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Abstract

Background: Dengue fever (DF) is an emerging infectious disease in the tropics and subtropics. Determinants of DF
epidemiology and factors involved in severe cases—dengue haemorrhagic fever (DHF) and dengue shock syndrome
(DSS)—remain imperfectly characterized. Since 2000, serotype 1 (DENV-1) has predominated in the South Pacific. The aim of
this study was (i) to determine the origin and (ii) to study the evolutionary relationships of DENV-1 viruses that have
circulated in French Polynesia (FP) from the severe 2001 outbreak to the recent 2006 epidemic, and (iii) to analyse the viral
intra-host genetic diversity according to clinical presentation.

Methodology/Principal Findings: Sequences of 181 envelope gene and 12 complete polyproteins of DENV-1 viruses
obtained from human sera in FP during the 2001–2006 period were generated. Phylogenetic analysis showed that all DENV-
1 FP strains belonged to genotype IV–‘‘South Pacific’’ and derived from a single introduction event from South-East Asia
followed by a 6-year in situ evolution. Although the ratio of nonsynonymous/synonymous substitutions per site indicated
strong negative selection, a mutation in the envelope glycoprotein (S222T) appeared in 2002 and was subsequently fixed. It
was noted that genetic diversification was very significant during the 2002–2005 period of endemic DENV-1 circulation. For
nine DF sera and eight DHF/DSS sera, approximately 40 clones/serum of partial envelope gene were sequenced.
Importantly, analysis revealed that the intra-host genetic diversity was significantly lower in severe cases than in classical DF.

Conclusions/Significance: First, this study showed that DENV-1 epidemiology in FP was different from that described in
other South-Pacific islands, characterized by a long sustained viral circulation and the absence of new viral introduction over
a 6-year period. Second, a significant part of DENV-1 evolution was observed during the endemic period characterized by
the rapid fixation of S222T in the envelope protein that may reflect genetic drift or adaptation to the mosquito vector. Third,
for the first time, it is suggested that clinical outcome may be correlated with intra-host genetic diversity.
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Introduction

Dengue fever is the most common vector-borne viral disease

affecting humans and represents an archetypal emerging infectious

disease whose epidemiological landscape has been substantially

modified during the past century [1,2]. Each year, an estimated

100 million people contract dengue fever (DF) in the tropics and

subtropics [3] with an increasing incidence of the severe forms, i.e.

at least 500,000 cases annually of dengue haemorrhagic fever

(DHF) or dengue shock syndrome (DSS).

Dengue virus (DENV) is a member of the genus Flavivirus in the

family Flaviviridae, which includes single-stranded, positive-sense

RNA viruses with a genome of approximately 11 kb that encodes

three structural proteins (capsid (C), membrane (M), envelope (E))

and seven non structural proteins (NS1, NS2A, NS2B, NS3,

NS4A, NS4B, NS5). Four serotypes exist (denoted DENV-1 to

DENV-4), the infection by a given serotype conferring a specific

and prolonged immunity to that serotype [4]. The factors that lead

to severe infections are debated, and may include both viral factors

(e.g., differences in strain virulence [5–7]), host immune factors

such as antibody-dependent enhancement, cell-mediated immu-

nity [8–10] and antigenic mimicry [11].

French Polynesia (FP) which comprises more than one hundred

South Pacific islands, has experienced a large number of dengue

fever epidemics involving all four serotypes (DENV-1 in 1944,

1975–76, 1988–89, 2001; DENV-2 in 1971, 1996–97; DENV-3 in

1964, 1969, 1989–90; and DENV-4 in 1979, 1985) [12–16].

Approximately 260,000 inhabitants live in FP, mostly in the

Society Archipelago and particularly in Tahiti but importantly a

large number of tourists from Asia, Central and South America,
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and other Pacific islands visit FP annually [17] possibly

inadvertently introducing new DENV strains.

Since 2000, DENV-1 has been the predominant serotype in the

Pacific region [18] causing successive outbreaks (Palau in 2000;

FP, Samoa, Hawaii and Easter island in 2001; Cook and Solomon

islands in 2002; Wallis, Futuna and New Caledonia in 2002–

2003). After the severe DENV-1 outbreak which caused nearly

33,800 cases in 2001 [15], FP experienced a period of low-level

transmission from 2002 to 2005, followed by a new epidemic in

2006 [19].

In this study, we performed an analysis of the E-gene sequence

of 181 DENV-1 viruses and the nearly complete coding sequence

of 12 DENV-1 viruses collected over a 6-year period from patients

experiencing various clinical presentations in the five FP

archipelagos. In addition, we performed a comprehensive

comparative analysis of intra-host viral genetic diversity in 16

patients. This study enabled us to predict the precise geographic

origin and evolutionary relationships, during both endemic and

epidemic periods, of the DENV-1 isolates that circulated in FP

from the severe 2001 outbreak to the recent 2006 epidemic.

Original patterns of intra-host genetic diversity were also identified

in association with the clinical severity of infection.

Methods

Specimen data
We analyzed serum samples from 181 DENV-1 infected

patients from FP. Sampling was conducted in the five FP

archipelagos (Figure 1): Society (Windward and Leeward islands),

Tuamotu, Gambier, Austral and Marquesas, from January 2001

to December 2006 (Table 1). The study period included the 2001

and 2006 DENV-1 outbreaks, separated by four years of low-level

transmission (2002–2005). From a total of 181 cases, 152 patients

experienced DF, 19 DHF and ten DSS with one death. Dengue

disease severity was graded according to the World Health

Organization (WHO) classification guidelines [20]. The time of

serum collection relative to infection ranged from one to six days

in documented cases. All human sera analyzed in this study had

been preserved at 280uC at the Institut Louis Malardé (Tahiti,

FP).

Ethics statement
All samples were obtained from sera initially sampled for

diagnostic purpose, and archived at the Institut Louis Malardé

(Tahiti, FP). The use of biological samples and the collection of

information were performed with the authorization of the

‘‘Direction des affaires juridiques et des droits des patients, Centre

Hospitalier Territorial de Polynésie Française (Tahiti)’’ and in

accordance with French regulations.

Molecular characterization
Virus RNA was extracted from acute-phase sera of DENV-1

infected patients using the QIAamp Viral RNA Mini Kit (Qiagen)

according to manufacturer’s instructions.

DENV-1 sequences were retrieved from public databases and

used to design oligonucleotide primers for reverse transcription-

polymerase chain reaction (RT-PCR) amplification and sequenc-

ing of FP viruses.

Genetic characterization of the E-gene was conducted using the

Qiagen OneStep RT-PCR kit together with primers E1F-E4R,

followed by a nested PCR using primers E2F-E3R (Table S1) to

produce a 1,759 nt fragment including the complete E-gene

(1,485 nt) which was subsequently sequenced directly using

amplification primers.

