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Abstract

Background

The incidence of type 1 diabetes (T1D) is increasing globally. One hypothesis is that

increasing childhood obesity rates may explain part of this increase, but, as T1D is rare,

intervention studies are challenging to perform. The aim of this study was to assess this

hypothesis with a Mendelian randomization approach that uses genetic variants as instru-

mental variables to test for causal associations.

Methods and findings

We created a genetic instrument of 23 single nucleotide polymorphisms (SNPs) associated

with childhood adiposity in children aged 2–10 years. Summary-level association results for

these 23 SNPs with childhood-onset (<17 years) T1D were extracted from a meta-analysis

of genome-wide association study with 5,913 T1D cases and 8,828 reference samples.

Using inverse-variance weighted Mendelian randomization analysis, we found support for

an effect of childhood adiposity on T1D risk (odds ratio 1.32, 95% CI 1.06–1.64 per standard

deviation score in body mass index [SDS-BMI]). A sensitivity analysis provided evidence of

horizontal pleiotropy bias (p = 0.04) diluting the estimates towards the null. We therefore

applied Egger regression and multivariable Mendelian randomization methods to control for

this type of bias and found evidence in support of a role of childhood adiposity in T1D (odds

ratio in Egger regression, 2.76, 95% CI 1.40–5.44). Limitations of our study include that

underlying genes and their mechanisms for most of the genetic variants included in the

score are not known. Mendelian randomization requires large sample sizes, and power was

limited to provide precise estimates. This research has been conducted using data from the

Early Growth Genetics (EGG) Consortium, the Genetic Investigation of Anthropometric

Traits (GIANT) Consortium, the Tobacco and Genetics (TAG) Consortium, and the Social
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Science Genetic Association Consortium (SSGAC), as well as meta-analysis results from a

T1D genome-wide association study.

Conclusions

This study provides genetic support for a link between childhood adiposity and T1D risk.

Together with evidence from observational studies, our findings further emphasize the

importance of measures to reduce the global epidemic of childhood obesity and encourage

mechanistic studies.

Author summary

Why was this study done?

• Type 1 diabetes (T1D) rates have been increasing globally in recent decades; however,

the contributing factors to this increase have not been established.

• Childhood obesity has been suggested to contribute to T1D risk. Since obesity rates

in children have been increasing in recent years, they may explain part of the rise in

T1D rates. However, conventional observational epidemiologic studies are limited

in explaining causality because of possible bias from unmeasured confounding and

reverse causation.

What did the researchers do and find?

• We investigated if genetic variants associated with childhood body mass index (BMI)

were also associated with T1D risk in 5,913 T1D and 8,828 control samples.

• We studied the effect of childhood adiposity on T1D using a Mendelian randomization

analysis framework, which uses genetic variants associated with an exposure as instru-

ments to test for effects on an outcome. Since alleles are randomly allocated before

birth, Mendelian randomization studies limit bias from confounding factors and reverse

causation. We used sensitivity analyses to control for violations of Mendelian randomi-

zation assumptions.

• We estimated that a genetically predicted increase in childhood BMI by 1 standard devi-

ation is associated with an average 32% increased risk of T1D (odds ratio 1.32, 95% con-

fidence interval 1.06–1.64).

What do these findings mean?

• This study provides genetic support for a link between childhood adiposity and T1D

risk, which could help explain part of the increase in T1D rates.

• However, as the underlying genes and adiposity-increasing mechanisms for most of

the genetic variants included in the study are not known, there is a possibility that the
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genetic variants affect T1D risk through other mechanisms than through adiposity,

which would limit causal inference.

• Together with previous studies, our findings reinforce the need to address rising child-

hood overweight and obesity rates, whose adverse consequences in adulthood pose seri-

ous challenges to personal and population health.

Introduction

The incidence of type 1 diabetes (T1D) in children is rising globally, with reports of annual

increases over the last decades of up to 3%–4% in Europe [1,2] and 5% in North America [1].

