIC. The TPM3uf+G

model was used to infer a NJ tree using PAUP. The GTR model

was used to infer a maximum likelihood phylogeny using PhyML

online as this does not implement the TPM3uf or TIM3 models.

Molecular clock calculations on COI data were performed using

divergence rate of 1.5% per million years appropriate for insect

COI [39]. The assumption of uniform rates across the tree was not

rejected by the two cluster test implemented in Lintre [40].

Multiple Taxa within Glossina fuscipes s.l.
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Tests of monophyly
Hypotheses about monophyly were tested in a Bayesian

framework by observing the frequency of particular groups being

monophyletic in the posterior distribution of trees, which is the

posterior probability of monophyly [41,42]. The probability of

monophyly of the three morphological subspecies (fuscipes,

quanzensis and martinii) were tested, and we also tested the

monophyly of Ethiopian G. f. fuscipes since these flies are

geographically separated from other G. fuscipes by a discontinuity

in their distribution, and the monophyly of Lake Victoria Basin

(LVB) and Tanzanian specimens, since this seemed like a possible

taxonomic unit in the COI+ND2 tree. This was done by using

PAUP [32] to filter the posterior distribution of trees excluding the

burn-in (i.e. 19001 trees from each run) to find the trees which

agree with the hypothesis of monophyly.

The Shimodaira and Hasegawa (SH) test [43] was also used to

test the Maximum Likelihood tree topology under the constraints

of the three morphological subspecies and the monophyly of

Ethiopian G. fuscipes, estimating the bootstrap probabilities by

bootstrap resampling the estimated log likelihoods of sites 1000

times (the RELL method) [44]. The monophyly of LVB+Tanza-

nian flies, a taxonomic unit noticed only after tree construction,

was not tested using the SH test because hypotheses for this test

should be a priori hypotheses, independent of the observed data

[45].

Microsatellite data analysis
Linkage disequilibrium (LD) between microsatellite loci was

tested in each population using Genepop V [46]. A log likelihood

ratio statistic (G test) was calculated for contingency tables of

genotypes of each pair of loci in each sample. A global test for each

pair of loci across all sample sites was also performed using Fisher’s

method. The Ethiopian sample sites were all considered as one

due to their geographic proximity (,10 Km). Although the

straight line distance was shorter between Manga and Rusinga

islands (,5 km), they were considered separately because this

distance is over open water. FST [47] was estimated with

correction for null alleles, [48]. Null allele frequency was estimated

using the expectation maximization algorithm of [49] using

FreeNA [48], and was also estimated simultaneously with the

inbreeding coefficient as described by Chybicki and Burczyk [50].

After re-coding positions in the matrix containing no data with a

unique code, the ‘excluding null alleles’ (ENA) corrected and

uncorrected genotype data was converted into PHYLIP format for

further analysis with programmes within the PHYLIP package

[51]. Recoding of missing data genotypes with a code unique for

each locus was necessary to make the sum of allele frequencies 1.

This makes the assumption that all missing data at a particular

locus are the result of a single mutation that results in a null allele,

which is an oversimplification. However, trees made using the

original (non-recoded) dataset using populations [52] results in

similar topology of the well supported clades, with only the poorly

supported nodes changing. Allele frequencies were bootstrapped

over loci using seqboot. The Cavalli-Svorza chord distance [53] was

calculated using gendist and neighbour-joining trees made for each

of the bootstrapped datasets using neighbour. An extended majority

rule consensus tree of the bootstrap replicates was calculated using

consense, the tree converted to an unrooted tree using retree, and

branch lengths based on the non bootstrapped Cavalli-Svorza

distance matrix were imposed on that tree topology using fitch,

where negative branch lengths were not allowed.

Hierfstat [54] was used to test the contribution of hierarchical

levels of population structure on departures from Hardy Weinberg

equilibrium. Specifically, we aimed to test whether the morpho-

logical subspecific classification (Fsubspecies/total) accounts for a

significant level of genetic differentiation once the geographical

sampling is taken into account (Fcluster/subspecies, Fsample site/cluster

and Findividual/sample site). Hierfstat tests the significance of higher

levels of the hierarchy by permuting predefined units at a lower

level between the bigger units defined by the higher level. Since G.

f. martinii was only sampled from one site (Kigoma), this sample

was removed from the dataset for Hierfstat analysis. Three levels

of structure were considered above ‘‘individual’’, which were

sample site, geographic cluster (Kinshasa, Madimba and Kisantu

were grouped into one cluster, Ungoye, Manga and Rusinga into

another, and Busime and Buvuma into another, with the

remaining sample sites classified individually. 1000 permutations

were used to test the significance of F statistics at each level of the

hierarchy, for all 5 autosomal loci and across all loci.