For characterization of full-length coding sequences, 12

overlapping cDNA fragments were generated by RT-PCR using

12 sets of oligonucleotide primers (Table S1). Fragments C1, C3–

C8, C10 and C11 were obtained using the same one-step RT-

PCR protocol as described above. Fragments C2, C9 and C12

were synthesized using a two-step protocol: cDNA was generated

using a mixture of random hexaprimers (RT Taqman Applied

Biosystems) followed by PCR amplification using Taq Polymerase

(Invitrogen). Sequencing using amplification primers resulted in

the characterization of a 10,075 nt sequence.

For the analysis of intra-host genetic diversity, the Qiagen

OneStep RT-PCR kit was used together with primers Q1F-Q1R

(Table S1) to produce a 758 nt fragment within the E-gene, which

was subsequently purified using the QIAquick PCR Purification

Kit, ligated into the cloning vector pCR 2.1 and transformed into

TOP10 competent cells, according to the manufacturer’s protocol

(TA Cloning, Invitrogen). Approximately 40 clones per serum

were generated and sequenced using the T7 promoter primer (59-

CCCTATAGTGAGTCGTATTA-39). To estimate the error

rates of our amplification system, we carried out a control

experiment using a fully sequenced clone of the 758 nt fragment.

Serial dilutions were produced and the last dilution providing a

clear positive signal was used as a control. It was submitted to one-

step RT-PCR amplification and clones (n = 90) were characterized

under identical conditions as viral RNA extracted directly from

acute phase DENV-1 patient sera. In order to evaluate the

influence of viral load in DENV-1 genetic diversity within patients,

viral RNA was quantified by real-time RT-PCR, as described

previously [21] in 11 of the 17 analyzed sera corresponding to five

DHF/DSS cases and five DF cases (including sequential blood

samples for one patient: 47.2002 and 49.2002).

Phylogeny and sequence analysis
Sequence data from sequencing reactions were combined for

analysis and edited using the Sequencher 4.7 software (Gene

Author Summary

The molecular characterization of 181 serotype 1 Dengue
fever (DENV-1) viruses collected regularly during the 2001–
2006 period in French Polynesia (FP) from patients
experiencing various clinical presentations revealed that
the virus responsible for the severe 2001 outbreak was
introduced from South-East Asia, and evolved under an
endemic mode until a new epidemic five years later. The
dynamics of DENV-1 epidemics in FP did not follow the
model of repeated virus introductions described in other
South Pacific islands. They were characterized by a long
sustained viral circulation and the absence of new viral
introduction over a six-year period. Viral genetic variability
was not observed only during outbreaks. In contrast with
conventional thinking, a significant part of DENV-1
evolution may occur during endemic periods, and may
reflect adaptation to the mosquito vector. However, DENV-
1 evolution was globally characterized by strong purifying
selection pressures leading to genome conservation, like
other DENV serotypes and other arboviruses subject to
constraints imposed by the host-vector alternating repli-
cation of viruses. Severe cases—dengue haemorrhagic
fever (DHF) and dengue shock syndrome (DSS)—may be
linked to both viral and host factors. For the first time, we
report a significant correlation between intra-host viral
genetic variability and clinical outcome. Severe cases were
characterized by more homogeneous viral populations
with lower intra-host genetic variability.

Dengue 1 in French Polynesia 2001–2006
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Figure 1. Map of French Polynesia (FP). Sampling of DENV-1 sera was conducted in the five FP archipelagos: Society, Tuamotu, Gambier, Austral
and Marquesas.
doi:10.1371/journal.pntd.0000493.g001

Table 1. Geographical and clinical characteristics of the 181 DENV-1 sera used for E-gene sequence analysis.

Geographical origin Clinical presentationa

Society archipelago
Austral
archipelago

Tuamotu
archipelago

Marquesas
archipelago

Gambier
archipelago DF

severe infection
(DHF, DSS, death)

Windward islands
(Tahiti, Moorea)

Leeward islands (Bora
Bora, Raiatea, Tahaa,
Huahine)

2001 Tahiti 19 Bora Bora 6 1 3 - 1 28 12 DHF

n = 49 Moorea 5 Raiatea 11 9 DSS (1 death)

Tahaa 1

Huahine 2

2002 Tahiti 26 Bora Bora 1 3 1 2 - 39 3 DHF

n = 43 Moorea 7 Raiatea 2 1 DSS

Huahine 1

2003 Tahiti 14 - - - - - 15 -

n = 15 Moorea 1

2004 Tahiti 3 Raiatea 2 - - - - 9 -

n = 9 Moorea 4

2005 Tahiti 6 - - - - - 15 1 DHF

n = 16 Moorea 10

2006 Tahiti 19 Bora Bora 7 3 1 - - 46 3 DHF

n = 49 Moorea 8 Raiatea 7

Tahaa 2

Huahine 2

aDF = dengue fever , DHF = dengue hemorrhagic fever , DSS = dengue shock syndrome.
doi:10.1371/journal.pntd.0000493.t001

Dengue 1 in French Polynesia 2001–2006
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Codes Corporation). Nucleotide sequences used for phylogenetic

analyses were aligned using Clustal W [22], and then imported

into the MEGA 3.1 package [23]. Nucleotide genetic distances

were calculated using the Kimura 2 algorithm [24] and Neighbor-

Joining was used for phylogenetic reconstructions. Robustness of

phylogenetic trees was assessed using bootstrap resampling analysis

(1000 replications). Supplementary maximum likelihood phyloge-

netic analyses were performed using the Bayesian method

available in MrBayes v3.1.2 [25] with a minimum of ten million

generations and a burnin of 10%. Stationary was assessed at

effective sample size (ESS).400 using Tracer v1.4.1 (part of the

BEAST package [26]).’’

Phylogenetic analysis of E-gene sequences was conducted using

a sample of 240 DENV-1 sequences. This included 181 FP

sequences generated in this study together with three sequences of

viruses that were previously characterized during the 1988–89 and

the 2001 DENV-1 outbreaks in FP [27]: D1.French Polynesia/89,

GenBank accession number AY630408; D1.French Polynesia/01,

GenBank accession numbers AY630407 and AB111070. These FP

sequences were combined with a sample of 56 viruses representing

the global genetic variability of DENV-1 available from GenBank.

In addition, we conducted a phylogenetic analysis based on the

complete coding regions of 41 DENV-1 strains isolated worldwide

(available from GenBank) and the corresponding sequences of 12

FP strains characterized in this study.

