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SUPPLEMENTARY INFORMATION - ANALYSIS ON Rt 

  

Distribution of the diagnosis interval 

The time varying diagnosis interval was obtained by numerically simulating a compartmental 

HIV transmission model previously fitted to HIV and AIDS diagnosis data on MSM in the 

Netherlands, where it is assumed no transmission occurs when individuals are on treatment [1]. 

We considered a simplified version of this model, where we neglect treatment failure since this 

contributes little to the diagnosis interval. Once infected, individuals go through the primary 

infection stage, followed by five stages of infection. At any of those 5 stages, individuals can be 

diagnosed, after which they progress through some of 5 mirroring diagnosed stages, in any of 

which they can initiate treatment. Transition rates as well as relative infectivity of the different 

stages were taken from Bezemer et al. [2]. For each year between 1975 and 2014, we simulated 

the trajectory of 100 cases infected that year, as well as the trajectory of their secondary cases. 

For all pairs of index-secondary cases, we recorded the time between diagnosis of the index case 

and diagnosis of the secondary case, and stratified these according to the date of diagnosis of the 

index case, leading to a numerical approximation of the diagnosis interval distribution (.)tw , 

with a lower bound -S = -20 years (see S1 Fig).  

 

Note that our extension of the Wallinga and Teunis method, which allows for negative diagnoses 

intervals, may allow “cycles”, whereby A infects B and B infects A. However, the aim of the 

Wallinga and Teunis method, and of the extension we propose here, is not to reconstruct who 

infected whom per se, but rather to assess how many secondary cases, on average, a case 

infected or diagnosed at a given time will produce. In that sense, although pij is described as the 

relative probability that i infects j, it should in fact be regarded as the relative probability that any 

case diagnosed the same year as i infects j (or any case infected the same year as j). This view 

highlights the fact that this method is only applicable to large networks. In that case, the cycle 

issue A infects B infects A translates into “someone diagnosed the same year as A infects B and 

someone diagnosed same year as B infects A”, which is not an issue.  

Another important feature of our analysis is that we have assumed homogeneity across clusters 

both in terms of the proportion of individuals in each cluster for which a sequence was taken 
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(which was assumed to vary over time but not across clusters), and in terms of timing of HIV 

transmission (the diagnosis interval derived from Bezemer et al. [2] was assumed to vary over 

time but to be homogeneous across clusters). 

 

Derivation of qi and its impact on the estimates of the reproduction numbers 

We defined iq  as the likelihood that case i  has been infected by a case observed up to year T . 

This is equal to 
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, where R  is the effective reproduction number and I 

is the incidence of diagnoses. In this formula,     ( )t iR wt tI t t  is the average number of 

secondary cases diagnosed at time ti who were generated by the  I t  individuals diagnosed at 

time t . The numerator is therefore the average number of secondary cases diagnosed at time ti 

who are generated by cases diagnosed up to time T , whereas the denominator is the overall 

average number of secondary cases diagnosed at time ti. 

We approximated this quantity by: 0
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, which assumes that the product RI  is 

constant over time. Here, we assess how qi is affected by this assumption. We considered 4 

scenarios in which this product is exponentially increasing, with doubling times 1, 5, 10 and 20 

years, corresponding to growth rates of 0.69, 0.14, 0.069 and 0.035 per year. We compared these 

to a scenario with constant RI  (growth rate 0) and a scenario with exponentially decaying RI , 

with a growth rate of -0.035 per year. The corresponding qi’s are shown in S2 Fig. 

  

In scenarios where incidence is increasing over time, our derivation of qi under the constant 

incidence assumption is an underestimate of the true qi in recent years. This leads us to 

underestimate *

ij ij ip p q   (the relative probability that case i  has been infected by case j ) 

when individual i is infected in recent years. S3 Fig shows how this affects our yearly estimates 

of R  for the four largest transmission clusters. Interestingly, although the estimated values of R  

are sensitive to our assumptions, the temporal trends in R  are very robust. 
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Analyses of a truncated dataset to assess the robustness of estimates of Rt  