STRUCTURE 2.3.1 [55,56] was used to infer population

structure without prior information about sample locations.

STRUCTURE assigns individuals to each of K clusters with

different probabilities. STRUCTURE was run with K = 1 to

K = 12, using 10 replicate runs for each value of K with sequential

random seeds. A burn-in period of 12000 iterations and a

subsequent 60000 iterations were used to estimate parameters.

The admixture model was used, which assumes that a fraction of

the genome of each individual can come from each of the K

populations. Allele frequencies were allowed to be correlated

between clusters, as each cluster is thought to have undergone

genetic drift away from a common ancestral population. The

optimal value of K was assessed using the DeltaK method of

Evanno et al [57]. When the whole dataset was entered, K = 2 was

the optimal number of clusters using this criterion, which is the

uppermost level of hierarchical structure. We then aligned the

results of the 10 runs with K = 2 using the full search algorithm

implemented in CLUMPP [58]. The proportionate assignment of

each individual output by CLUMPP was then used to assign each

individual to one of three groups: 1. Assigned to cluster 1 with

.90% probability, 2. Assigned to cluster 2 with .90% probability

and 3. Assigned to neither cluster with .90% probability. Data

from the third group was discarded for further analysis. Groups 1

and 2 were analysed separately in STRUCTURE as above, except

that only K = 12K = 10 was considered. For group 2, the greedy

method, which selects the locally optimal solution at each stage in

the hope of finding the global optimum, was used on CLUMPP

since the full search algorithm took .5 minutes to run.

STRUCTURE analysis was run with the original genotypes,

and also with missing data genotypes replaced with a code unique

for each locus.

Results

Sequence data
1. Internal transcribed spacer 1 (ITS1). The status of the

morphological subspecies received initial support from ITS1 data.

For ITS1 there were 12 variable positions in the 546 bp

alignment. Of these, there were four fixed differences (Positions

27, 145, 170, 215 on the alignment, figure S1) between G. f. martinii

and the other fuscipes subspecies. An additional two fixed

differences (Positions 63, 328 on the alignment, figure S1) were

observed between morphological G. f. fuscipes, and morphological

G.f. quanzensis and G. f. martinii. These conserved differences were

used to design what we must tentatively term a diagnostic PCR as

specimen identifications were ambiguous. Details of the assay are

provided in the supporting information section in the hope that

other researchers may be able to improve the design when
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specimens become available from previously unsampled areas

(Text S1, Figure S1 and Figure S2).

2. Mitochondrial DNA. COI and ND2 sequences were

concatenated, producing the gene tree shown in figure 2.

Bayesian and distance trees were also made (figure S3). In

contrast to the ITS1 data there was no clear support for

monophyly of the three morphological subgroups of Machado

[14]. There was strong geographical clustering in the data set, i.e.

no haplotypes originating from individuals sampled at a single

geographic origin clustered with different sampling units. Lake

Victoria basin samples (SE Uganda and Kenya) formed a well

supported clade together with G. f. martinii from Tanzania, within

which Lake Victoria Basin G. f. fuscipes is itself well supported.

There was also strong support for the following clades; Ethiopian

G. f. fuscipes; Mid plus north Ugandan G. f. fuscipes, G. f. quanzensis

from Western DRC and G. f. quanzensis from Bena Tshibangu,

central DRC. Whilst these five clades were well supported there

was poor interclade resolution. The net divergence in COI at the

deepest split in the ML and NJ trees (between East DRC and all

other G. fuscipes) is 2.2% (SE 0.48%), which corresponds to a

divergence time between 1.8 and 1.2 million years ago assuming a

divergence rate of 1.5% per million years [39].