Differences in nucleotide and protein sequences were analyzed

and compared according to the geographical origin, the sampling

period and the clinical presentation. The extent of sequence

divergence was evaluated using the pairwise distance among the

nucleotide sequences (p nt) and the amino acid sequences (p aa).

The mean ratio of nonsynonymous (dN) to synonymous (dS)

substitutions per site was estimated using the pairwise method of

Nei and Gojobori [28] as implemented in the MEGA 3.1 package.

For the analysis of intra-host genetic diversity, the sequence of

each clone was compared to all other clones for each human

serum. The percentage of variable nucleotide sites (number of

variable nt sites/number of nt sites), of nucleotide mutations

(number of nt mutation/number of nt sequenced), and of mutant

clones (number of clones with mutation/total number of clones)

was calculated, as well as the p nt, p aa, dN, dS and dN/dS

parameters. Results were then compared according to the clinical

presentation of dengue infection.

To explore the selection pressures acting on DENV-1 at

different levels of viral evolution, distinct datasets were analyzed as

follows: (i) ‘‘FP intra-host’’ dataset: this group included 17 series of

cloned sequences obtained from 16 patients infected with DENV-

1 (eight DF, eight DHF/DSS) in FP between 2001 and 2006. For

one patient (DF - Moorea, Windward islands, Society archipelago

- December 2002) two series of clones were produced from

sequential blood samples obtained at day one and day four of the

disease ; (ii) ‘‘FP inter-host’’ dataset: this group included the 181

sequences generated in FP between 2001 and 2006 (this study) ;

(iii) ‘‘genotype IV inter-host’’ dataset: this included 26 sequences

representing the genetic diversity of the ‘‘South Pacific’’ genotype;

(iv) ‘‘serotype 1 inter-host’’ dataset: this included 59 sequences that

reflect the worldwide diversity of DENV-1 isolates. For each

dataset, the same parameters (percentage of variable nucleotide

sites, p nt, dS, dN, dN/dS) were analyzed.

Statistical analysis
All statistical analyses were performed using the R software

package (R development Core Team version 2.6.0). Categorical

and binary variables were compared using a Fisher’s exact test. A

Mann-Withney test was used for continuous variables (p values

below 0.05 were considered to indicate statistical significance).

To evaluate differences between endemic and epidemic periods,

a panel of 176 samples collected between March 2001 and

December 2006 was analyzed (five samples collected in February

2001 before the beginning of the 2001 outbreak were excluded).

To assess differences in nucleotide sequences, we compared the

matrix of pairwise distances obtained for 93 sequences of DENV-1

viruses sampled during the 2002–2005 endemic period and the

matrix of pairwise distances obtained for 83 sequences of DENV-1

viruses sampled during epidemics (i.e. a first matrix obtained from

the 42 sequences related to the 2001 FP outbreak, combined with

a second matrix from the 41 sequences related to the 2006 FP

outbreak).

For the analysis of intra-host genetic variability according to the

clinical severity of dengue infection, we compared the percentage

of variable nucleotide sites, the percentage of nucleotide mutation,

the percentage of mutant clones, the average pairwise distance (p
nt) and the mean dN, dS, dN/dS ratio obtained for each group of

clones in nine DF sera (including two sequential blood samples for

one patient) versus eight DHF or DSS sera.

Results

Phylogenetic analysis
Phylogenetic analysis of 240 E-gene nucleotide sequences

(including the 181 FP sequences generated in this study) allowed

the identification of DENV-1 genotypes I to V [29] previously

defined ‘‘Asia’’, ‘‘Thailand’’, ‘‘sylvatic/Malaysia’’, ‘‘South Pacif-

ic’’, and ‘‘Americas/Africa’’ genotypes, respectively, according to

their apparent geographic origin (see Figure 2) [5].

The phylogenetic reconstruction based on E-gene nucleotide

sequences showed that all DENV-1 strains that circulated in FP

between 2001 and 2006 fall into genotype IV – ‘‘South Pacific’’

(Figures 2 and S1). This genotype also includes DENV-1 viruses

originating from other locations in the Pacific (Australia, Malaysia,

Philippines, Palau, Yap, Nauru, Samoa, Hawaii), from South-East

Asia (Thailand, Myanmar, China, Indonesia, Timor), and from

the Indian Ocean (Seychelles, Reunion) between 1974 and 2006.

According to a previous study [27], the D1.French Polynesia/89

strain isolated during the 1988–89 DENV-1 epidemic (preceding

the 2001 outbreak) belonged to a different genotype (genotype V

‘‘Americas/Africa’’) and was very close to D1.French Guyana/89.

DENV-1 strains recovered in FP during the severe 2001

epidemic shared a common ancestor with D1.Indonesia/98, a

strain isolated in 1998 in a patient from Indonesia (Figures 2 and

S1). However, they were more distantly related to D1.Palau/00, a

strain isolated in Palau (Micronesia), the first island affected by

DENV-1 in the Pacific Ocean in the 2000’s [30]. The D1.Palau/

00 strain was found to be more closely related to strains isolated

during DENV-1 epidemics in the Philippines or Samoa islands in

2001 and 2002. Altogether, these results strongly suggest that

DENV-1 that circulated in FP in 2001 originated from Indonesia

rather than from Palau. This finding is further supported by

phylogenetic analysis of 53 complete polyprotein sequences

(Figures 3 and S2). In addition, phylogenetic analysis showed that

most DENV-1 strains recovered during the 2001 outbreak in

Hawaii clustered in the same lineage as FP 2001 strains (Figures 3

and S2), suggesting a Polynesian origin of the DENV-1 epidemic

that occurred in Hawaii in 2001 [31].

A more detailed phylogenetic analysis of FP 2001–2006

sequences suggested that all FP viruses characterized in this study

derived from a common ancestor, i.e. originated from a single

introduction event in FP followed by a 6-year in situ evolution

Dengue 1 in French Polynesia 2001–2006
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Figure 2. Phylogenetic tree based on 240 DENV-1 nucleotide sequences of 1,759 bp including the E-gene (Neighbor-Joining
method, Kimura 2 algorithm). The 181 sequences generated in FP are condensed in the branch named ‘‘FP 2001–2006’’. Taxon names of GenBank
sequences correspond to D1.country/last two digits of year of isolation and GenBank accession number. In this condensed tree, branch length is not
proportional to genetic distance. Numbers on branches represent bootstrap support for each branch. Five DENV-1 genotypes were identified. The
validity of these genotypes, in particular genotype II ‘‘Thailand’’ and genotype III ‘‘sylvatic/Malaysia’’, is supported by previous phylogenetic analyses
based on maximum likelihood method [5,29].’’
doi:10.1371/journal.pntd.0000493.g002

Dengue 1 in French Polynesia 2001–2006
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Figure 3. Phylogenetic tree based on 53 DENV-1 complete genome amino acid sequences (maximum likelihood phylogenetic
analysis using Bayesian method). Taxon names of FP sequences correspond to D1_FP_sample number_year_month_geographical origin_clinical
presentation. Taxon names of GenBank sequences correspond to D1_country_last two digits of year of isolation_GenBank accession number.
Posterior probabilities (percent) are shown for values .80 only. All horizontal branch lengths are drawn to a scale of substitutions per site. The tree
was rooted using a DENV-3 strain (D3_SriLanka_00_NC001475, not shown for purposes of clarity only).
doi:10.1371/journal.pntd.0000493.g003

Dengue 1 in French Polynesia 2001–2006
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(Figures 3, S1 and S2). Notably, the observed evolutionary pattern

globally follows the chronology of viral spread rather than the

geographical origin of viruses or the clinical severity of cases.