The reasons for this rapid increase in T1D remain obscure [3]. Years before overt T1D devel-

ops, autoantibodies against pancreatic islet cells can be detected [4], and the presence of at

least 2 types of autoantibodies is diagnostic of early T1D [5]. The etiology of T1D is generally

thought to be autoimmune, where a chronic T lymphocyte-mediated autoimmune reaction is

presumed to destroy the insulin-producing beta cells in the pancreas following a trigger event

such as an infection [5–7]. This concept, however, has been challenged by recent observations

[8,9]. The heritability of T1D is estimated to be 69% [10], but genetic variation alone cannot

explain the recent rapid increase. Several environmental risk factors and potential triggers of

the autoimmunity have been investigated, including intake of cow’s milk, breastfeeding prac-

tices, socioeconomic status, and enteroviral infections, but causal effects have not been proven

[3].

In 1975, Baum et al. [11] suggested that increased weight gain in infancy is linked to the

development of T1D. Later theories, including the “accelerator hypothesis” [12] and the “over-

load hypothesis” [13] suggest that increased insulin resistance and insulin demand, as seen in,

for example, obese individuals, cause beta cell stress and apoptosis and thereby induce autoim-

munity. Both theories argue that this would cause T1D to present at a younger age [12,13].

In support of this hypothesis, the insulin sensitivity-increasing genetic variant Pro12Ala in

PPARG was found to be associated with a lower risk of T1D [14]. For the past decades, the

prevalence of childhood obesity has increased by approximately 0.5% annually in the United

States and 1% per year in England, Scotland, and Wales [15]. Currently, an estimated 6.6% of

all children under the age of 5 years are obese worldwide [16]. Given increasing global rates

of childhood obesity, an effect of adiposity on the rising incidence of T1D has been suggested

[15,17]. In some countries, like the United Kingdom, the increase in childhood obesity has

started to plateau [18]—as has the incidence of T1D [2]. However, several observational stud-

ies have failed to find a link between childhood adiposity and T1D risk [19] or age of onset

[20–22]. One problem with studying the association of adiposity and T1D is that weight loss is

a common symptom in T1D, and prospective studies are therefore needed. Another problem

is that T1D is an infrequent disease, whilst large sample sizes are needed for robust inference

in prospective designs. Verbeeten et al. [23] performed a meta-analysis of studies measuring

body mass index (BMI) before T1D diagnosis. The study found an increased risk of T1D in

obese children estimated to an odds ratio (OR) of 2.03 (95% confidence interval [CI] 1.46–

2.80) and evidence of a dose-response relationship with an OR of 1.25 (95% CI 1.04–1.51) per

unit increase in age- and sex-specific standard deviation score of childhood body mass index

(SDS-BMI). Another meta-analysis showed positive correlations between higher birth weight

as well as rapid weight gain in infants and T1D risk [24]. Further, a recent study in 1,117
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autoantibody-positive children found that elevated BMI over time was associated with higher

risk of progression to T1D in youth [25].

Common issues with observational studies such as confounding and reverse causation can

be avoided by using instrumental variable (IV) analysis, in which an IV is used as a noncon-

founded proxy for the exposure of interest (here adiposity) [26]. In Mendelian randomization

(MR) analysis, genetic variants are used as IVs. Since allelic variants are randomly allocated at

conception, their lifelong effects precede the outcome (T1D) and minimize bias from reverse

causation and confounding. This "quasirandomization" before birth has been reported able to

predict the results of clinical trials [27,28]. However, the robustness of MR relies heavily on the

validity of the genetic variants used as IVs. One assumption is the absence pleiotropic effects:

the IV should not affect the outcome through factors other than the exposure. This assumption

cannot be tested completely, but recently developed sensitivity analyses can indicate and cor-

rect for violations [29].

Our aim was to use the largest available samples with genetic association results to test the

hypothesis of a role for childhood adiposity in childhood T1D etiology. We applied a compre-

hensive 2-sample MR framework to investigate the effect of childhood adiposity on T1D diag-

nosis before age 17 and found evidence in line with a role in T1D development.

Methods

Ethical approval

Cohorts participating in the genome-wide association studies (GWASs) used in the present

study received ethics approval from local institutional review boards and informed written

consent from all participants.