3. Wigglesworthia YcfW gene. The Wigglesworthia gene YcfW

provided no clear support for the three morphological subgroups

of Machado (Figure 3, figure S4). Again the best supported clade

was the Ethiopian clade with marginal support for the Lake

Victoria basin+G. fuscipes martinii clade.

4. Glossina Period nuclear gene. Whilst preliminary

analysis of period sequences across the genus Glossina suggested

it was a good phylogenetic marker (figure S5) there were only 14

Figure 2. Maximum likelihood tree for mitochondrial genes (COI+ND2). Distances were calculated using the Tamura Nei (1993) substitution
model. Node support is given as a percentage of bootstrap replicates (n = 1000). Branch colour reflects sample collection location; blue: Lake Victoria
Basin; black: G. f. martinii from Tanzania; red: Ethiopia; pink: Mid/Northern Uganda; yellow: west DRC; green: Bena Tshibangu. The tree is rooted using
specimens from three species within the palpalis group; Gpp: Glossina palpalis palpalis; Gpg: Glossina palpalis gambiensis and Gtac: Glossina
tachnioides. See table S1 for key to specimen names.
doi:10.1371/journal.pntd.0001266.g002
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variable positions and consequently the gene trees were poorly

resolved (figure S5).

Tests of Monophyly
Bayesian tests of monophyly were performed for all sequence

data sets (Table 2, figures S3, S4, S5). No marker supported the

monophyly of G. f. fuscipes or G. f. quanzensis, although ITS1 did

provide weak support for the monophyly of G. f. fuscipes

(P = 0.917). All the markers give support to the monophyly of G.

f. fuscipes from Ethiopia. The monophyly of G. f. martinii was

supported by the nuclear marker (Period), but neither of the

maternally inherited markers. The hypothesis of the monophyly of

flies inhabiting Lake Victoria basin down to Tanzania (LVB+
martinii) is supported by mitochondrial DNA but rejected by the

nuclear marker period, with Wigglesworthia YcfW being inconclusive.

This contrast between nuclear and maternally inherited markers

may reflect the repeated adaptive sweeps to which maternally

inherited markers are prone which can result in dissociation

between nucleotide diversity and population demography [59].

The more conservative Shimodaira Hasegawa (SH) test of

monophyly was performed on the same data sets. SH tests rejected

monophyly for G. f. quanzensis only for the full COI+ND2 dataset

(P = 0.003; n = 29), but when only the individuals genotyped at

other loci were considered, monophyly could not be rejected

(P = 0.729; n = 16). Monophyly was also rejected for G. f. fuscipes

(P = 0.029) for the YcfW dataset (table S3). No hypothesis could be

rejected with the period or ITS1 data sets.

Microsatellite data
No pair of loci showed significant LD after Bonferroni

correction for multiple testing. Exact tests of heterozygote deficit

[60] and highly variable FIS values suggested the presence of null

alleles (table S4). Estimated null allele frequencies and the

population inbreeding coefficient (F) for each population are

shown in table S5. For each locus estimated null allele frequency

was .0.1 in at least one population. Once the data set was

adjusted to account for the presence of null alleles, the population

inbreeding coefficient was low (,0.1) for all populations except

Ungoye and Bena Tshibangu.

If the three morphological subspecies, sensu Machado are

valid phylogenetic entities, subspecific classification should

account for a proportion of the genetic differentiation between

Figure 3. Bayesian gene tree for 434 bp alignment of Wigglesworthia YcfW gene. G. p. palpalis and G. p. gambiensis sequences were used to
root the tree. Node support for shared nodes in the Maximum Likelihood (% of 1000 bootstrap replicates) and Neighbour Joining trees (% of 2000
bootstrap replicates) are shown after the posterior probability at each node. Branch colour reflects sample collection location; blue: Lake Victoria
Basin; black: G. f. martinii from Tanzania; red: Ethiopia; pink: Mid/Northern Uganda; yellow: west DRC. See table S1 for key to specimen names.
doi:10.1371/journal.pntd.0001266.g003
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populations. However, using a hierarchical analysis of F-

statistics morphological subspecific classification was not

found to be a major determinant of genetic differentiation

among G. fuscipes. Subspecific classification was defined as one

level of the hierarchy, and sampling site/clusters of sampling

sites as other levels. It was not possible to test G. f. martinii

using this method since this subspecies was only sampled at

one site. With uncorrected genotypes, significant levels of

genetic differentiation were accounted for by sample site

(Fsample site/cluster = 0.020–0.113, P = 0.001–0.003) and sample

site cluster (Fcluster/subspecies = 0.050–0.210, P = 0.001–0.003)

but not by subspecific classification (Fsubspecies/total = 20.045–

0.056, P.0.05) at all 5 autosomal loci. P values and F statistics

were similar for both uncorrected and ENA corrected [48]

genotypes.