However, a subgroup comprising seven 2006 strains (10-33-49-50-

51-52-57.2006) was found to include viruses originating from

Moorea, Raiatea, Tahaa, or the Austral archipelago, but did not

include any of the 19 strains that infected patients in Tahiti in

2006 (Figure S1).

Analysis of sequence divergence
The polyprotein sequences of 12 FP 2001–2006 DENV-1

viruses were studied. Nonsynonymous mutations were observed in

all genes, except NS4A. Amongst them, four mutations located in

the E, NS4B, and NS5 genes have been fixed during viral

evolution (Table 2).

Additional analyses were conducted on a 1,759 nt region that

encompassed the complete E-gene for 181 FP 2001–2006

sequences (Table 3). A panel of 93 samples collected during the

2002–2005 endemic years and 83 samples collected during the

2001 and the 2006 outbreaks were analyzed. Synonymous and

nonsynonymous mutations were observed both during epidemic

and endemic periods. The number of variable sites was found to

be significantly higher during endemic period than during

epidemics. The nucleotide sequence divergence (p nt) was also

higher during endemic than during epidemic periods (p,0.001).

When focusing on the first appearance of amino acid changes,

56% occurred during the 2002–2005 endemic period (most of

them during the 2002 post-epidemic year) whereas 24% and 20%

occurred during the 2001 and 2006 epidemics, respectively

(Figure 4). The number of new amino acid changes decreased

from 2002 to 2004 and slightly increased in 2005.

The most frequent mutation (nt T664A, E-gene numbering),

observed in 88 of 181 strains, corresponded to a nonsynonymous

substitution (aa S222T). Figure 4 clearly shows that this mutation

was not present in 2001; it appeared in August 2002 (endemic

period) and was rapidly fixed (9% of sequenced strains in 2002,

67% in 2003, 100% in 2004, 2005 and 2006). Another interesting

event was the occurrence of the K363R mutation in domain III of

the envelope protein in a cluster of seven 2006 strains (see above).

All strains in this subgroup were isolated in patients with DF or

Table 2. Analysis of polyprotein sequences of 12 DENV-1 viruses recovered in FP between 2001 and 2006.

DENV-1 proteins
No. of variable aa sites/No.
of aa analysed (%) aa changes (positiona) Characteristics of samples with aa changes

Serum number, clinical presentationb, geographical origin

Polyprotein 23/3358 (0.68%)

Capsid (C) 2/114 (1.75%) GRS (9) 32.2006 DF Austral, 51.2006 DHF Raiatea

VRI (26) 47.2002 DF Moorea

Membrane (M) 1/166 (0.60%) SRY (226) 42.2002 DF Tahiti

Envelope (E) 3/495 (0.61%) SRF (418) 41.2002 DF Marquesas

SRT (502) all strains since August 2002 (n = 8)c

KRR (643) 51.2006 DHF Raiatea

NS1 3/352 (0.85%) VRI (868) 47.2001 DHF Tuamotu

SRG (892) 3.2005 DF Tahiti

NRH (1068) 32.2006 DF Austral

NS2A 3/218 (1.38%) LRM (1204) 49.2002 DF Moorea

LRV (1204) 10.2003 DF Tahiti

ART (1215) 10.2004 DF Tahiti

VRM (1238) 10.2004 DF Tahiti

NS2B 1/130 (0.77%) HRY (1467) 47.2002 DF Moorea

NS3 1/619 (0.16%) ERD (2056) 3.2005 DF Tahiti

NS4A 0/150 (0.00%)

NS4B 4/249 (1.61%) ART (2262) all strains since May 2005 (n = 3)c

VRG (2661) 10.2004 DF Tahiti

ERK (2662) 10.2004 DF Tahiti

PRH (2663) 10.2004 DF Tahiti

NS5 5/899 (0.56%) TRI (2727) 10.2004 DF Tahiti

WRL (2924) 10.2004 DF Tahiti

DRE (3037) all strains since August 2002 (n = 9)c

TRI (3144) all strains since May 2005 (n = 3)c

ART (3349) 51.2006 DHF Raiatea

aThe numbering of amino acid (aa) positions was based on the numbering of the complete coding region (3392 aa) of DENV-1.
bDF = dengue fever, DHF = dengue hemorrhagic fever, DSS = dengue shock syndrome.
cFour mutations have been fixed in the E, NS4B and NS5 genes.
Of note, most aa changes occurred during the 2002–2005 endemic period.
doi:10.1371/journal.pntd.0000493.t002

Dengue 1 in French Polynesia 2001–2006
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DHF in Moorea, Raiatea, Tahaa, or the Austral archipelago,

whereas this mutation was absent in all strains that infected

patients in Tahiti in 2006.

Intra-host genetic diversity of DENV-1 and the estimation
of selection pressures

To examine the extent of genetic diversity of DENV-1 in vivo at

the intra-host level, we sequenced 662 clones corresponding to

partial E-genes of DENV-1 populations from 16 human sera at a

single time point during acute infection. For one DF patient,

clones corresponding to sequential samples (day one and day four

of the symptoms) were sequenced and compared. Approximately

40 clones from each sample were analyzed, and the results are

summarized in Table 4.

We carried out a control experiment to evaluate the sequence

variation due to in vitro polymerase errors (see Methods). Among

90 clones of the 758 nt fragment studied within the E-gene, 55

nucleotide substitutions were found, corresponding to an error

frequency of 0.10% or 2461026 changes/nt/PCR cycle. This

result was significantly lower than the mean levels of intra-host

diversity (percentages of nucleotide mutations) observed in our

samples (0.25% or 6061026 changes/nt/PCR cycle, p,0.001).

