Annex 1. History of malaria modeling

Throughout history, mathematical models have been used for both basic and applied purposes. After Ronald Ross demonstrated that mosquitoes transmit malaria, he developed a mathematical analysis to relate mosquito flight distances and densities under larval mosquito control [1]. After a trip to organize malaria-control activities in Mauritius, Ross published the first malaria transmission model [2,3]. Three years later, he published a new differential equation model 


[4,5,6,7,8,9] ADDIN EN.CITE  that is more widely used. Ross was interested in mosquito density as a cause of variation in the parasite rate [10]. His models and analysis provided a quantitative framework and justification for larval source management that dominated the first 50 years of malaria control.

In the aftermath of World War II, the discovery of DDT and the mass production of chloroquine led to a burgeoning optimism about malaria. A watershed moment came in 1950 at the Conference on Malaria in Equatorial Africa held in Kampala, Uganda, where a recommendation was made “to governments responsible for the administration of African territories that malaria should be controlled by modern methods as soon as feasible, whatever the original degree of endemicity, and without awaiting the outcome of further experiments[11].” The World Health Congress voted in 1955 to eradicate malaria, and WHO coordinated a Global Malaria Eradication Program (GMEP) based largely on indoor residual spraying with DDT [12].
About this time, George Macdonald took the first steps towards testing Ross’s theory with epidemiological [13] and entomological [14] field data. Field trials with DDT in the early 1950s had demonstrated that it was an effective way to interrupt malaria transmission. Macdonald’s analysis helped to explain that DDT and other contact pesticides worked because they severely reduced the number of mosquitoes that would live long enough to survive sporogony and transmit malaria [15].

One of Macdonald’s biggest contributions to malaria theory was his emphasis on defining and measuring quantities that were operationally relevant for eradication: the stability index and the basic reproductive numbers for malaria. Macdonald described a formula for R0 and clearly explained the entomological basis for measuring it [16,17]. During the GMEP, mathematical models were used for other purposes, such as establishing realistic response timelines [18]. Macdonald’s influence on the technical aspects of eradication is evidenced by his being elected to chair the committee that wrote the first technical report on malaria eradication [19].

By 1970, progress towards eradication had slowed for many reasons, including competing public health priorities and donor fatigue, DDT resistance and controversy about the environmental effects of DDT [20]. The agenda for eradication began to shift towards stable endemic control. Meanwhile, a large-scale malaria control project was launched in Garki, Nigeria, to evaluate whether malaria could be controlled in an African context with multiple, integrated interventions. In planning the Garki project, a new mathematical model was developed [21] that was innovative in several ways. Firstly, it considered superinfection, an idea that had been explored mathematically before 


[22,23] ADDIN EN.CITE . Second, it considered the development of immunity in two stages: after being infected with malaria, semi-immune individuals would be less likely to test positive for malaria, and they would clear infections faster. Third, it considered a kind of transmission-blocking immunity: individuals were infectious only if they were non-immune and recently infected. One advantage of the Garki model was that it reproduced the age-specific patterns in malaria prevalence, at least qualitatively.

International donor funding for malaria control sharply declined after 1963 and remained low throughout the 1970s [24], but theoretical studies continued to explore the ideas that had been described in the Garki project, most notably superinfection. Walton had been the first to describe a formula for distribution of the MOI (multiplicity of infection) [22]. A few years later, Macdonald developed a model for simulating complex infections [23], but while the written description of his assumptions was consistent with Walton’s model, the equations actually corresponded to a different set of assumptions [25]. Bailey described a queuing model for the full dynamics of superinfection with an infinite number of genotypes using the same assumptions as Walton [26], and this queuing model had motivated the development of the Garki model [21]. The queuing model was later extended and generalized by Nåsell to describe superinfection with a finite number of types [27], and by Dietz to consider density dependence [28].

During the 1980s, motivated in part by the outcome of the Garki project, but also by studies of sexually transmitted diseases, new attention focused on the biting behaviour of mosquitoes and its consequences for disease transmission, and in particular on the importance of heterogeneous biting 


[29,30,31] ADDIN EN.CITE . Mathematical modeling suggested that heterogeneous biting would amplify transmission, raising R0 proportional to the squared coefficient of variation of the human biting rates.

In the 1980s, May and Aron presented a new model for malaria that was motivated by the Garki model. In the Garki model, most infected individuals were not infectious (i.e. the only infectious class was y1), whether or not they had become semi-immune. Several infected classes from the Garki model could be combined together, since they were not infectious, to model malaria as an SIRS (susceptible-infected-recovered-susceptible) compartment model, with dynamics much like flu [32,33]. Later, this model was extended to consider the transmission dynamics and epidemiology of serial infection and immunity to infection with multiple parasite “strains” 


[34,35] ADDIN EN.CITE , and the evolution of antimalarial drug resistance [36]. The assumption in the Garki model that made these SIRS models relevant was that only non-immune individuals who had been recently infected were infectious. A critique of the Garki model is that the assumptions about immunity were very severe and not consistent with data. For example, in an area where malaria prevalence was above 90% in children, and where immunity in adults would tend to be quite high, adults did transmit malaria to mosquitoes, albeit less efficiently [37], and the patterns are broadly inconsistent with studies that identify the infectious reservoir of malaria  


[38,39,40,41,42,43] ADDIN EN.CITE .