Genetic instrument

To construct a genetic IV for childhood adiposity, we used data from the largest meta-analysis

of GWASs of childhood adiposity to date (by Felix et al. [30]), in which adiposity was mea-

sured as SDS-BMI at the oldest age of available measurement in children of European descent

between 2–10 years of age. The design included up to 35,668 children from 20 studies in the

discovery phase and up to 11,873 children from 13 studies in the replication phase. The study

identified 15 loci associated with childhood BMI that explained 2.0% of the observed variance

[30]. We used the following criteria to select variants as IVs: (1) genome-wide association

(p< 5 × 10−8) with childhood SDS-BMI (15 single nucleotide polymorphisms [SNPs]); (2)

suggestive association with childhood adiposity (p< 5 x 10−6 in both discovery and joint anal-

ysis) and association with adult BMI (Bonferroni-adjusted p< 0.0055) [31] with consistent

effect direction in children and adults (7 SNPs); and (3) genome-wide significant association

with adult BMI [31] and childhood BMI (Bonferroni-adjusted p< 5.2 x 10−4) with consistent

effect direction (22 SNPs). There were substantial overlaps of the latter with the 2 former cate-

gories, and we kept 1 marker per genetic loci, with preference to the 2 former categories result-

ing in a total of 27 SNPs. However, the variant rs3888190 was not available in the T1D dataset

described below and hence excluded, resulting in 26 SNPs. We conducted 2 analyses, using the

combined IVs described above (23 SNP score after further exclusions, see below) and a

restricted instrument of variants identified in category 1 (13 SNP score).

To reduce the risk of violating the IV assumptions, we investigated the IVs’ associations

with 3 biologically plausible confounders—birth weight, smoking, and years of education.

Summary-level effect estimates and standard errors (SEs) for birth weight were obtained from

the EGG (Early Growth Genetics) Consortium [32], for “ever smoker” from the Tobacco and
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Genetics Consortium [33], and for years of education from the Social Science Genetic Associa-

tion Consortium [34]. All effects were aligned to the BMI-increasing allele.

Three SNPs were associated with a potential confounder at a Bonferroni-corrected p-value

(p< 0.05 / 26; for 26 SNPs) and were excluded from the analysis (rs13387838, smoking;

rs1808579, education; and rs13253111, birth weight), resulting in a final analytical set of 23

SNPs and 13 SNPs respectively.

Association with T1D

Summary-level association results for the final set of 23 SNPs were extracted from the largest

publicly available T1D GWAS, which was conducted by Cooper et al. [35]. Cooper et al. reana-

lyzed the data from Barrett et al. [36] with imputation to the 1000 Genomes Project phase III

panel in 5,913 samples from individuals with T1D and 8,828 reference samples from individu-

als of European ancestry. In brief, samples from individuals with T1D were derived from the

Wellcome Trust Case Control Consortium, the 1958 Birth Cohort, and from the UK Genetic

Resource for Investigating Diabetes (GRID) collection of the Juvenile Diabetes Research Foun-

dation/Wellcome Trust Diabetes and Inflammation Laboratory project [37]. The average age

at diagnosis of T1D was 7.8 years (SD 3.9) in the Wellcome Trust Case Control Consortium

and 7.2 years (SD 3.8) in GRID. T1D criteria were diagnosis before age 17 and continuous

insulin treatment since diagnosis for more than 6 months. Individuals with monogenic types

of diabetes were excluded [37,38]. A population-based sample from the UK Blood Services, the

1958 Birth Cohort, and the Wellcome Trust Case Control Consortium was used as the control

cohort and combined with a study of bipolar disease to maximize power (as implemented in

the original analysis [36]). Table 1 summarizes the final dataset, with details on genotyping

platform and baseline characteristics. The quality metrics “info score” from the imputation

software IMPUTE2 was >0.6 for all variants in the T1D data. For 1 SNP (rs3829849) unavail-

able in the T1D data, we used the proxy (rs62578127) with an r2 of 1 based on SNiPA (http://

snipa.helmholtz-muenchen.de/snipa3/). Data for the T1D GWAS are deposited in the Dryad

repository: http://dx.doi.org/10.5061/dryad.ns8q3 [39].

Main analysis

For all SNPs, we used the effect estimate and SE estimated in the childhood BMI GWAS

(Table 2). For all outcomes and sensitivity analyses, effects were aligned to the BMI-increasing

allele reported in [41]. Inverse-variance weighted (IVW) estimates for the effect of adiposity

on T1D risk were calculated using the analysis code provided in [26].