To further assess the robustness of our estimates of the reproduction number, we repeated our 

estimation procedure, but truncating the data after 2000. We then compared the estimates of the 

reproduction number obtained using the truncated and the full dataset (S4 Fig). Note that the 

estimates of Rt in 2000 based on the full dataset appear to be closer to the threshold value 1 than 

those based on the truncated dataset. Out of the 15 clusters which could be compared, four 

(panels A-D) had estimates based on both truncated and non-truncated datasets below 1, five 

(panels E-I) had both estimates above 1, and 6 (panels J-O) had estimates above 1 based on the 

truncated dataset and below 1 based on the full dataset. However, for these 6 clusters, both 

credible intervals included the threshold value 1. Importantly, for these 6 clusters, the overall 

trend in transmissibility around 2000 were not dramatically different based on the truncated and 

the full dataset. 

 

Comparison of Rt over different time periods 

We performed a paired t-test to compare Rt  in  three different time periods of our estimation: 

period 1, <1996;  period 2, 1996-2001; and  period 3,  >2001).  S5 Fig shows the comparison of 

Rt in different time periods. There was a significant but small decrease in the mean Rt between 

periods 1 and 2 (mean decrease of 0.090 p<0.005), and no significant change between time 

periods 2 and 3. 

 

Estimate the rate of increase in the mean estimated Rt 

We investigated if recently introduced clusters have reproductive numbers that differ from the 

older clusters when they were new, to see if Rt might be higher early after founding of a network. 

We reran our estimation procedure to derive estimates of Rt over the first 5 years for each cluster. 

Results are shown in S6 Fig. We used a linear regression to estimate the rate of increase in the 

mean estimated Rt as a function of the year the cluster appeared (defined as the year of the 

earliest diagnosis for this cluster). Rt increased by 0.018 per year (adjusted R
2
=0.66). These 

results confirm our main findings that transmissibility in recent clusters is greater than it was in 

older clusters. 
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SUPPLEMENTARY INFORMATION - PHYLOGENETIC ANALYSIS  

 

Non-MSM majority transmission clusters  

From the phylogenetic tree of 8,320 HIV-1 subtype B polymerase sequences in total (S7 Fig), 

106 large transmission clusters were identified that included sequences from ≥10 patients from 

the ATHENA cohort. Fifteen of the 106 clusters were not MSM majority clusters. Six of these 

15 large clusters were dominated by sequences from patients living or born on the (former) 

Dutch Antilles. One cluster was a mixed Latin Caribbean cluster including also 5 ‘Los Alamos’ 

sequences from the UK, and another one was the largest cluster in this study, containing 66% of 

all 207 sequences from drug-users in our study. Four clusters together included sequences from 

69 heterosexually infected individuals (and 6 MSM) of Surinam origin, of which one also 

included 3 sequences from patients sampled in Suriname. Together, these four clusters included 

43% of the 159 sequences from heterosexually infected individuals born in Suriname. Another 

cluster was found to include sequences from 6 persons who injected drugs (PWID) and 1 MSM, 

all of Polish origin, and also included Los Alamos sequences, 9 from Czech republic and 14 from 

Poland. This cluster included 30% of sequences from the Polish born people in this study, and all 

PWID born in Poland. Two other clusters had a mix of sequences from MSM and heterosexually 

infected individuals. Of the sequences from heterosexually infected patients in the Netherlands, 

19% (194) were in 64 large MSM-dominated clusters, of these patients 129 (66%) were men, of 

whom 77% had a Dutch origin.   

 

PWID - Largest cluster  

Only eight (4%) sequences from PWID were in 5 large MSM majority clusters. Overall, 66% 

(136) of all sequences from PWID in this study were part of the largest cluster found in this 

study. This cluster consisted of in total 327 ATHENA sequences: 42% (136) sequences from 

PWID, 37% (122) from heterosexually infected individuals, and only 7% (24) from MSM. The 

earliest diagnosis in the cluster was a PWID in 1982. The latest recent infection through drug use 

was in 1999. The timed phylogenetic tree showed no evidence of transmission amongst PWID 

since 2000, i.e. the latest time point of the common ancestor of any two sequences from PWID. 

