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Background

The purpose of this paper is to provide more complete

explanations of each of the Reporting Recommendations for

Tumor Marker Prognostic Studies (REMARK) checklist items and

to provide specific examples of good reporting drawn from the

published literature. The initial REMARK paper [1–7] recom-

mended items that should be reported in all published tumor

marker prognostic studies (Table 1). The recommendations were

developed by a committee initially convened under the auspices of

the National Cancer Institute and the European Organisation for

Research and Treatment of Cancer. They were based on the

rationale that more transparent and complete reporting of studies

would enable others to better judge the usefulness of the data and to

interpret the study results in the appropriate context. Similar

explanation and elaboration papers had been written to accompany

other reporting guidelines [8–11]. No changes to the REMARK

checklist items are being suggested here. We hope that the current

paper will serve an educational role and lead to more effective

implementation of the REMARK recommendations, resulting in

more consistent, high quality reporting of tumor marker studies.

Our intent is to explain how to properly report prognostic marker

research, not to specify how to perform the research. However, we

believe that fundamental to an appreciation of the importance of

good reporting is a basic understanding of how various factors such as

specimen selection, marker assay methodology, and statistical study

design and analysis can lead to different study results and

interpretations. Many authors have discussed the fact that widespread

methodological and reporting deficiencies plague the prognostic

literature in cancer and other specialties [12–21]. Careful reporting of

what was done and what results were obtained allows for better

assessment of study quality and greater understanding of the

relevance of the study conclusions. When available, we have cited

published studies presenting empirical evidence of the quality of

reporting of the information requested by the checklist items.

We recognize that tumor marker studies are generally

collaborative efforts among researchers from a variety of

disciplines. The current paper covers a wide range of topics and

readers representing different disciplines may find certain parts of

the paper more accessible than other parts. Nonetheless, it is

helpful if all involved have a basic understanding of the collective

obligations of the study team.

We have attempted to minimize distractions from more highly

technical material by the use of boxes with supplementary

information. The boxes are intended to help readers refresh their

memories about some theoretical points or be quickly informed

about technical background details. A full understanding of these

points may require studying the cited references.

We aimed to provide a comprehensive overview that not only

educates on good reporting but provides a valuable reference for

the many issues to consider when designing, conducting and

analyzing tumor marker studies. Each item is accompanied by one

or more examples of good reporting drawn from the published

literature. We hope that readers will find the paper useful not only

when they are reporting their studies but also when they are

planning their studies and analyzing their study data.

This paper is structured as the original checklist, according to

the typical sections of scientific reports: Introduction, Materials

and Methods, Results, and Discussion. There are numerous

instances of cross-referencing between sections reflecting the fact

that the sections are interrelated; for example, one must speak

about the analysis methods used in order to discuss presentation of

results obtained using those methods. These cross-references do

not represent redundancies in the material presented and readers

are reminded that distinctions in focus and emphasis between

different items will sometimes be subtle.

One suggestion in the REMARK checklist is to include a

diagram showing the flow of patients through the study (see Item

12). We elaborate upon that idea in the current paper. The flow

diagram is an important element of the Consolidated Standards of

Reporting Trials (CONSORT) Statement, which was developed

to improve reporting of randomized controlled trials (RCTs)

[8,22,23]. Many papers reporting randomized trial results present

a flow diagram showing numbers of patients registered and
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randomized, numbers of patients excluded or lost to follow-up by

treatment arms, and numbers analyzed. Flow diagrams are also

recommended in the Strengthening the Reporting of Observa-

tional Studies in Epidemiology (STROBE) Statement for reporting

observational studies, including cohort studies [9]. A diagram

would indeed be useful for prognostic studies to clarify the

numbers and characteristics of patients included at each stage of

the study. There are additional key aspects of prognostic studies

that need to be reported and would benefit from standardized

presentation. Accordingly we have developed a ‘REMARK

profile’ as a proposed format for describing succinctly key aspects

of the design and analysis of a prognostic marker study; we discuss

the profile in detail in Item 12 below.