In the 17 human sera studied, a high proportion of mutant

clones was observed (mean 69%) with no significant difference in

terms of clinical presentation, endemic or epidemic period, and

time of sampling: analysis of sequential blood samples indicated

that DENV-1 viraemia comprised a genetically heterogeneous

mixture of variants that were present at the time of first

appearance of the symptoms.

Mutations occurred in 15 (2%) to 81 (11%) sites of the 758

nucleotides sequenced. The proportion of nonsynonymous

mutations was very high in each group of clones (63% on

average). Most mutations were observed only once. However,

identical mutations were sometimes observed in several clones

from the same serum and/or in different sera. For instance,

E269K was observed in 16 clones (strains 41.2002, 47.2002,

49.2002, 10.2003, and 10.2004) and E309K in 45 clones (strains

37.2001, 41.2002, 42.2002, 47.2002, 49.2002, 10.2003, 10.2004,

and 32.2006). They were present simultaneously in 14 clones

(strains 41.2002, 47.2002, 49.2002, 10.2003 and 10.2004). Of

note, the mutation S222T was recovered in all clones of the

42.2002 strain, the first DENV-1 strain that expressed the

mutation in August 2002 in Tahiti, and it was absent in all clones

tested from sera of patients who were infected previously.

Overall, clones with in-frame stop codons were identified in 9 of

the 17 sera studied, with a frequency ranging from 0% to 12%

(strain 47.2002). Over a total of 662 clones studied, 18 included

stop codons (3%) at aa positions 202, 206, 211, 233, 248, 271, 284,

323, 328, 340 (2 clones/1 virus), 370 (3 clones/2 viruses), 420, 426

and 434 (2 clones/1virus) in the E-protein (495 aa). They occurred

in DF, DHF and DSS, during outbreak and endemic periods.

A comparative analysis of DENV-1 intra-host genetic diversity

was conducted in 16 patients who had experienced infections of

different severity (eight DF versus eight DHF and DSS) in FP

between 2001 and 2006 (Table 5). The percentage of nucleotide

mutations (number of nt changes/number of nt sequenced) was

significantly lower in severe (DHF and DSS) clinical presentations

(mean 0.17%, range 0.10%–0.26%) than in classical forms (DF) of

dengue infection (mean 0.32%, range 0.15%–0.57%, p = 0.015).

Moreover, the mean sequence divergence was found to be lower in

severe cases than in DF cases (p = 0.014 for p nt, p = 0.025 for p
aa). Despite a similar proportion of mutant clones in DF and

severe cases (69%), dN and dS were significantly lower in the latter

cases (p = 0.014 and p = 0.011, respectively). When error frequen-

cies calculated in our control experiment were subtracted from the

results obtained for DF, DHF and DSS clones, differences between

severe and classical cases remained significant (data not shown).

Altogether, these findings indicate that the level of intra-host

genetic diversity is lower in severe presentations than in classical

forms of DENV-1 infection. In order to evaluate the influence of

Table 3. Genetic diversity of DENV-1 at different levels and at different times of viral evolutionary divergence based on a 1,759 nt
fragment including the E-gene.

Dataseta

No. of variable nt sites/No.
of nt analysed

No. of variable aa sites/No.
of aa analysed p ntb

% % mean range

Serotype 1 537/1759 92/586

59 sequences 30.5% 15.7% 6.5% 0–10%

Genotype IV 338/1759 47/586

26 sequences 19.2% 8.0% 4.3% 0–9.1%

FP 2001–2006 128/1759 47/586

181 sequences 7.3% 8.0% 0.4% 0–1%

FP 2001 epidemic period 34/1759 13/586

42 sequencesc 1.9% 2.2% 0.1% 0–0.3%

FP 2002–2005 endemic periodd 78/1759 27/586

93 sequences 4.4% 4.6% 0.3% 0–0.9%

FP 2006 epidemic period 28/1759 10/586

41 sequences 1.6% 1.7% 0.2% 0–0.5%

aSequences in datasets ‘‘Serotype 1’’, ‘‘Genotype IV’’ and ‘‘FP 2001–2006’’ were also used for phylogenetic reconstructions (Figures 2, 3, S1, S2).
bThe pairwise distances were calculated among the nucleotide sequences in each dataset (p nt).
cFive samples collected in February 2001 before the beginning of the 2001 outbreak were excluded from the comparative analysis of DENV-1 evolution during the
endemic and epidemic periods (a total of 176 samples collected between March 2001 and December 2006 was analyzed).

dResults were significantly different between endemic and epidemic periods (see Methods for details of statistical analysis).
doi:10.1371/journal.pntd.0000493.t003
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Figure 4. Variability of 181 protein sequences of DENV-1 during epidemic and endemic periods in FP from 2001 to 2006. Ten amino
acid changes newly occurred during the 2001 outbreak, 23 during the 2002–2005 endemic period, and eight during the 2006 outbreak. S222T
appeared in August 2002 and was subsequently fixed by viral evolution.
doi:10.1371/journal.pntd.0000493.g004

Dengue 1 in French Polynesia 2001–2006

www.plosntds.org 9 August 2009 | Volume 3 | Issue 8 | e493



Table 4. Intra-host genetic diversity analysis of DENV-1 populations from 17 sera of patients infected in FP between 2001 and
2006.

DENV-1 samples characteristics serum
number clinical presentationa, sex/
age patient, geographical origin,
sample date (month/year)