In 2010, the last year of this study, 4 heterosexually infected individuals, 2 PWID and one MSM 

were diagnosed in this cluster. The cluster also included 200 sequences from the Los Alamos 
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comparison, of whom 91 from Italy and 38 from the United states. S1 table shows the results of 

Bayesian Tip-association Significance testing  (BaTS analysis) [2]. Significant clustering was 

found within PWID and heterosexual risk groups, but not amongst the MSM in this cluster. The 

sequences from the United States significantly clustered together at the root of the tree, whilst the 

Italian sequences were dispersed throughout the tree.  

 

Transmission clusters circulating on Curaçao  

Six clusters included  ≥5 sequences from patients registered on Curaçao, a Caribbean island 

within the kingdom of the Netherlands. All 6 clusters included sequences from patients in the 

Netherlands and consisted of ≥10 sequences. The 6 clusters were confirmed by visual inspection 

of the whole phylogenetic tree and in a dated phylogenetic tree (S9 Fig). In total, these six 

clusters included 33% (73) of sequences from 219 patients on the island. 35% (18) of MSM and 

33% (48) of heterosexually infected patients with a sequence in this study. Diversification by 

risk group is visible. In total, the 6 clusters included sequences from 71 patients in the 

Netherlands, of whom 48% were born in the former Dutch Antilles. Diversification can be seen 

into MSM clusters within the Netherlands (two majority MSM). Besides these 6 large clusters, 

51 sequences from patients on Curaçao were identified as singletons (17%), 58 sequences were 

in 39 smaller clusters, and 37 sequences (14%) were in 23 clusters in the Netherlands. In total, 

this adds up to 119 (54%) clusters on the island, of which 5% (6) identified as on-going 

established transmission clusters. 
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SUPPLEMENTARY INFORMATION - ANALYSIS OF CLUSTER SIZES 

 

We wanted to assess whether the observed proportion of singletons, or of small clusters (size 2-

9) was consistent with branching process theory. We considered the total “cluster” produced by 

each imported case. The distribution of the total cluster size can be analytically derived for 

certain offspring distributions, i.e. the distribution of number of secondary cases generated by 

each case. Farrington et al. (Biostatistics 2003) show that the distribution of the total cluster size, 

𝑋, for an offspring distribution with mean 𝑅 is (after simplification):  

𝑃(𝑋 = 𝑥|𝑅, 𝑃𝑜𝑖𝑠) =
𝑥𝑥−2𝑅𝑥−1𝑒−𝑅𝑥

Γ(𝑥)
  if the offspring distribution is Poisson, and 

𝑃(𝑋 = 𝑥|𝑅, 𝐺𝑒𝑜𝑚) =
Γ(2𝑥−1)

Γ(𝑥)Γ(𝑥+1)
 

𝑅𝑥−1

(1+𝑅)2𝑥−1 if the offspring distribution is Geometric. 

This allows in particular evaluating the expected true proportion of singletons, or of small 

clusters (size 2-9) amongst all clusters, by computing 𝑃(𝑋 = 1|𝑅, 𝑀𝑜𝑑𝑒𝑙) and ∑ 𝑃(𝑋 =9
𝑥=2

𝑥|𝑅, 𝑀𝑜𝑑𝑒𝑙) respectively.  

Let’s now assume that only a proportion 𝜋 of cases are observed, and denote 𝑌 the observed 

cluster size. The distribution of Y given X is given by a binomial distribution:  

𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝜋) = (
𝑥
𝑦) 𝜋𝑦(1 − 𝜋)𝑥−𝑦 

Therefore, the distribution of Y, given an offspring distribution 𝑀𝑜𝑑𝑒𝑙 with mean 𝑅 can be 

written as: 𝑃(𝑌 = 𝑦|𝑅, 𝜋, 𝑀𝑜𝑑𝑒𝑙) = ∑ 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅, 𝑀𝑜𝑑𝑒𝑙) 

and the expected observed proportion of singletons can be calculated as:  

𝑃(𝑌 = 1|𝑌 ≥ 1, 𝑅, 𝜋, 𝑀𝑜𝑑𝑒𝑙) =
𝑃(𝑌 = 1|𝑅, 𝜋, 𝑀𝑜𝑑𝑒𝑙)