Sensitivity analysis

There is no one "gold standard" way of conducting an MR study. All available methods have

advantages and shortcomings that balance power, precision, and adjustment for bias. We

therefore carried out several sensitivity methods in addition to IVW MR to provide a compre-

hensive causal inference framework of the available evidence in an epidemiologic context. We

compared results from the main analysis with those obtained in reanalysis with more robust

methods, which are less powerful but rely on fewer assumptions than IVW MR. The following

calculations and graphs were implemented using the software code provided in [26,29].

Assessment of the IV assumptions. We used visual assessment of heterogeneity and a

formal heterogeneity test to assess the compatibility of IV estimates based on individual

genetic variants. Heterogeneity among such estimates indicates that analysis based on different

SNPs yields different estimates, which is indicative of pleiotropic effects. We further used fun-

nel plots of IV precisions (1/SEIV) against the IV estimates, which should form a symmetrical

Childhood adiposity and type 1 diabetes
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funnel shape (i.e., more precise estimates are less variable). Asymmetries in this type of plot

indicate directional pleiotropy. We formally tested this with the intercept test in MR Egger

regression and further assessed the association of the 2 SNP sets with birth weight, education,

and smoking in IVW MR.

Robust analysis methods. We first reanalyzed the data with a likelihood-based method

[42], which in case of considerable imprecision in the estimates of the association of the

genetic variants with the exposure gives appropriately sized CIs. We then obtained IVW esti-

mates using random effects models, which provide a more appropriate model in the presence

of heterogeneity. Third, we used MR Egger regression, allowing for asymptotically consistent

estimates even if all the genetic instruments are invalid based on the assumption of the Instru-

ment Strength Independent of Direct Effect (InSIDE) postulate (i.e., the potential pleiotropic

effects are not related to instrument strength [43]). In addition, the simple and weighted

median-based methods were applied. Median methods provide accurate estimates if 50% or

more of the included variants are valid instruments. We also calculated the effect of childhood

adiposity on birth weight, years of education, and smoking using similar MR methods as in

the main analysis. For the statistical analyses, R version 3.2.3 [44] was used as well as packages

“shape” [45], “meta” [46], “Hmisc” [47], and “MendelianRandomization.” For plots, packages

“ggplot2,” “gridExtra,” and “grid” were used. We also reran the analysis excluding 2 SNPs

(rs13130484 and rs13107325) associated with lower education at a nominal level (p< 0.01), as

proposed in [26].

Multivariable Mendelian randomization. We further applied regression models of the

association of adiposity SNPs with T1D correcting for the genetic association with potential

confounders birth weight, smoking, and education, using the methods described in [48], in

Table 1. Description of sample sources for the T1D GWAS.

Status N Source Genotyping Inclusion criteria Exclusion

criteria

Age %

Female

Reference

T1D 3,983 UK

GRID

Illumina

HumanHap550v3

(550k) Infinium

Beadchip

Age of diagnosis 6 months to 16

years, insulin dependent for >6

months, resident in mainland UK,

and self-identified white European

Participated in

WTCCC

GWAS

7.8 years (SD = 3.9)

at diagnosis

47 [36]

T1D 1,930 WTCCC Affymetrix 500K Age of diagnosis <17 years, insulin

dependent since diagnosis for >6

months, and self-identified white

European

7.2 years (SD = 3.8)

at diagnosis

49 [40]

Controls 3,999 1958BC Illumina

HumanHap550v3

(550k) Infinium

Beadchip

Self-reported white ethnicity and

representative of gender and

geographical region

100% 40–49 years 51 [36]

Controls 1,455 UKBS Affymetrix 500K Resident in England, Scotland, or

Wales and self-identified white

European

37% <40 years; 27%

40–49 years;

28% 50–59 years;

8% >60 years

52 [39]

Controls 1,490 1958BC Affymetrix 500K Self-reported white ethnicity and

representative of gender and

geographical region

100% 40–49 years 48 [40]

Controls 1,884 Bipolar Affymetrix 500K Individuals with bipolar disease,

age > 16 years, resident in

mainland UK, and of European

descent

30% <40 years; 29%

40–49 years; 24%

50–59 years; 17%

>60 years

62 [40]

1958BC, 1958 Birth Cohort; GRID, Genetic Resource for Investigating Diabetes; GWAS, genome-wide association study; SD, standard deviation; T1D,

type 1 diabetes; UKBS, UK Blood Services; WTCCC, Wellcome Trust Case Control Consortium.

https://doi.org/10.1371/journal.pmed.1002362.t001
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which the regression model is weighted by the inverse SE of the T1D estimate and the intercept

is null.