No. of
clones

% of
mutant
clones

% of variable
nt sites

% of nt
mutations p nt p aa dN dS dN/dS

serum 2.2001 41 61% 6% 0.17% 0.3% 0.7% 0.003 0.005 0.600

DF. F/7 years

Bora Bora 02/2001

serum 7.2001 53 77% 8% 0.18% 0.4% 0.7% 0.003 0.005 0.600

DHF. M/30 years

Tahiti 03/2001

serum 14.2001 39 56% 4% 0.10% 0.2% 0.4% 0.002 0.002 1.000

DHF. F/55 years

Raiatea 04/2001

serum 26.2001 50 62% 8% 0.16% 0.3% 0.7% 0.003 0.003 1.000

DSS. F/12 years

Tahiti 06/2001

serum 35.2001 48 77% 8% 0.20% 0.4% 0.8% 0.004 0.005 0.800

DSS. M/6 years

Tahiti 08/2001

serum 37.2001 39 49% 4% 0.11% 0.2% 0.3% 0.001 0.005 0.200

DSS. M/6 years

Tahiti 08/2001

serum 47.2001 24 88% 2% 0.19% 0.3% 0.5% 0.002 0.008 0.250

DHF. F/11 years

Tuamotu 10/2001

serum 41.2002 31 48% 9% 0.33% 0.7% 1.4% 0.006 0.008 0.750

DF. F/13 years

Marquesas 08/2002

serum 42.2002 36 75% 10% 0.37% 0.8% 1.5% 0.007 0.010 0.700

DF. F/13 years

Tahiti 08/2002

serum 47.2002 34 82% 8% 0.34% 0.7% 1.2% 0.005 0.011 0.455

DF. M/6 years

Moorea 12/2002 day 1b

serum 49.2002 38 76% 9% 0.29% 0.6% 1.1% 0.005 0.009 0.556

DF. M/6 years

Moorea 12/2002 day 4b

serum 10.2003 35 77% 11% 0.57% 1.1% 2.6% 0.011 0.009 1.222

DF. F/43 years

Tahiti 06/2003

serum 10.2004 34 88% 10% 0.44% 0.8% 1.5% 0.007 0.012 0.583

DF. M/51 years

Tahiti 09/2004

serum 3.2005 44 59% 4% 0.15% 0.3% 0.4% 0.002 0.005 0.400

DF. M/38 years

Tahiti 05/2005

serum 14.2006 49 92% 8% 0.26% 0.4% 0.8% 0.003 0.007 0.429

DHF. F/43 years

Tahiti 03/2006

serum 32.2006 28 54% 4% 0.19% 0.4% 0.7% 0.003 0.006 0.500

DF. M/14 years
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Table 5. Analysis of genetic variability in DENV-1 at different levels of evolutionary divergence based on a 758 nt fragment in the
E-gene.

Dataset
No. of variable nt
sites/No. of nt analysed %

No. of variable
aa sites/No. of
aa analysed % p nt dN dS dN/dS

INTER-HOSTa

Serotype 1 245/758 25/252

59 sequences 32.3% 9.9% 6.0% 0.010 0.223 0.045

Genotype IV 135/758 25/252

26 sequences 17.8% 9.9% 3.8% 0.008 0.138 0.058

FP 2001–2006 47/758 17/252

181 sequences 6.2% 6.7% 0.3% 0.002 0.006 0.333

INTRA-HOST

FP 2001–2006 53/758 34/252

662 clones (17 sera) sequencesb 7.0% 13.5% 0.5% 0.004 0.007 0.620

aSequences in datasets ‘‘Serotype 1’’, ‘‘Genotype IV’’ and ‘‘FP 2001–2006’’ were also used for phylogenetic reconstructions (Figures 2, 3, S1, S2).
bThe average of the results obtained for each individual (Table 5) was used for intra-host data analysis.
The average pairwise distance was calculated among the nucleotide sequences in each dataset (p nt).
The mean ratio of synonymous (dS) and non synonymous mutations per site (dN) were estimated using the pairwise method of Nei and Gojobori.
ABBREVIATIONS
aa: amino acid
DENV: dengue virus
DF: dengue fever
DHF: dengue haemorrhagic fever
DSS: dengue shock syndrome
dN: ratio of nonsynonymous substitutions per site
dS: ratio of synonymous substitutions per site
FP: French Polynesia
nt:nucleotide
RT-PCR: reverse transcription-polymerase chain reaction
p nt: nucleotide sequence divergence (pairwise distance)
doi:10.1371/journal.pntd.0000493.t005doi:10.1371/journal.pntd.0000493.t005

DENV-1 samples characteristics serum
number clinical presentationa, sex/
age patient, geographical origin,
sample date (month/year)

No. of
clones

% of
mutant
clones

% of variable
nt sites

% of nt
mutations p nt p aa dN dS dN/dS

Austral 08/2006

serum 51.2006 39 54% 5% 0.15% 0.3% 0.6% 0.002 0.004 0.500

DHF. M/14 years

Raiatea 11/2006

total 17 sera 662

average 39 69% 7% 0.25% 0.5% 0.9% 0.004 0.007 0.620

9 DF sera 321

average 36 69% 8% 0.32%c 0.6%c 1.2%c 0.005c 0.008c 0.641

8 DHF/DSS sera 341

average 43 69% 6% 0.17%c 0.3%c 0.6%c 0.003c 0.005c 0.597

Each clone sequence was compared to other clone sequences for each serum sample.
The percentage of variable nucleotide (nt) sites was the number of variable nt sites 6100 divided by the number of nt analysed (758 nt).
The percentage of nucleotide (nt) mutations was the number of nt mutations 6100 divided by the number of nt sequenced for each serum sample.
The average pairwise distance was calculated among the nucleotide (p nt) and amino acid (p aa) sequences in each serum.
The mean ratio of non-synonymous (dN) and synonymous (dS) substitutions per site were estimated using the pairwise method of Nei and Gojobori.
aDF = dengue fever, DHF = dengue haemorraghic fever, DSS = dengue shock syndrome.
bStrains 47.2002 and 49.2002 corresponded to sequential samples from the same patient (day 1 and day 4 of the symptoms).
Overall, the time of serum collection relative to infection that do not appear to be a critical parameter for the study of DENV intra-host genetic diversity [42,43] ranged
from one to six days in documented cases.
cDifferences between DF and DHF sera were statistically significant (p,0.05, see Methods for details of statistical analysis).
doi:10.1371/journal.pntd.0000493.t004

Table 4. cont.

Dengue 1 in French Polynesia 2001–2006

www.plosntds.org 11 August 2009 | Volume 3 | Issue 8 | e493



viral load in DENV-1 genetic diversity within patients, viral RNA

was quantified in five DHF/DSS sera and five DF sera (including

sequential serum samples for one patient: 47.2002 and 49.2002).

Ct (cycle threshold) levels indicated comparable viral loads in both

DF and DHF/DSS serum samples (mean Ct = 29.5 and 28.3,

respectively). No correlation was found between the level of intra-

host genetic diversity and viral load (range 0.12*105–4.5*105,

mean 1.10*105 RNA copies/mL): linear regression analysis showed

that the percentage of nt mutations and p nt were not correlated

with viral load (p = 0.51 and 0.61, respectively). Moreover, in these

serum samples, viral loads were not significantly different in severe

cases than in DF cases (p = 0.31, Mann-Withney test).

Finally, the mode of evolution of DENV-1 in FP was

investigated by analysing the mean ratio of nonsynonymous to

synonymous substitutions per site (dN/dS) in our different dataset:

dN/dS was 0.100 for complete genome sequences, and 0.091 for E

gene sequences, indicating (dN/dS,1) a strong negative (purifying)

selection pressure [32]. This was confirmed by the study of the

genetic variability at different levels of evolutionary divergence, i.e.

in the four datasets: ‘‘FP intra-host’’, ‘‘FP inter-host’’, ‘‘genotype

IV inter-host’’, and ‘‘serotype 1 inter-host’’ (Table 5). Within the

group of FP viruses, the genetic variability of DENV-1 was higher

within hosts than between hosts, as indicated by p nt, and dN/dS

values which were higher in the intra-host dataset than in the

inter-host dataset. At the inter-host level, the genetic divergence

increased with the scale of the population studied (p nt

‘‘FP’’,‘‘genotype IV’’,‘‘serotype 1’’) whereas the proportion of

nonsynonymous mutations decreased (dN/dS ‘‘FP’’.‘‘genotype

IV’’.‘‘serotype 1’’), reflecting strong purifying selection pressures.