𝑃(𝑌 ≥ 1|𝑅, 𝜋, 𝑀𝑜𝑑𝑒𝑙)
=

𝑃(𝑌 = 1|𝑅, 𝜋, 𝑀𝑜𝑑𝑒𝑙)

1 − 𝑃(𝑌 = 0|𝑅, 𝜋, 𝑀𝑜𝑑𝑒𝑙)

=
∑ 𝑃(𝑌 = 1|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅, 𝑀𝑜𝑑𝑒𝑙)

1 − ∑ 𝑃(𝑌 = 0|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅, 𝑀𝑜𝑑𝑒𝑙)
 

and the proportion of small clusters can be derived in a similar manner.  
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S10 Fig shows how the expected proportion of observed singletons or small clusters varies 

according to the proportion of cases sampled, 𝜋, and the mean offspring 𝑅, under the Poisson 

and the Geometric offspring distributions. Interestingly, under the Geometric model, when R = 1, 

the expected proportion of observed singletons or small clusters is independent on the sampling 

fraction 𝜋 (see below for an analytical proof for the singletons). The figure also shows the 

proportion of singletons and small clusters observed in our analysis. The observed proportion of 

small clusters is well in line with the expected proportion under a geometric model with mean 

offspring R = 1. The observed proportion of singletons, on the other hand, is higher than 

expected under this model.  

However, the branching process model with random sampling described above doesn’t capture 

the following feature of our data. As the sampling fraction is not complete, we may be unable to 

detect that two cases with a sequence belong to the same cluster, as sequences from intermediate 

cases might have been needed to identify these belonging to the same transmission cluster. We 

may also be unable to detect that two cases with a sequence belong to the same cluster if one or 

both of these cases is multiply infected, or had a sample sequenced at an advanced stage of 

infection. Therefore the observed proportion of singletons may be higher than expected under the 

model described above, precisely because we may be unable to merge some of the singletons 

with larger clusters based only on a partial and imperfect sample of sequences.  

Another element to note is that the theoretical derivation considers the final size of the outbreak 

generated by each importation, whereas the data captures the size of each cluster at a point in 

time where the clusters might still be ongoing. Therefore observed clusters are smaller than 

expected, because we may not have observed them until they die out. 

Overall, we conclude that, although a simple branching model with random sampling is unable to 

fully capture the complexity of our data, the model with geometric offspring distribution with R 

= 1 or slightly lower is reasonably well suited to describe our data. Under this model, the 

expected proportion of singletons and of small clusters is independent on the sampling fraction, 

so that the true proportion of singletons and small clusters is similar to the observed one despite 

partial sampling. Our observations show that 64% of clusters are singletons, and 29% are small 

(size 2-9), whilst the geometric model with mean offspring R = 1 leads to 50% of singletons and 

31% of small clusters. This suggests that amongst all imported cases, only a small fraction (7% 
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according to the observations, and 19% according to the model) will go on and establish a large 

cluster (i.e. 10 cases or more).  

 

Proof that the observed proportion of singletons is independent of the sampling fraction 

under the geometric model with R=1.  

The observed proportion of singletons is 

𝑃(𝑌 = 1|𝑌 ≥ 1, 𝑅, 𝜋, 𝐺𝑒𝑜𝑚) =
∑ 𝑃(𝑌=1|𝑋=𝑥,𝜋)𝑥≥1 𝑃(𝑋=𝑥|𝑅,𝐺𝑒𝑜𝑚)

1−∑ 𝑃(𝑌=0|𝑋=𝑥,𝜋)𝑥≥1 𝑃(𝑋=𝑥|𝑅,𝐺𝑒𝑜𝑚)
, with 𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝜋) =

(
𝑥
𝑦) 𝜋𝑦(1 − 𝜋)𝑥−𝑦 and 𝑃(𝑋 = 𝑥|𝑅, 𝐺𝑒𝑜𝑚) =

Γ(2𝑥−1)

Γ(𝑥)Γ(𝑥+1)
 

𝑅𝑥−1

(1+𝑅)2𝑥−1.  

We want to show that (𝑌 = 1|𝑌 ≥ 1, 𝑅, 𝜋, 𝐺𝑒𝑜𝑚) is independent of 𝜋.  