To test further the morphological subspecies hypothesis we used

STRUCTURE software in the expectation that the genotypes

would separate into three main clusters corresponding to the

martinii, quanzensis and fuscipes subspecies within which there might

be additional geographical sub-structuring. The optimal number

of clusters based upon the DeltaK statistic was K = 2 [57], with a

local peak at K = 7. Genotypes from Kinshasa, Madimba,

Kisantu, Ethiopia, Kigoma fell into cluster 1, whereas those from

Ungoye, Manga, Rusinga, Busime and Buvuma fell into cluster 2

(figure 4A). Bunghazi and Bena Tshibangu populations showed

admixture between the two clusters, and Moyo was sometimes

assigned to cluster 1 and sometimes to cluster 2. When K = 7, 5 of

the clusters correspond to clades seen in the mitochondrial DNA

trees, with the fifth mtDNA clade (Kenya and south Eastern

Uganda) corresponding to the fifth (Kenya) and seventh clusters

(SE Uganda) (figure 4B).

To further test the ability of the microsatellites to distinguish the

morphological subspecies, genotypes assigned to cluster 1 or

cluster 2 when K = 2, with probabilities greater than 0.9 were

pooled into two separate data sets and the analysis re-run. For

cluster 1, an optimal number of 2 sub clusters was found, which

corresponded to i. West DRC (Kinshasa, Madimba and Kisantu),

with ii. Ethiopia and western Tanzania (Kigoma) (figure 4C).

Cluster 2 was separated into 3 subclusters, corresponding to i. Non

admixed individuals from Bena Tshibangu, ii. eastern Lake

Victoria Basin (Ungoye, Manga and Rusinge) and iii. northern

Lake Victoria Basin (Busime and Buvuma) in the other, although

Ungoye and Busime did show a moderate level of admixture

(figure 4D). Thus the first level of clustering split G. f. fuscipes into

two groups, one of which clustered together with martinii (Kigoma

population), and the other of which corresponds to fuscipes living in

the lake Victoria basin. G.f.quanzensis individuals (Western DRC

and Bena Tshibangu) also failed to cluster together. At the next

level of clustering, martinii was resolved as separate from quanzensis,

but still grouped together with a fuscipes population (although at

K = 3 or higher, martinii did cluster alone). When the analysis was

run with null homozygotes recoded as homozygous for recessive

alleles, the results were largely similar, except that Bena Tshibangu

showed a higher level of admixture and therefore contributed very

few individuals to the second runs on clusters 1 and 2. Cluster 1

split into an optimal (Max DeltaK) 3 clusters, which were i. West

DRC, ii. Ethiopia and iii. Kigoma. STRUCTURE analysis does

not support the hypothesis that the subspecies account for the

deepest level of structuring amongst fuscipes populations.

Trees made using ENA corrected or uncorrected datasets were

very similar in topology, only differing at nodes with ,70%

bootstrap support. As demonstrated by the low bootstrap values at

internal nodes in this tree (figure S6), the phylogenetic relation-

ships of widely geographically distributed G. fuscipes populations

are not well resolved by this method. The only well supported

clades are the Lake Victoria Basin (blue) and south west DRC

(green). The distance of the morphologically similar Bena

Tshibangu population from the other quanzensis flies is great, and

they are not resolved as sister taxa in this tree.

Discussion

There was not strong support for the three morphological

subspecies proposed by Machado [14]. With the exception of

ITS1, sequence data from both nuclear, mitochondrial and

endosymbiont genomes rejected one or more of the morpholog-

ical subspecies in tests of monophyly. Microsatellite data lends

little support to the monophyly of G. f. fuscipes: in the

STRUCTURE analysis the major subdivision between two

clusters split G. f. fuscipes between these two clusters. The

Hierfstat analysis showed that once the population differentiation

due to sampling sites has been taken into account, subspecific

identity does not contribute significantly to differentiation. Also,

in the neighbour joining tree there was no clear separation into

Table 2. Bayesian testing of monophyly: posterior probability of monophyly for each dataset.