Results

Main analysis

The IVW method provided evidence for a positive association between SDS-BMI and T1D,

with an OR of 1.32 (95% CI 1.06–1.64; that is an average 32% increased risk of T1D per SD

increase in BMI) for the larger SNP set (23 SNPs) and an OR of 1.55 (95% CI 1.21–1.99) for

the smaller set of 13 SNPs.

Sensitivity analysis

Assessment of the IV assumptions. The heterogeneity test did not support heterogeneity

in the data (p = 0.053 and 0.342, for the set of 23 SNPs and the set of 13 SNPs, respectively).

However, scatter plots indicated that rs3810291 (nearest gene ZC3H4) might add heterogeneity

Table 2. Association of adiposity-related genetic variants with childhood body mass index and type 1 diabetes.

SNP SDS-BMI1 T1D2

Marker name Nearest gene EA EAF Beta (95% CI) p-Value OR (95% CI) p-Value

rs131304843 GNPDA2 T 0.42 0.067 (0.053–0.081) 1.58 x 10−23 1.064 (1.013–1.117) 0.01

rs11676272 ADCY3 G 0.46 0.068 (0.054–0.082) 7.12 x 10−23 1.060 (1.009–1.113) 0.02

rs4854349 TMEM18 C 0.83 0.090 (0.072–0.108) 5.41 x 10−22 1.055 (0.989–1.126) 0.10

rs543874 SEC16B G 0.19 0.077 (0.059–0.095) 2.20 x 10−19 1.031 (0.973–1.094) 0.30

rs7132908 FAIM2 A 0.36 0.066 (0.050–0.082) 1.57 x 10−18 1.010 (0.960–1.063) 0.70

rs1421085 FTO C 0.43 0.059 (0.045–0.073) 4.53 x 10−16 0.991 (0.944–1.041) 0.72

rs12429545 OLFM4 A 0.11 0.076 (0.056–0.096) 2.08 x 10−14 1.045 (0.968–1.128) 0.26

rs987237 TFAP2B G 0.18 0.062 (0.044–0.080) 1.80 x 10−12 0.987 (0.927–1.051) 0.68

rs12041852 TNNI3K G 0.45 0.046 (0.032–0.060) 2.28 x 10−10 1.057 (1.008–1.107) 0.02

rs6567160 MC4R C 0.24 0.050 (0.034–0.066) 1.21 x 10−9 1.039 (0.981–1.099) 0.19

rs8092503 RAB27B G 0.22 0.045 (0.029–0.061) 8.17 x 10−9 0.968 (0.914–1.024) 0.26

rs3829849 (rs62578127)4 LMX1B T 0.37 0.041 (0.027–0.055) 8.81 x 10−9 1.008 (0.960–1.059) 0.75

rs7550711 GPR61 T 0.03 0.105 (0.068–0.142) 4.52 x 10−8 0.996 (0.845–1.174) 0.96

rs17309930 BDNF A 0.18 0.045 (0.027–0.063) 1.41 x 10−7 0.974 (0.917–1.035) 0.40

rs2590942 NEGR1 T 0.81 0.047 (0.029–0.065) 1.91 x 10−7 1.040 (0.978–1.105) 0.21

rs131073253 SLC39A8 T 0.08 0.081 (0.050–0.112) 3.79 x 10−7 0.981 (0.890–1.082) 0.70

rs10151686 PRKD1 A 0.05 0.096 (0.059–0.133) 6.99 x 10−7 1.006 (0.886–1.143) 0.93

rs11079830 HOXB6 A 0.60 0.034 (0.020–0.048) 1.98 x 10−6 1.013 (0.965–1.064) 0.60

rs4569924 GALNT10 T 0.44 0.032 (0.018–0.046) 3.48 x 10−6 1.011 (0.963–1.062) 0.66

rs8046312 GPR139 A 0.83 0.042 (0.024–0.060) 3.97 x 10−6 0.964 (0.903–1.028) 0.26

rs1441264 MIR548A2 A 0.63 0.032 (0.017–0.048) 4.46 x 10−5 0.991 (0.942–1.043) 0.73

rs29941 KCTD15 G 0.67 0.030 (0.014–0.045) 2.42 x 10−4 0.987 (0.938–1.039) 0.62

rs3810291 ZC3H4 A 0.66 0.032 (0.015–0.049) 2.85 x 10−4 0.918 (0.870–0.967) 0.001

CI, confidence interval; EA, effect allele; EAF, effect allele frequency (from 1000 Genomes Project, http://www.internationalgenome.org/); OR, odds ratio;