To address these shortcomings, the Garki model has been reformulated to generalize the notion of immune stages and to describe stage-structured immunity in a far more general way. Stage structure deals with categorical descriptions of malaria age, and it models the transitions between them. In one simple example, the Garki model was modified to suggest that semi-immune individuals remain infectious to malaria but transmit malaria with lower efficiency


[44,45,46] ADDIN EN.CITE .

The availability of high-speed desktop computing ushered in a new class of complex individual-based simulation models 


[47,48] ADDIN EN.CITE . These models were based on within-host models of malaria that were calibrated to the records of infection in malaria therapy patients that described the first wave of infections, the time course of a simple infection 


[49,50,51,52,53] ADDIN EN.CITE , the conversion from merozoites to gametocytes 


[54,55] ADDIN EN.CITE  and gametocyte dynamics [56]. Such models have been extended to create simulations of both transmission and health outcomes parameterized using many distinct field measures of malaria epidemiology 


[48] ADDIN EN.CITE .

The GMEP was launched because malaria was a major public health burden, but from 1950 onwards research in malaria was driven by the goals of eradication with a sharp focus on interrupting malaria transmission. Malaria immunity was clearly important in areas of high malaria transmission intensity, but a quantitative picture of malaria burden and its relation to malaria transmission intensity was largely ignored until quite recently. In the 1990s, a series of studies took a more rigorous approach to defining severe malaria, and a more quantitative approach to estimating the burden of the disease. Those studies identified three generalized, overlapping disease syndromes associated with severe malaria 


[57,58] ADDIN EN.CITE . Subsequent studies described different age-specific patterns for cerebral malaria and severe anemia 


[59,60,61,62,63] ADDIN EN.CITE . The analysis suggested that the highest burdens might occur at intermediate transmission intensity, raising the question of whether reducing it could perversely raise the burden 


[64] ADDIN EN.CITE . Other studies concluded that the burden of malaria always increases with transmission intensity 


[65,66] ADDIN EN.CITE . Malaria is particularly severe in prima gravidae pregnancies, with several adverse consequences including low birth weights with different epidemiology in areas of low and high transmission 


[67,68,69,70,71] ADDIN EN.CITE . These studies have raised a new set of questions about the relationship between transmission intensity and the burden of malaria that have not been explored in great detail but are starting to be addressed by models 


[38,72,73] ADDIN EN.CITE .

Concerns about global warming have focused some attention on the role of temperature and rainfall on malaria transmission and the potential for malaria to expand its range 


[74,75] ADDIN EN.CITE . Temperature affects the rate of parasite development in the mosquito [14] and hence the boundary of climatic suitability for malaria 


[76,77] ADDIN EN.CITE . In places where malaria is not controlled, though, the density of mosquitoes is a dominant source of variability in malaria transmission, in part, because of the great potential for exponential growth of mosquito populations in their larval habitat 


[78,79] ADDIN EN.CITE . Over some temperature ranges, temperature plays a role in this by modifying the rate of larval development in their aquatic habitats; however, seasonal fluctuations in malaria transmission are more often driven by the relationship between rainfall and mosquito density (for example, see 


[80,81,82] ADDIN EN.CITE ). The effects of temperature must, however, be considered in light of other large factors at work in malaria [83]. 
Ironically, the first quantitative study of malaria control focused on the spatial dynamics of transmission and control [1], but the spatial dynamics of malaria remained largely unexplored by theorists for 75 years. In his 1982 book about malaria, Bailey wrote down equations that described the spatial dynamics of malaria as a set of reaction-diffusion equations [26]. Later, that work was extended to consider explicitly spatial simulations [84] and malaria dynamics in a set of heterogeneous patches linked by mosquito migration – the flux of mosquitoes across an arbitrarily defined patch border was a crude approximation to reaction-diffusion equations [85]. Most recently, the metapopulation dynamics of malaria were described and included human and mosquito migration [86].

The past decade has seen a tremendous upsurge in modeling malaria interventions, which represents a substantial advance beyond Macdonald’s landmark analysis of DDT. In his original paper, Macdonald argued that DDT would be highly effective because it substantially reduced the number of older mosquitoes that had lived long enough to transmit malaria. Macdonald did not, however, attempt to estimate a quantitative effect size associated with DDT, and his analysis probably underestimated the real effect sizes [87]. Insecticide-treated nets (ITNs) have effects similar to DDT by protecting people who use the intervention and reducing transmission overall [88]. In the past few years, a new class of models has been developed to address these concerns and to estimate the transmission effect sizes associated with ITNs as a function of effective coverage, i.e. the fraction of a population that owns and uses a net 


[89,90] ADDIN EN.CITE . Similar analysis has been done to estimate the transmission effect sizes of antimalarial drugs in high- and low-intensity settings, depending on the fraction of the malaria incidence that is followed by appropriate treatment 


[91,92] ADDIN EN.CITE .

Without doubt, modeling – notably the recognition in the Ross/MacDonald formula of the powerful impact of vector-based interventions – strongly influenced the design of previous successful intervention campaigns. With improved quantitative and mechanistic understanding of parasite, vector and host biology, and of environmental and climatic variables, combined with the massive leap in computing power available now and in the future, it is abundantly clear that modeling has a key role to play in the design of rational intervention strategies at the individual, population, and global levels. Key steps in modeling to date are illustrated below.
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