Group COI + ND2 (mtDNA) COI + ND2 (mtDNA) YcfW (Wigglesworthia) Period ITS1

N individuals 29 (all haplotypes) 16 14 16 14

Nst (rates)a 6 6 6 2 1

G. f. fuscipes ,2.6361025 ,2.6361025 ,2.6361025 ,2.6361025 0.917

G. f. martinii 0.136 0.363 0.085 0.999 NDd

G. f. quanzensis ,2.6361025 0.207 0.082c 4.7461024 0.130

Ethiopia 1.000 0.998 0.999 0.994 ND

LVB + martiniib 0.995 0.995 0.864 ,2.6361025 ND

Significant test results are shown in bold font. For the mtDNA data set the 16 individuals that were sequenced at all loci were analysed together with and then
separately from the remaining specimens for which only mtDNA data were available. This allowed comparison of similar sized data sets for mitochondrial, symbiont and
nuclear DNA data sets. The discrepancy between the sample size for ITS1 and Wigglesworthia YcfW loci (n = 14) and the Period and COI+ND2 loci (n = 16) is due to the
lack of Bena Tschibangu and Buvuma genotypes from the former.
aPermitted number of nucleotide substitution rates.
bA combination of flies from Lake Victoria Basin (LVB) and G.f. martinii.
cResult is only for quanzensis samples from western DRC.
dnot done.
doi:10.1371/journal.pntd.0001266.t002
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three clades according to Machado’s subspecies. Both sequence

and microsatellite data does however support Machado’s

statement that the subspecies are allopatrically distributed; no

mixed taxonomic units or admixture between morphological

subspecies is observed in any population.

However, microsatellite and mitochondrial DNA, and to a

lesser extent Wigglesworthia DNA and single copy nuclear DNA did

reveal strong support for marked genetic discontinuities within G.

fuscipes s.l.

Taking the results from the various markers together, five clear

sub divisions were observed:

i. G. f. quanzensis populations from western DRC (supported by

mtDNA, period and microsatellites).
ii. G. f. martinii samples from western Tanzania (supported by

period, ITS1, microsatellites).
iii. G. f. fuscipes populations from central and northern Uganda

(supported by mtDNA and possibly microsatellites). One of

these populations is close to the type location collection site

of Nimule, Sudan so it would be appropriate to term this

group G.fuscipes s.s. In STRUCTURE analysis of microsat-

ellite data with K = 2 however, Ugandan flies (Bunghazi and

Moyo sites) did not fall neatly into either cluster. This fits well

Figure 4. STRUCTURE analysis of microsatellite data. Output shown is for the original (not recoded) genotypes. The proportional assignment to a
cluster is shown on the Y axis, with each narrow bar representing one individual. Sample sites are separated by black lines. Sample collection location names
are given in full. The three letter abbreviated collection names used in figures 2 and 3 are the first three letters of the full name. The subspecies collected at
each location is indicated by the suffix following the collection name. A. Proportional assignment of all genotyped individuals into k = 2 metapopulations 1
(yellow) and 2 (blue). B. Proportional assignment of all genotyped individuals into k = 7 metapopulations. C. Proportional assignment of individuals assigned
with P.0.9 to metapopulation 1 into 2 clusters. D. Proportional assignment of individuals assigned with P.0.9 to metapopulation 2 into 3 clusters.
doi:10.1371/journal.pntd.0001266.g004
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with the observations of Beadell et al [8] who proposed that

the fuscipes currently inhabiting Uganda are the descendents

of invaders that came in to the north of the Blue mountain

range and the south of the Rwenzori mountain range.

Beadell et al also observed the admixture of ‘‘northern and

southern’’ lineages in Bunghazi, and proposed that the long

separated lineages are now interbreeding in a zone of

contact. In this study, Moyo was more frequently assigned to

the cluster including Ethiopian and West DRC flies than the

cluster including Kenyan and SE Ugandan flies, which

would agree with it being dominated by ‘‘northern’’

genotypes.

iv. Lake Victoria basin G. fuscipes (supported by mtDNA and

microsatellites), which we propose to provisionally identify as

G. fuscipes type A.

v. G. f. fuscipes populations from Ethiopia (supported by

mtDNA, YcfW, period and microsatellites). We propose that

this group is provisionally identified as G. fuscipes type B.