Discussion

In this study, DENV-1 evolution was analyzed during two

recent outbreaks in FP separated by a four-year period of low-level

transmission. Original dynamics of epidemics were revealed in the

FP ecosystem. Our results suggest that a significant part of DENV-

1 evolution occurred during the 2002–2005 endemic years.

Despite evidence for strong negative selection, we report mutations

that could reflect viral adaptation, particularly S222T that has

been fixed by viral evolution in the envelope glycoprotein.

Importantly, we report for the first time a significant correlation

between levels of intra-host DENV genetic variability and clinical

outcome.

Historically, FP has experienced successive dengue epidemics

that involved the four DENV serotypes [12–16,19]. In contrast

with most endemic countries and other islands such as those in the

Caribbean, where different DENV serotypes circulate, prolonged

co-circulation of several serotypes has never been detected in FP.

Most Polynesian DENV epidemics were due to the introduction of

a new serotype originating either from the Americas, South-East

Asia or the Pacific region. Since 2000, serotype 1 has

predominated in the South Pacific region and a significant

increase in the number of DENV-1 cases has been observed since

spring 2006 in several Pacific islands, particularly in FP and in the

neighbouring Cook islands [18,19,33,34]. Classically, dengue fever

is not believed to be endemic in the Pacific region and outbreaks

are usually linked with the importation of a new virus: it has been

shown that multiple and repeated introductions of DENV-1

occurred in the Pacific between 2000 and 2003 from a variety of

locations in Asia [35].

Accordingly, our first objective was to identify the origin of the

DENV-1 strain responsible for the 2001 outbreak in FP. In

accordance with a preliminary study [27], phylogenetic analysis

based on a large number of either complete polyprotein or E-gene

sequences indicates that the most probable source of this epidemic

was an Asian strain, as suggested by the close genetic relationship

with a strain isolated in Indonesia in 1998. This finding is in

contradiction with the hypothesis that the first DENV-1 outbreak

observed in the Pacific Ocean in 2000 in Palau (Micronesia)

dispersed secondarily to Polynesia and Melanesia [30,33,34] and

emphasizes the relation between DENV-1 viruses in Asia and

those responsible for recent outbreaks in the Pacific [35]. Figure 2

shows that the strain implicated in the Palau outbreak is only

distantly related to FP strains and cannot be implicated as the

origin of DENV-1 circulation in FP.

Our second objective was to determine whether or not the 2001

and 2006 FP outbreaks followed the model of iterative

reintroductions evoked above. Our results indicate that the

Polynesian dynamic of DENV-1 is different from that previously

described in other Pacific islands such as New Caledonia [35].

Genetic analysis showed that no new introduction of DENV-1

strains occurred in FP after 2001 and that the virus responsible for

the 2001 outbreak evolved in situ during the following six years. It

circulated under a low level endemic mode until its re-emergence

as an epidemic virus in 2006. This phenomenon of re-emergence

was previously observed in FP in 1964–1969 for DENV-3

(genotype IV), and in 1979–1985 for DENV-4 (genotype II) [13]

and thus may constitute an original epidemiological pattern

characteristic for Dengue virus evolutionary dynamics in FP. The

specific case of DENV-1 circulation between 2001 and 2006

constitutes a unique model of Dengue virus long term evolution in

a given ecosystem which we further investigated through the

detailed genetic characterization of 181 infected sera sampled

during both endemic and epidemic periods.

The complete polyprotein characterization (obtained directly

from serum samples) of 12 DENV-1 viruses collected during the

2001–2006 period gave us the opportunity to analyze viral genetic

evolution over this 6-year period. Twenty four nonsynonymous

mutations were recorded, distributed all along the polyprotein

with one third of mutations occurring in the NS2A and NS4B

genes and the lowest rate of variation observed in the NS2B-NS3-

NS4A region. Notably, the majority of nonsynonymous mutations

appeared during the 2002–2005 endemic years, some of these

mutations (two that appeared in 2002 and two that appeared in

2005) being conserved in all subsequent sequences (Table 2).

The observation that viral evolution also occurred during

periods of endemic transmission was expected, but the extent of

the phenomenon deserved further investigation. Accordingly, a

detailed analysis of complete E-gene sequences was performed,

which allowed to include a much higher number of sequences (93

FP sequences related to the 2002–2005 endemic period, and 83 FP

sequences related to the 2001 and 2006 outbreaks). As previously

noted in the case of complete polyprotein analysis, synonymous

and nonsynonymous mutations were detected not only during the

2001 and 2006 outbreaks but also during the 2002–2005 endemic

years. Statistical analysis showed that the number of variable sites

(nt and aa) and the percentage of sequence divergence (p nt) were

not higher during outbreaks than during endemic periods (Table 3)

-and even suggested the opposite. It may appear to be in conflict

with conventional thinking since the total virus replicative turnover

would be expected to be higher during epidemics, and thus it

would be expected that viral genetic variability occurred mainly

during the 2001 and 2006 outbreaks. However, the distribution of

viral genetic variability between endemic and epidemic periods

was considered carefully, since the delineation between endemic

and epidemic periods may appear simplistic. For example,

although the 2001 outbreak was considered to end in November,

the number of confirmed DENV-1 cases reported monthly by the
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Institut Louis Malardé was still high until May 2002 (data not

shown) and this transitional post-epidemic period may have

specific characteristics, different from the actual endemic period.

Altogether, it stands out from our analyses that a significant part

of Dengue virus evolution occurred during periods of endemic

transmission and not only during outbreaks. Moreover, the

majority of amino acid changes were observed during the early

stages of the endemic period (Figure 4), suggesting adaptation to

new specific environmental conditions. This is notably the case for

S222T, the most frequent substitution identified in 88 strains,

which appeared in August 2002 and was subsequently fixed by

viral evolution. This mutation concerns the envelope protein, a

major component at the virion surface implicated in the

interaction with host cells, membrane fusion and induction of a

protective immune response. Residue 222 is localized in domain II

which is implicated in the dimerization of the envelope protein at

acidic pH preceding membrane fusion and viral entry into the host

cell [36]. This mutation is not described in the literature and it is

not present in DENV-1 sequences available on GenBank. The

absence of relationship with clinical severity of human infection

suggests that S222T is not a virulence factor. This mutation was

observed in viruses collected in FP at different time points during

the 2001–2006 period with an increasing frequency (9% of

sequenced strains in 2002, 67% in 2003, 100% in 2004, 2005 and

2006). This mutation in the envelope glycoprotein of FP DENV-1

viruses may be the result of genetic drift but it may be explained by

positive selection also. S222T appears to have been fixed rapidly

(10 months) which is not suggestive of a simple genetic drift. Its

appearance during a period of endemic transmission (August

2002) and its rapid stabilization through time suggest that S222T

would confer a selective advantage to the virus and may possibly

be associated with adaptation to the mosquito vector.