The original scope of the REMARK recommendations focused

on studies of prognostic tumor markers that reported measure-

ment of biological molecules found in tissues, blood, and other

body fluids. The recommendations also apply more generally to

prognostic factors other than biological molecules that are often

assessed in cancer patients, including the size of the tumor,

abnormal features of the cells, the presence of tumor cells in

regional lymph nodes, age, and gender among others. Prognostic

research includes study of the wide variety of indicators that help

clinicians predict the course of a patient’s disease in the context of

standard care. REMARK generally applies to any studies

involving prognostic factors, whether those prognostic factors are

biological markers, imaging assessments, clinical assessments, or

measures of functional status in activities of daily living.

REMARK applies to other diseases in addition to cancer. The

processes of measuring and reporting the prognostic factors may

differ, but the same study reporting principles apply.

We suggest that most of the recommendations also apply to

studies looking at the usefulness of a marker for the prediction

of benefit from therapy (typically called a predictive marker in

oncology). Traditionally, predictive markers are evaluated by

determination of whether the benefit of the treatment of

interest compared to another standard treatment depends on

the marker status or value. (See also Items 3 and 9 and Box 1.)

A logical corollary to such a finding is that the prognostic value

of that marker depends on the treatment the patient receives;

for this reason, some view predictive markers as a special class

of prognostic markers. Consequently, REMARK items apply to

many aspects of these studies. In the explanations that follow

for each of the checklist items, we attempted to make note of

some special considerations for studies evaluating predictive

markers. We hope that authors who report predictive marker

studies will therefore find our recommendations useful. As

predictive markers are usually evaluated in randomized trials,

CONSORT [11] will also apply to reporting of predictive

marker studies.

Although REMARK was primarily aimed at the reporting of

studies that have evaluated the prognostic value of a single marker,

the recommendations are substantially relevant to studies inves-

tigating more than one marker, including studies investigating

complex markers that are composed of a few to many components,

such as multivariable classification functions or indices, or are

based on prognostic decision algorithms. These reporting recom-

mendations do not attempt to address reporting of all aspects of

the development or validation of these complex markers, but

several key elements of REMARK do also apply to these

developmental studies. Moreover, once these complex markers

are fully defined, their evaluation in clinical studies is entirely

within the scope of REMARK.

The development of prognostic markers generally involves a

series of studies. These begin with identification of a relationship

between a biological feature (for example, proliferative index or

genetic alteration) and a clinical characteristic or outcome. To

establish a clear and possibly causal relationship, a series of

studies are conducted to address increasingly demanding

hypotheses. The REMARK recommendations attempt to recog-

nize these stages of development. For example, the discussion of

Item 9 acknowledges that sample size determination may not be

under the investigator’s control but recommends that authors

make clear whether there was a calculated sample size or, if not,

consider the impact of the sample size on the reliability of the

findings or precision of estimated effects. We anticipate that more

details will be available in later stage studies, but many of the

recommendations are also applicable to earlier stage studies.

When specific items of information recommended by REMARK

are not available, these situations should be fully acknowledged in

the report so that readers may judge in context whether these

missing elements are critical to study interpretation. Adherence to

these reporting recommendations as much as possible will permit

critical evaluation of the full body of evidence supporting a

marker.

Checklist Items

Discussion and explanation of the 20 items in the REMARK

checklist (Table 1) are presented. For clarity we have split the

discussion of a few items into multiple parts. Each explanation is

preceded by examples from the published literature that illustrate

types of information that are appropriate to address the item. Our

use of an example from a study does not imply that all aspects of

the study were well reported or appropriately conducted. The

example suggests only that this particular item, or a relevant part

of it, was well reported in that study. Some of the quoted examples

have been edited by removing citations or spelling out abbrevi-

ations, and some tables have been simplified.

Each checklist item should be addressed somewhere in a report

even if it can only be addressed by an acknowledgment that the

information is unknown. We do not prescribe a precise location or

order of presentation as this may be dependent upon journal

policies and is best left to the discretion of the authors of the

report. We recognize that authors may address several items in a

single section of text or in a table. In the current paper, we address

reporting of results under a number of separate items to allow us to

explain them clearly and provide examples, not to prescribe a

heading or location. Authors may find it convenient to report some

Summary Points

N The REMARK (Reporting Recommendations for Tumor
Marker Prognostic Studies) guideline includes a checklist
which aims to improve the reporting of these types of
studies.