The status of the central DRC population from Bena Tshibangu

was harder to resolve, despite being well supported by mtDNA,

and forming a sister taxa to all other fuscipes in both the ML and NJ

distance trees. The Wigglesworthia YcfW gene did not amplify from

samples in this population using the same primers used to amplify

the rest of the G. fuscipes specimens, which may suggest they

harbour a very divergent sequence with mutations in the primer

binding site. Judging by the number of locus specific non

amplifications and heterozygote deficit, the microsatellite markers

that were optimized on G. f. fuscipes populations from Uganda

worked particularly poorly on the most divergent populations: G. f.

quanzensis from central DRC, G. f. fuscipes from Ethiopia and G. f.

martinii. Now that these samples are available, PCR primers to

study these more divergent populations in more details could be

designed for future studies.

One of the major difficulties in inferring the interrelationships of

the fuscipes clades defined here was the lack of samples from the

central and northern part of the species range, which lies mostly in

DRC. The huge genetic distance between the central DRC

population (Bena Tshibangu) and the Western populations

(Kinshasa, Madimba and Kisantu) hints at large amounts of

unexplored genetic structure within the morphological quanzensis

types. Whether this marked genetic difference is associated with

differing vectorial capacity is unknown but it is worth noting that

there are marked differences in the epidemiology of HAT in the

two locations. In central DRC HAT prevalence is very high whilst

in western foci (Kinshasa and Bas Congo) HAT prevalence is very

low [61,62].

It also seems likely that the vast tracts of unstudied range of the

fuscipes and martinii morphological types harbour yet more genetic

structure. The G. f. martinii specimens used in this study were all

collected from Kigoma, which likes on the Eastern shore of Lake

Tanganyika, Tanzania. This is the eastern extreme of the range of

the martinii type, and it is plausible that the martinii found to the

West of Lake Tanganyika may be highly diverged from the

specimens examined in this study. These unsampled populations

will not change the conclusions of this study about the polyphyletic

nature of the morphologically defined G. f. fuscipes and G. f.

quanzensis. However, the dearth of samples from parts of the

species range means that it would be premature to put forward a

replacement for Machado’s morphological subspecies theory.

We observed possible introgression between Lake Victoria Basin

and Tanzanian flies: although we observed no shared mtDNA

haplotypes between Tanzanian and LVB flies, the level of

sequence divergence of as little as 2 substitutions (0.26%) between

haplotypes is much less than would be expected from the high level

of divergence observed at nuclear loci. This could indicate an

introgression event that has later been obscured by genetic drift, or

insufficient sampling of Tanzanian haplotypes. If the high

similarity in maternally inherited but not biparentally inherited

markers between the Lake Victoria Basin and martinii is due to

introgression, it remains to be determined whether more westerly

distributed martinii populations have been affected in the same

way. Future studies of G. fuscipes genetic structure focussing in

DRC, especially at the boundaries between the ranges of the

morphological subspecies proposed by Machado will be essential

to finally answer the question of fuscipes subspecies interrelation-

ships. Since the mtDNA and Wigglesworthia DNA have been

subject to at least one possible introgression event, nuclear

microsatellites would be the most appropriate markers for this

type of study, provided that sufficient numbers of unlinked

polymorphic microsatellites can be found that amplify well in the

more divergent and unstudied fuscipes populations.

Using molecular clock calculations on COI data, the most

ancient divergence in the fuscipes group occurred between central

DRC and all other G. fuscipes between 0.8 and 1.2 million years

ago. This is much more recent than the split between G. p. palpalis

and G. p. gambiensis which occurred between 4.2-2.2 Mya

according to the same divergence rate of 1.5% per million years

[63]. If behavioural divergence is correlated with genetic

divergence within the Glossina then this relatively low level of

differentiation may mean that similar control measures may be

successful across the range so far studied. However, this conclusion

must be viewed cautiously with respect to vector control, as it is

already known that flies from Kinshasa and Kenya show different

behaviours with respect to pig odour [12], and large tracts of G.

fuscipes habitat in the DRC have not yet been studied. Therefore, it

is advisable that any populations showing the same level of

divergence as that observed between West DRC and Kenyan

populations (Microsatellite null allele corrected FST = 0.26, 95%

CIs = 0.17–0.36) may need to be tested separately for the efficacy

of control measures. We would recommend that of the G. fuscipes

populations studied so far, flies from Ethiopia and northern

Uganda, Central DRC and morphological G. f. martinii (Tanzania)

may require separate testing.