SDS-BMI, age- and sex-specific standard deviation score of childhood body mass index; SNP, single nucleotide polymorphism; T1D, type 1 diabetes.
1Felix et al. [30], sex- and age-adjusted standard deviation scores of body mass index
2T1D OR and CI from Cooper et al. [35]
3Excluded in sensitivity analysis, has p < 0.01 with years of education
4Proxy was used in T1D data

https://doi.org/10.1371/journal.pmed.1002362.t002
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(Fig 1, upper right panel). We checked phenotype associations of this SNP in PhenoScanner

[49] but did not identify any reported significant (p< 0.01) effects on traits not related to adi-

posity and therefore kept this SNP in the analysis. The funnel plot shown in Fig 1 (lower right

panel) implied directional pleiotropy biasing the results towards the null for the larger set of 23

SNPs, as confirmed by a nominally significant MR Egger regression intercept test (p = 0.036).

For the smaller set of 13 SNPs, asymmetry was more difficult to judge but appeared less pro-

nounced, as mirrored in an MR Egger regression intercept test (p = 0.615). We found that the

larger set of 23 SNPs was associated with birth weight (0.07 SD increase in birth weight, 95%

CI 0.04–0.10; per SD increase in childhood BMI) and with increased risk of smoking with an

OR of 1.14 (95% CI 1.02–1.28) (Figs 2 and 3). The smaller set of 13 SNPs was associated with

birth weight only (0.06 SD increase, 95% CI 0.02–0.10).

Robust analysis methods. The likelihood-based method provided similar results as the

main analysis with an OR of 1.33 (95% CI 1.07–1.66) for the larger SNP set of 23 SNPs and an

OR of 1.55 (95% CI 1.21–2.00) for the smaller set of 13 SNPs, indicating that the genetic associ-

ations with the risk factor were precisely estimated. Identical results to the main analysis were

achieved when SEs were calculated using the random-effects model, indicating that the vari-

ability of estimates was not less than would be expected by chance [29]. For the larger SNP

set of 23 SNPs, MR Egger regression yielded an OR of 2.76 (95% CI 1.40–5.44 and 1.24–6.11,

using fixed and random weights for calculating SEs, respectively). For the smaller SNP set of

13 SNPs, MR Egger regression yielded an OR of 2.06 (95% CI 0.68–6.23 and 0.61–6.95, using

fixed and random weights for calculating SEs, respectively).

The simple median-based method and the weighted median estimate, only including the

median 50% of the genetic instruments, resulted in similar estimates as the main analysis.

Removing the 2 SNPs with nominal association to education (rs13130484 and rs13107325, Fig

4) slightly attenuated the IVW estimates to an OR of 1.26 (1.00–1.59) and an OR of 1.45 (1.11–

1.90), respectively, for the larger and the smaller set of SNPs.

Multivariable Mendelian randomization. In regression models of the association of the

23 adiposity SNPs with T1D adjusted for genetic effects on birth weight, smoking, and educa-

tion, we estimated that adiposity increases T1D risk with an OR of 1.65 (95% CI, 1.08–2.53)

per SDS-BMI increase.

Fig 5 summarizes results from the main and the sensitivity analyses.

Discussion

The main finding of our study is that genetic variants predisposing to childhood adiposity may

confer an increased risk of T1D, and we found evidence of a positive correlation between the

effect on adiposity and T1D risk. Conditional on MR assumptions being satisfied, our study

provides genetic support for a role of childhood adiposity in childhood T1D etiology. Our

results support previous findings from observational studies and may indicate a link between

the increase in global childhood obesity and T1D incidence in recent decades. We performed

rigorous testing of MR assumptions and found evidence of (1) directional pleiotropy (biasing

results towards the null) and (2) an association of the genetic score with smoking and birth

weight. We therefore performed a series of methods robust to directional pleiotropy that con-

firmed the main results in favor of an effect of childhood adiposity on T1D independent of

measured and unmeasured confounding effects.