N Here, we expand on the REMARK checklist to enhance its
use and effectiveness through better understanding of
the intent of each item and why the information is
important to report.

N Each checklist item of the REMARK guideline is explained
in detail and accompanied by published examples of
good reporting.

N The paper provides a comprehensive overview to
educate on good reporting and provide a valuable
reference of issues to consider when designing, con-
ducting, and analyzing tumor marker studies and
prognostic studies in medicine in general.
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of the requested items in a supplementary material section, for

example on a journal website, rather than in the body of the

manuscript, to allow sufficient space for adequate detail to be

provided. One strategy that has been used successfully is to

provide the information in a supplementary table organized

according to the order of the REMARK items [24]. The elements

of the supplementary table may either provide the information

directly in succinct form or point the reader to the relevant section

of the main paper where the information can be found. Authors

wishing to supply such a supplementary table with their paper may

find it helpful to use the REMARK reporting template that is

supplied as Text S1; it can also be downloaded from http://www.

Table 1. The REMARK checklist [1–7].

INTRODUCTION

1 State the marker examined, the study objectives, and any pre-specified hypotheses.

MATERIALS AND METHODS

Patients

2 Describe the characteristics (for example, disease stage or co-morbidities) of the study patients, including their source and
inclusion and exclusion criteria.

3 Describe treatments received and how chosen (for example, randomized or rule-based).

Specimen characteristics

4 Describe type of biological material used (including control samples) and methods of preservation and storage.

Assay methods

5 Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality
control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and
how assays were performed blinded to the study endpoint.

Study design

6 State the method of case selection, including whether prospective or retrospective and whether stratification or matching (for
example, by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up
period, and the median follow-up time.

7 Precisely define all clinical endpoints examined.

8 List all candidate variables initially examined or considered for inclusion in models.

9 Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size.

Statistical analysis methods

10 Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model
assumptions were verified, and how missing data were handled.

11 Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination.

RESULTS

Data

12 Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram
may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the number
of patients and the number of events.

13 Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables,
and tumor marker, including numbers of missing values.

Analysis and presentation

14 Show the relation of the marker to standard prognostic variables.

15 Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (for example,
hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a
tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.

16 For key multivariable analyses, report estimated effects (for example, hazard ratio) with confidence intervals for the marker and, at
least for the final model, all other variables in the model.

17 Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker and standard
prognostic variables are included, regardless of their statistical significance.

18 If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal validation.

DISCUSSION

19 Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of
the study.

20 Discuss implications for future research and clinical value.

Note: we have changed ‘univariate’ to ‘univariable’ in item 15 for consistency with ‘multivariable’.
doi:10.1371/journal.pmed.1001216.t001

PLoS Medicine | www.plosmedicine.org 3 May 2012 | Volume 9 | Issue 5 | e1001216



equator-network.org/resource-centre/library-of-health-research-

reporting/reporting-guidelines/remark.

Introduction

Item 1. State the marker examined, the study objec-
tives, and any pre-specified hypotheses.

Examples

Marker examined:

‘Using the same cohort of patients, we investigated the

relationship between the type, density, and location of immune

cells within tumors and the clinical outcome of the patients.’ [25]

Objectives:

‘The purpose of this study was to determine whether CpG

island hypermethylation in the promoter region of the APC gene

occurs in primary esophageal carcinomas and premalignant

lesions, whether freely circulating hypermethylated APC DNA is

detectable in the plasma of these patients, and whether the

presence and quantity of hypermethylated APC in the plasma

have any relationship with outcome.’ [26]

‘The goal of this study was to develop a sensitive and specific

method for CTC [circulating tumor cell] detection in HER-2-

positive breast cancer, and to validate its ability to track disease

response and progression during therapy.’ [27]

Hypotheses:

‘The prespecified hypotheses tested were that TS expression

level and p53 expression status are markers of overall survival (OS)

in potentially curatively resected CRC.’ [28]

Explanation
Clear indication of the particular markers to be examined, the

study objectives, and any pre-specified hypotheses should be

provided early in the study report. Objectives are goals one hopes

to accomplish by conducting the study. Typical objectives for tumor

marker prognostic studies include, among others, an evaluation of

the association between tumor marker value and clinical outcome,

or determination of whether a tumor marker contributes additional

information about likely clinical outcome beyond the information

provided by standard clinical or pathologic factors.