Supporting Information

Figure S1 ITS1 sequence data alignment. For specimen

identities see Supplementary table 1. The first three rows are the

primers used for the subspecies ‘diagnostic.’

(DOC)

Figure S2 Agarose gel showing the provisional Glossina
fuscipes s.l. form diagnostic PCR. PCR products derived

from template genomic DNA extracted from three individual G. f.

quanzensis, three G. f. martinii and three G. f. fuscipes were separated

next to a size marker by electrophoresis in agarose and stained

with ethidium bromide. Product sizes are shown below the

products.

(TIF)

Figure S3 Bayesian and distance based neighbour-
joining phylogenies based upon sequence data from
the mtDNA COI+ND2 genes. Branch colour reflects sample

collection location blue: Lake Victoria Basin; black; G.f.martinii

from Tanzania; red: Ethiopia; pink: Mid/Northern Uganda;

yellow: west DRC, green, Bena Tschibangu. A. Bayesian 29 taxa

(full data set) used for Bayesian Phylogeny testing. Branch support

is given as posterior probability. B. Bayesian phylogeny of the 16
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taxa used for Bayesian Phylogeny testing. Branch support is given

as posterior probability. C. Neighbour joining tree, based on

Tamura and Nei (Tamura and Nei 1993. Molecular Biology and

Evolution 10, pp 512–526) corrected distances. Branch support is

shown as a percentage of 2000 bootstrap replicates.

(PDF)

Figure S4 Bayesian phylogeny based upon sequence
data from the Wigglesworthia locus, YcfW (14 taxa data
set). Used for Bayesian and Shimodaira-Hasegawa tests (Shimo-

daira and Hasegawa 1999. Molecular Biology and Evolution 16,

pp 1114–1116). Branch support is given as posterior probability.

See Table S1 for key to specimen names.

(PDF)

Figure S5 Bayesian, maximum likelihood and distance
based neighbour-joining phylogenies based upon se-
quence data from the nDNA Period gene. A. Gene tree for

2070 bp of period gene from selected taxa from genus Glossina.

Node support for maximum likelihood and distance neighbour

joining trees are given as a percentage of 1000 and 2000 bootstrap

replicates respectively. B. Bayesian phylogeny for 59 end of period

gene (880 bp alignment) used for Bayesian and Shimodaira-

Hasegawa tests (Shimodaira and Hasegawa 1999. Molecular

Biology and Evolution 16, pp 1114–1116). Branch support is given

as posterior probability. See Table S1 for key to specimen names.

(TIF)

Figure S6 Neighbour-joining tree using Cavalli-Svorza
distances for the microsatellite data set. Cavalli-Svorza

distances were calculated from ENA (Excluding Null Alleles:

Chapuis and Estoup 2007. Molecular Biology and Evolution 24,

pp 621–631) corrected genotype data. Node support values are the

proportion of 1000 bootstrap replicates over loci supporting that

node. Branch colour reflects sample collection location blue: Lake

Victoria Basin; black; G. f. martinii from Tanzania; red: Ethiopia;

pink: Mid/Northern Uganda; green: DRC.

(TIF)

Table S1 Accession numbers for all sequence data.

(DOC)

Table S2 PCR conditions for amplification of the Glossina Period

gene (A) and microsatellites (B).

(DOC)

Table S3 Results of Shimodaira-Hasegawa tests of monophyly.

(DOC)

Table S4 FIS per microsatellite locus and over all loci for each

population.

(DOC)

Table S5 Estimated null allele frequencies at each microsatellite

locus and population inbreeding coefficient F for each population.

(DOC)

Text S1 Methods for the ITS1 based species ‘‘diagnostic’’ and

period gene sequencing.

(DOC)
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