Biological mechanisms

Previous studies investigating a relationship between childhood adiposity and T1D using

observational techniques in case-control and cohort studies have been contradictory [19–
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Fig 1. Sensitivity analysis. Upper panels show scatter plots of genetic association with type 1 diabetes over genetic associations with SDS-BMI.

Lines represent 95% confidence intervals. The lower panels show funnel plots of instrumental variable precision against instrumental variable

estimates for genetic associations between SDS-BMI and type 1 diabetes. In all panels, the dashed line represents slopes/estimates for inverse-

variance-weighted analysis, and the dotted line represents the slope from MR Egger regression. rs13130484 and rs13107325 were nominally

associated (p < 0.01) with education and marked with blue color. IV, instrumental variable; SDS-BMI, age- and sex-specific standard deviation score of

childhood body mass index; SNP, single nucleotide polymorphism; T1D, type 1 diabetes.

https://doi.org/10.1371/journal.pmed.1002362.g001
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Fig 2. Association of childhood adiposity-related genetic variants with birth weight. Lines represent

95% confidence intervals. Note that because of the large number of SNPs investigated, the threshold for

nominal significance was set to p < 0.01. No SNP was alone associated with birthweight, but the combined

score showed a positive association. BMI, body mass index; CI, confidence interval; SNP, single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pmed.1002362.g002
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Fig 3. Association of childhood adiposity-related genetic variants with “ever smoker.” Lines represent

95% confidence intervals. Note that because of the large number of SNPs investigated, the threshold for

nominal significance was set to p < 0.01. No SNP was alone associated with smoking, but the combined score

showed a positive association. BMI, body mass index; CI, confidence interval; OR, odds ratio; SNP, single

nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1002362.g003
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Fig 4. Association of childhood adiposity-related genetic variants with years of education. Lines

represent 95% confidence intervals. Note that because of the large number of SNPs investigated, the

threshold for nominal significance was set to p < 0.01. rs13130484 and rs13107325 were nominally

associated with education and marked with blue color. BMI, body mass index; CI, confidence interval; SNP,

single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1002362.g004
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Fig 5. Summary of estimates from the different types of analysis. Lines represent 95% CIs. CI, confidence

interval; MR, Mendelian randomization; OR, odds ratio; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1002362.g005
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22,24,50,51]. However, in the meta-analysis by Verbeeten et al. [23], the pooled OR estimate

for T1D risk per SD increase in BMI was 1.25 (95% CI 1.04–1.51), which is overlapping to our

estimates from IVW and MR Egger regression. Different theories as to how childhood adipos-

ity could contribute to the pathogenesis of T1D have been suggested. Obese individuals have a

higher expression of proinflammatory adipokines, such as interleukin-6 [52] and tumor necro-

sis factor alpha [53]. These have been suggested to contribute to chronic subclinical inflamma-

tion promoting autoimmunity [54]. Leptin, an adipokine that is increased in obese persons

[55], has been shown to accelerate immune-modulated destruction of beta cells in mice [56],

and obese individuals have lower concentrations of the adipokine adiponectin that was shown

to protect beta cells from apoptosis [57] and autoimmunity in animals [58]. Together, these

effects could contribute to autoimmunity and beta cell death [54,56,57]. In contrast, the “accel-

erator hypothesis” [12] and the “overload hypothesis” [13] suggest that obesity contributes to

insulin resistance and increased insulin demand. This would lead to beta cell stress and apo-

ptosis, which could induce autoimmunity and cause T1D to present at an earlier age. Even if

adiposity by itself does not cause T1D but rather accelerates disease onset, any delay in disease

progress achieved by reducing adiposity would greatly benefit children at risk of T1D, as the

likelihood of complication increases over time [59].

Potential bias from pleiotropic effects

There are few established early-life risk factors for T1D. We chose to include 3 potential con-

founders in the present study where genetic data are available: birth weight, education level,

and smoking. Genetic variants linked to increased birth weight are reported to be associated

with higher risk of childhood obesity but lower risk of cardiometabolic disease in adulthood,

including measures of insulin and glycemic traits [32]. The association of birth weight with

T1D is unclear [60]. Further, some studies have pointed at an increased risk for T1D with

higher socioeconomic class in Westernized countries [61]. A meta-analysis by Behl et al. [62]

did not provide evidence for an association of parental smoking habits with T1D risk in their

offspring. The average age of diagnosis in the present study was less than 8 years, and length of

education and personal smoking habits may be irrelevant at this young age. However, parents

share half of their genomes with their children, and we therefore explored these potential con-

founders. We removed 3 SNPs that were each associated with 1 of these confounders from the

analysis. We also identified an overall association of the genetic instrument with increased

birth weight and increased odds of smoking and therefore conducted an analysis adjusted for

these variables, which supported our main results.