The description of the marker should include both the biological

aspects of the marker as well as the time in a patient’s clinical

course when it is to be assessed. The biological aspects should

include the type of molecule or structure examined (for example,

protein, RNA, DNA, or chromosomes) and the features assessed

(for example, expression level, copy number, mutation, or

translocation). Most prognostic marker studies are performed on

specimens obtained at the time of initial diagnosis. The marker

could also be assessed on specimens collected at completion of an

initial course of therapy (for example, detection of minimal

residual disease or circulating tumor cells to predict recurrence or

progression) or at the time of recurrence or progression. A

thorough description of the marker and timing of specimen

collection is necessary for an understanding of the biological

rationale and potential clinical application.

The stated objectives often lead to the development of specific

hypotheses. Hypotheses should be formulated in terms of measures

that are amenable to statistical evaluation. They represent

Box 1. Subgroups and Interactions: The Analysis of Joint Effects

It is often of interest to consider whether the effect of a marker
differs in relation to a baseline variable, which may be
categorical or continuous. Categorical variables, such as stage
of disease, naturally define subgroups and continuous
variables are often categorized by using one or more
cutpoints. Investigating whether the marker effect is different
(modified) in subgroups is popular. Epidemiologists speak
about effect modification; more generally this phenomenon
refers to the interaction between two variables.

In the context of randomized trials, one of these variables is
the treatment and the other variable defines subgroups of the
population. Here the interaction between treatment and the
marker indicates whether the marker is predictive of treat-
ment effect (that is, a predictive marker) [185]. This analysis is
easiest for a binary marker. Subgroup analyses are often
conducted. The interpretation of their results depends
critically on whether the subgroup analyses were pre-
specified or conducted post hoc based on results seen in the
data. Subgroup differences are far more convincing when
such an effect had been postulated; unanticipated significant
effects are more likely to be chance findings and should be
interpreted as being interesting hypotheses needing confir-
mation from similar trials. The same principles apply to
consideration of subgroups in prognostic marker studies.

Subgroup analyses need to be done properly and interpreted
cautiously. It is common practice to calculate separate P
values for the prognostic effect of the marker in separate
subgroups, often followed by an erroneous judgment that the
marker has an effect in one subgroup but not in the other.
However, a significant effect in one group and a non-
significant effect in the other is not sound evidence that the
effect of the marker differs by subgroup [186,187]. First, a

single test of interaction is required to rigorously assess
whether effects are different in subgroups [188]. Interactions
between two variables are usually investigated by testing the
multiplicative term for significance (for example, in a Cox
model). In many studies the sample size is too small to allow
the detection of other than very large (and arguably
implausible) interaction effects [189]. If the test of interaction
is significant, then further evaluation may be required to
determine the nature of the interaction, particularly whether it
is qualitative (effects in opposite directions) or quantitative
(effects in same direction but differing in magnitude). Because
of the risk of false positive findings, replication is critical [190].

For continuous variables, categorization is a popular
approach, but it has many disadvantages: the results depend
on the chosen cutpoints (see Item 11 and Box 4), and it
reduces the power to detect associations between marker
variables and outcome [191]. The multivariable fractional
polynomial interaction approach is an alternative that uses
full information from the data and avoids specification of
cutpoints. It allows investigation of interactions between a
binary and a continuous variable, with or without adjust-
ment for other variables [191,192].

Another approach to assess the effect of treatment in
relation to a continuous variable is the Subpopulation
Treatment Effect Pattern Plot [193].

Both approaches were developed in the context of random-
ized trials, but they readily apply to observational prognostic
studies investigating the interaction of a continuous marker
with a binary or a categorical variable such as sex or stage
[110,194].
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tentative assumptions that can be supported or refuted by the

results of the study. An example of a hypothesis is ‘high expression

levels of the protein measured in the tumor at the time of diagnosis

are associated with shorter disease-free survival’.