Another event suggesting possible virus adaptation to the vector

is the mutation K363R. This mutation was present in seven strains

recovered in FP from March to December 2006. Residue 363 is

localized within the ‘‘immunoglobulin-like’’ domain III of the

envelope protein which contains regions thought to be important

for receptor binding [36]. This residue belongs to a B-cell epitope

(293–402) identified in DENV-1 [37]. As DENV infection confers

a prolonged type-specific protective immunity, the hypothesis of

an immune selection of this variant in humans is unlikely [4,5].

Rather, K363R may be the consequence of adaptation to the

mosquito vector. Importantly, this mutation occurred only in

patients originating from Moorea, Raiatea, Tahaa or the Austral

archipelago and was not observed in Tahiti where the majority of

cases occurred. Since Aedes (Stegomyia) polynesiensis, an endemic

mosquito specie widespread in most of islands from the Polynesian

Triangle connecting Hawaii and Easter Island to New Zealand, is

thought to be an important vector of Dengue virus in rural areas

[38,39], whereas Aedes (Stegomyia) aegypti is a major vector in urban

and sub-urban zones, the K363R mutation may possibly reflect

viral adaptation to Aedes polynesiensis in FP islands less urbanized

than Tahiti.

Although we provide tentative evidence for the existence of a

few adaptive mutations during the 2001–2006 period, DENV-1

evolution over this period is globally characterized by strong

negative selection, in accordance with previous studies on DENV-

2 and DENV-3 evolution [40,41]. The low dN/dS values (0.100 for

polyprotein sequences and 0.091 for E-gene sequences) denote

purifying selection and may reflect constraints imposed on Dengue

virus evolution by the alternating replication of viruses in humans

and mosquitoes. Further striking evidence for negative selection is

provided by the analysis of genetic variability of DENV-1 at

different levels of evolutionary divergence (Table 5): viral diffusion

is associated with increasing purifying constraints as illustrated by

the decrease in the dN/dS ratio measured in intra-host viral

populations (dN/dS ‘‘FP intra-host’’ = 0.620), in a population of

epidemiologically related viruses (dN/dS ‘‘FP inter-host’’ = 0.333),

in viruses belonging to the same genotype (dN/dS ‘‘genotype

IV’’ = 0.058) or to the same serotype (dN/dS ‘‘serotype 1’’ = 0.045).

These results indicate that only a small proportion of nonsynon-

ymous mutations observed at a given level of evolution are likely to

persist at a higher time- and space-scale.

Dengue virus, like other RNA viruses, exhibits extensive intra-

host genetic diversity [40–45]. We analyzed 662 clones from 16

patients infected with DENV-1 in the study period and observed

that the structure of intra-host genetic diversity represents an

extreme situation in which purifying selective constraints are lower

than at higher levels of evolutionary divergence. As noted in a

previous study on DENV-2 and DENV-3 [40,41,43,44], most

nonsynonymous mutations occurred in single cases (not identified

in more distantly related DENV-1) and genome-defective viruses

(with stop codons) were identified (3% of clones) in human sera.

Similar results were previously reported in a study of 70 clones

obtained from four mosquitoes and 220 clones obtained from 13

patients infected with DENV-1 in Myanmar [42]. Defective

viruses may interfere with viral evolution but long term

transmission of a stop-codon lineage has been described within

humans and mosquitoes infected with DENV-1 [42]: comple-

mentation mechanisms may occur in host cells coinfected with

both functional viruses and defective viruses.

The large number of samples studied here allowed for the first

time a comparative analysis of intra-host DENV-1 diversity

according to the clinical presentation of the disease. We found that

the extent of sequence diversity varied among infected patients.

The composition of DENV-1 populations was different in classical

(DF) and in severe infections (DHF and DSS). Although intra-host

sequence variability was probably overestimated due to in vitro

artefacts [46], genetic divergence was significantly lower in severe

cases than in classical cases. In severe cases, dN and dS values were

significantly lower than in classical presentations. In other words,

DENV-1 populations were more genetically homogeneous in

DHF or DSS cases than in DF cases. In our study, no correlation

was found between the level of intra-host genetic diversity and

viral load. Moreover, viral loads were not significantly different

between the two groups, in a sample of five severe cases and five

DF cases. It is therefore not likely that the lower intra-host genetic

diversity observed in severe cases would have been influenced by

larger amounts of template DNA in amplification reactions

(associated with a more rapid saturation of PCR reaction and

thus lower error rates).

The mechanisms that lead to different structures of DENV-1

intra-host genetic diversity according to the clinical severity

remain undetermined. We do not know if the differences observed

are the cause or the consequence of disease severity. Our findings

suggest that further analysis of viral variation in both mosquitoes

and human samples may in the future shed new light on dengue

infection, pathogenesis and the existence of predictive factors of

clinical outcome.

Supporting Information

Figure S1 Details of the phylogenetic tree based on a 1,759 bp

region including the E-gene (Figure 2) showing the in situ

molecular evolution of DENV-1 in FP from 2001 to 2006. Taxon

names of FP sequences correspond to the year of sampling

followed by the serum number. In this condensed tree, branch
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length is not proportional to genetic distance. Numbers on

branches represent bootstrap support for each branch.

Found at: doi:10.1371/journal.pntd.0000493.s001 (0.28 MB TIF)

Figure S2 Phylogenetic tree based on 53 nucleotide sequences of

complete coding region of DENV-1 (Neighbor-Joining method,

Kimura 2 algorithm). Taxon names of FP sequences correspond to

D1.FP/sample number.year (month, geographical origin, clinical

presentation). Taxon names of GenBank sequences correspond to

D1.country/last two digits of year of isolation and GenBank

accession number. In this condensed tree, branch length is not

proportional to genetic distance. Numbers on branches represent

bootstrap support for each branch.

Found at: doi:10.1371/journal.pntd.0000493.s002 (0.49 MB TIF)

Table S1 Primers used for DENV-1 amplification and sequenc-

ing.

Found at: doi:10.1371/journal.pntd.0000493.s003 (0.14 MB

DOC)
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