 

First, let’s simplify the numerator:  

∑ 𝑃(𝑌 = 1|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅, 𝐺𝑒𝑜𝑚) = ∑ 𝑥𝜋(1 − 𝜋)𝑥−1
𝑥≥1

Γ(2𝑥−1)

Γ(𝑥)Γ(𝑥+1)
 

𝑅𝑥−1

(1+𝑅)2𝑥−1 =

𝜋(1+𝑅)

(1−𝜋)𝑅
∑

Γ(2𝑥−1)

Γ(𝑥)2  (
𝑅(1−𝜋)

(1+𝑅)2)
𝑥

𝑥≥1 =
𝜋

(1+𝑅)
∑ (

2𝑥 − 2
𝑥 − 1

) (
𝑅(1−𝜋)

(1+𝑅)2 )
𝑥−1

𝑥≥1 =

𝜋

(1+𝑅)
∑ (

2𝑥
𝑥

) (√
𝑅(1−𝜋)

(1+𝑅)2)

2𝑥

𝑥≥0 =
𝜋

(1+𝑅)

1

√1−4
𝑅(1−𝜋)

(1+𝑅)2

, the last equality being derived from the power 

series: ∑
(2𝑛)!

22𝑛(𝑛!)2 𝑧2𝑛
𝑛≥0 =

1

√1−𝑧2
. 

When 𝑅 = 1, this simplifies to ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅 = 1, 𝐺𝑒𝑜𝑚) =
√𝜋

2
 

 

Now, let’s simplify the denominator:  
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1-∑ 𝑃(𝑌 = 0|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅, 𝐺𝑒𝑜𝑚) = 1 − ∑ (1 − 𝜋)𝑥
𝑥≥1

Γ(2𝑥−1)

Γ(𝑥)Γ(𝑥+1)
 

𝑅𝑥−1

(1+𝑅)2𝑥−1
= 1 −

1+𝑅

𝑅
∑

Γ(2𝑥−1)

Γ(𝑥)Γ(𝑥+1)
 (

𝑅(1−𝜋)

(1+𝑅)2)
𝑥

𝑥≥1 = 1 −
1+𝑅

2𝑅
√

𝑅(1−𝜋)

(1+𝑅)2
∑ (

2𝑥
𝑥

) 
1

2𝑥−1
(√

𝑅(1−𝜋)

(1+𝑅)2 )

2𝑥−1

𝑥≥1 = 1 −

1+𝑅

2𝑅
𝐴𝑓(𝐴) 

with 𝐴 = √
𝑅(1−𝜋)

(1+𝑅)2   and  𝑓(𝐴) = ∑ (
2𝑥
𝑥

) 
1

2𝑥−1
𝐴2𝑥−1

𝑥≥1 .  

The differentiation of this power series leads to (after some manipulation and using again 

∑
(2𝑛)!

22𝑛(𝑛!)2
𝑧2𝑛

𝑛≥0 =
1

√1−𝑧2
.): 

𝑓′(𝐴) =
1−√1−4𝐴2

𝐴2√1−4𝐴2
, wich integrates back to 𝑓(𝐴) =

1−√1−4𝐴2

𝐴
 (using 𝑓(0) = 0). 

Therefore, ∑ 𝑃(𝑌 = 0|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅, 𝐺𝑒𝑜𝑚) = 1 −
1+𝑅

2𝑅
(1 − √1 − 4𝐴2).  

When 𝑅 = 1, 𝐴 =
√1−𝜋

2
 and this simplifies to ∑ 𝑃(𝑌 = 0|𝑋 = 𝑥, 𝜋)𝑥≥1 𝑃(𝑋 = 𝑥|𝑅 =

1, 𝐺𝑒𝑜𝑚) = √𝜋.  

 

Therefore in this specific case 𝑃(𝑌 = 1|𝑌 ≥ 1, 𝑅 = 1, 𝜋, 𝐺𝑒𝑜𝑚) =
√𝜋

2

√𝜋
=

1

2
, which is independent 

of 𝜋. In particular the observed proportion of singletons for any value of 𝜋 is the same as the true 

proportion of singletons if all cases are observed (i.e. for 𝜋 = 1).  
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