Pre-specified hypotheses are those that are based on prior

research or an understanding of a biological mechanism, and they

are stated before the study is initiated. Ideally, a systematic review

of the literature should have been performed. New hypotheses

may be suggested by inspection of data generated in the study.

Analyses performed to address the new hypotheses are exploratory

and should be reported as such. The distinction between analysis

of the pre-specified hypotheses and exploratory analyses is

important because it affects the interpretation (see Item 19) [9].

Materials and Methods

Patients
Item 2. Describe the characteristics (for example,

disease stage or co-morbidities) of the study patients,
including their source and inclusion and exclusion
criteria.

Examples

‘Inclusion criteria for the 2810 patients from whom tumour or

cytosol samples were stored in our tumour bank (liquid nitrogen)

were: primary diagnosis of breast cancer between 1978 and 1992

(at least 5 years of potential follow-up); no metastatic disease at

diagnosis; no previous diagnosis of carcinoma, with the exception

of basal cell skin carcinoma and cervical cancer stage I; no

evidence of disease within 1 month of primary surgery … Patients

with inoperable T4 tumours and patients who received neoadju-

vant treatment before primary surgery were excluded.’ [29]

‘We studied 196 adults who were younger than 60 years and

who had untreated primary CN-AML. The diagnosis of CN-AML

was based on standard cytogenetic analysis that was performed by

CALGB-approved institutional cytogenetic laboratories as part of

the cytogenetic companion study 8461. To be considered

cytogenetically normal, at least 20 metaphase cells from diagnostic

bone marrow (BM) had to be evaluated, and the karyotype had to

be found normal in each patient. All cytogenetic results were

confirmed by central karyotype review. All patients were enrolled

on two similar CALGB treatment protocols (i.e., 9621 or 19808).’

[30]

‘These analyses were conducted within the context of a

completed clinical trial for breast cancer (S8897), which was led

by SWOG within the North American Breast Cancer Intergroup

(INT0102) … Complete details of S8897 have been reported

elsewhere [citation].’ [31]

Relevant text in the reference cited by Choi et al. [31]: ‘Patients

were registered from the Southwest Oncology Group, Eastern

Cooperative Oncology Group, and Cancer and Leukemia Group

B … Eligible patients included premenopausal and postmeno-

pausal women with T1 to T3a node negative invasive adenocar-

cinoma of the breast.’ [32]

Explanation

Each prognostic factor study includes data from patients drawn

from a specific population. A description of that population is

needed to place the study in a clinical context. The source of the

patients should be specified, for example from a clinical trial

population, a healthcare system, a clinical practice, or all hospitals

in a certain geographic area.

Patient eligibility criteria, usually based on clinical or pathologic

characteristics, should be clearly stated. As a minimum, eligibility

criteria should specify the site and stage of cancer of the cases to be

studied. Stage is particularly important because many tumor

markers have prognostic value in early stage disease but not in

advanced stage disease. For example, if a marker is indicative of

metastatic potential, it may have strong prognostic value in

patients with early stage disease but be less informative for patients

who already have advanced or metastatic disease. For this reason,

many studies are restricted to certain stages. Additional selection

criteria may relate to factors such as patient age, treatment

received (see Item 3), or the histologic type of cancer.

Exclusion criteria might be factors such as prior cancer, prior

systemic treatment for cancer, nonstandard treatment (for

example, rarely used, non-approved or ‘off-label’ use of a therapy),

failure to obtain informed consent, insufficient tumor specimen, or

a high proportion of missing critical clinical or pathologic data. It

is generally not appropriate to exclude a case just because it has a

few missing data elements if those data elements are not critical for

assessment of primary inclusion or exclusion criteria (see Item 6a)

[33]. In some studies, deaths that have occurred very early after

the initiation of follow-up are excluded. If this is done, the

rationale and timeframe for exclusion should be specified. To the

extent possible, exclusion criteria should be specified prior to

initiation of the study to avoid potential bias introduced by

exclusions that could be partly motivated by intermediate analysis

results.