Our study includes a number of statistical analyses to detect bias from pleiotropy (i.e.,

effects of the genetic instrument not mediated by adiposity), and we detected that our main

analysis may have been biased toward null results. In directional pleiotropy-robust MR Egger

regression, we confirmed our main results.

These analyses did not reveal evidence of pleiotropic effects in any specific SNP, but we

want to highlight a few interesting loci, although their associated genes have not been conclu-

sively identified. The closest gene to rs13130484 with strong association with both childhood

adiposity and T1D, GNPDA2, is involved in the hexosamine biosynthesis pathway, which is

involved in cellular metabolic sensing and insulin resistance [63]. TMEM18 is the closest

gene to the SNP rs4854349, which showed the largest effect size for both SDS-BMI and T1D.

Although variants related to this gene have been associated with BMI and insulin concentra-

tions, little is known of its function. A study in Drosophila melanogaster implicated TMEM18
in insulin/glucagon regulation [64]. The variant rs11676272 is among the SNPs most strongly

associated with childhood adiposity and is also nominally associated with T1D. It is located in
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the gene ADCY3, which has roles in intracellular signaling, including the insulin secretion

pathway [65]. Although ADCY3 has been associated with locomotor activity, food intake, and

leptin sensitivity in mice [66], the exact mechanisms for its effect on obesity are unclear.

Despite the possible involvement of the GNDPA2, TMEM18, and ADCY3 loci in insulin

resistance, insulin/glucagon regulation, and insulin secretion, respectively, we chose to retain

them in the IV analysis. The prevailing paradigm puts autoimmunity at the core of the devel-

opment of T1D, and impaired insulin secretion may likely occur secondary to the autoimmu-

nity [5]. As insulin is a key regulator of lipogenesis, it is not surprising that genes involved

in insulin secretion and signaling are amongst the important candidate genes for the obesity

phenotype. None of the SNPs were identified as outliers in heterogeneity tests, although low

power limits their interpretation.

Strengths and limitations

Strengths of our study include the IV analysis design, the large study sample, and the detailed

investigation of possible violations of MR assumptions. Our study selected genetic instruments

associated with childhood rather than adult adiposity to test for effects specific to early-life

BMI in patients diagnosed with T1D before 17 years of age. The limited age range in the T1D

analysis limits heterogeneity in the diabetes phenotype and also restricts the exposure period

to childhood.

Limitations of the present study include those that apply to all MR studies; the IV assump-

tions are stringent, yet it is often impossible to ascertain that genetic instruments fulfill the cri-

teria. For many of the instruments used in the present study, the underlying gene is unknown.

Without knowledge of the biological mechanisms, it is difficult to ascertain bias from pleiot-

ropy. Yet, if rigorous sensitivity analyses support the main findings (as in our study), a causal

effect is plausible [29]. Some of the sensitivity methods add additional assumptions, such as

that potential pleiotropic effects are not related to instrument strength (InSIDE) [43]. In gen-

eral, all point estimates from the sensitivity analysis yielded consistent or more extreme esti-

mates, but in some instances with larger CIs overlapping the null.

Whilst the T1D dataset we used was the largest publicly available GWAS to our knowledge,

MR analyses require large samples to yield precise results, and our study would have benefited

from increased sample size. Finally, our results need to be confirmed, preferably in a large,

independent study to exclude a chance finding.

Conclusion

We have conducted an MR study investigating the relationship between childhood adiposity

and T1D. Our results are in line with a role for adiposity in T1D etiology and show consistency

in sensitivity analyses. As MR assumptions are not fully testable, our results, although con-

firmed in sensitivity tests, provide moderate but not conclusive evidence of causation. Given

the worldwide increasing rates of childhood obesity and T1D, concerted global efforts to

reduce excess body weight in early life to prevent adverse health consequences are strongly

supported by our findings.
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