When a prognostic study is performed using a subset of cases

from a prior ‘parent’ study (for example, from a RCT or a large

observational study cohort), there may be a prior publication or

other publicly available document such as a study protocol that

lists detailed eligibility and inclusion and exclusion criteria for the

parent study. In these cases, the prior document can be referenced

rather than repeating all of the details in the prognostic study

paper. However, it is preferable that at least the major criteria (for

example, the site and stage of the cancer) for the parent study still

be mentioned in the prognostic study paper, and it is essential that

any additional criteria imposed specifically for the prognostic study

(such as availability of adequate specimens) be stated in the

prognostic study paper.

Specification of inclusion and exclusion criteria can be

especially challenging when the study is conducted retrospectively.

The real population that the cases represent is often unclear if the

starting point is all cases with accessible medical records or all

cases with specimens included in a tumor bank. A review of 96

prognostic studies found that 40 had the availability of tumor

specimens or data as an inclusion criterion [33]. In some studies,

unknown characteristics may have governed whether cases were

represented in the medical record system or tumor bank, making it

impossible to specify exact inclusion and exclusion criteria. If the

specimen set was assembled primarily on the basis of ready

availability (that is, a ‘convenience’ sample), this should be

acknowledged.

A flow diagram is very useful for succinctly describing the

characteristics of the study patients. The entrance point to the flow

diagram is the source of patients and successive steps in the

diagram can represent inclusion and exclusion criteria. Some of

the information from this diagram can also be given in the upper

part of the REMARK profile (see Item 12 for examples).

After the study population has been defined, it is important to

describe how the specific cases included in the study were sampled

from that population. Item 6a discusses reporting of case selection

methods.

Item 3. Describe treatments received and how cho-
sen (for example, randomized or rule-based).

Examples

‘Patients were treated with surgery by either modified radical

mastectomy (637 cases) or local tumour resection (683 cases), with
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axillary node dissection followed by postoperative breast irradia-

tion (695 cases). Adjuvant therapy with chemotherapy and/or

hormone therapy was decided according to nodal status and

hormone receptor results. Treatment protocols varied over time.

From 1975 to 1985, node-negative patients had no chemotherapy.

After 1985, node-negative patients under 50 years of age, with ER

and PR negative and SBR [Scarff-Bloom-Richardson] grade 3

tumours, had chemotherapy.’ [34]

‘Details of the treatment protocols have been previously

reported. Briefly, patients on CALGB 9621 received induction

chemotherapy with cytarabine, daunorubicin, and etoposide with

(ADEP) or without (ADE) the multidrug resistance protein

modulator PSC-833, also called valspodar. Patients who had

CN-AML and who achieved a CR received high-dose cytarabine

(HiDAC) and etoposide for stem-cell mobilization followed by

myeloablative treatment with busulfan and etoposide supported by

APBSCT. Patients unable to receive APBSCT received two

additional cycles of Hi-DAC. Patients enrolled on CALGB 19808

were treated similarly to those on CALGB 9621. None of the

patients received allogeneic stem-cell transplantation in first

remission.’ [30]

Explanation

A patient’s disease-related clinical outcome is determined by a

combination of the inherent biological aggressiveness of a patient’s

tumor and the response to any therapies received. The influence of

biological characteristics on disease outcome would ideally be

assessed in patients who received no treatment, but usually most

patients will have received some therapy. Many patients with solid

tumors will receive local-regional therapy (for example, surgery

and possibly radiotherapy). For some types and stages of cancer,

patients would almost always receive systemic therapy (for

example, chemotherapy or endocrine therapy). Sometimes all

patients included in a study will have received a standardized

therapy, but more often there will be a mix of treatments that

patients have received. The varied treatments that patients might

receive in standard care settings can make study of prognostic

markers especially challenging.

Because different treatments might alter the disease course in

different ways, it is important to report what treatments the

patients received. The impact of a treatment might also depend

on the biological characteristics of the tumor. This is the essence

of predictive marker research where the goal is to identify the

treatment that leads to the best clinical outcome for each

biological class of tumor (for example, defined by markers) (see

Box 1).

The basis for treatment selection, if known, should be reported.

If not known, as will often be the case for retrospective specimen

collections, one must be cautious in interpreting prognostic and

predictive analyses. This concern derives from the possibility that

the value of the marker or patient characteristics associated with

the marker played a role in the choice of therapy, thereby leading

to a potential confounding of effects of treatment and marker. If

sufficient numbers of patients are treated with certain therapies,

assessment of the prognostic value of the marker separately by

treatment group (see Box 1) could be considered. However,

predictive markers should generally be evaluated in randomized

clinical trials to ensure that the choice of treatment was not

influenced by the marker or other biological characteristics of the

tumor.

It is also important to report the timing of therapy relative to

specimen collection since biological characteristics of a tumor

may be altered by the therapies to which it was exposed prior to

specimen collection (see Item 4). The prognostic value of a

marker may be different depending on whether it was present in

the tumor at the time of initial diagnosis, was present only after

the patient received therapy or whether it is in the presence of

other biological characteristics that emerged as a consequence of

therapy.

Specimen Characteristics
Item 4. Describe type of biological material used

(including control samples) and preservation and stor-
age methods.

Examples

Positive and negative controls:

‘Tumor specimens were obtained at the time of surgery and

snap frozen in liquid nitrogen, then stored at 280uC. Blood

samples were collected 24 hours or less before surgery by

peripheral venous puncture and were centrifuged at 15006g at

4uC for 10 minutes. The separated plasma was aliquoted and

stored at 280uC for future analysis. Normal endometrial tissue

specimens were obtained from patients undergoing hysterectomy

for benign gynecologic pathologies. Control plasma specimens

were derived from health check examinees at Yongdong

Severance Hospital who showed no history of cancer or

gynecologic disease and had no abnormalities in laboratory

examinations or gynecologic sonography.’ [35]

Preservation and storage methods:

‘Fixation of tumor specimens followed standard protocols, using

either 10% nonbuffered or 10% buffered formalin for 12 hours.

Storage time of the archival samples was up to 15 years. Of the 57

independent MCL cases, 42 tumors had amplifiable cDNA.’ [36]

‘Tissue samples were fixed in 10% buffered formalin for 24 h,

dehydrated in 70% EtOH and paraffin embedded. Five micro-

meter sections were cut using a cryostat (Leica Microsystems, UK)

and mounted onto a histological glass slide. Ffpe [formalin-fixed,

paraffin-embedded] tissue sections were stored at room temper-

ature until further analysis.’ [37]

Explanation

Most tumor marker prognostic studies have focused on one or

more of the following types of specimens: tumor tissue (formalin

fixed and paraffin-embedded or frozen); tumor cells or tumor

DNA isolated from blood, bone marrow, urine, or sputum; serum;

or plasma. Authors should report what types of specimens were

used for the marker assays. As much information about the source

of the specimen as possible should be included, for example,

whether a tumor sample was obtained at the time of definitive

surgery or from a biopsy procedure such as core needle biopsy or

fine needle aspirate. For patients with advanced disease, it should

be clearly stated whether tumor samples assayed came from the

primary tumor site (perhaps collected years earlier at the time of

an original diagnosis of early stage disease) or from a current

metastatic lesion and whether the patient had been exposed to any

prior cancer-directed therapies (see Item 3).

Much has been written about the potential confounding effects

of pre-analytical handling of specimens, and several organizations

have recently published articles addressing best practices for

specimen handling [38–40]. Although the way specimens are

collected is often not under the control of investigators studying

prognostic markers, it is important to report as much as possible

about the types of biological materials used in the study and the

way these materials were collected, processed, and stored. The

time of specimen collection will often not coincide with the time

when the marker assay is performed, as it is common for marker

assays to be performed after the specimens have been stored for

some period of time. It is important to state how long and how the

specimens had been stored prior to performing the marker assay.
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The Biospecimen Reporting for Improved Study Quality

(BRISQ) guidelines provide comprehensive recommendations for

what information should be reported regarding specimen charac-

teristics and methods of specimen processing and handling when

publishing research involving the use of biospecimens [41]. It is

understood that reporting extensive detail is difficult if not

impossible, especially when retrospective collections are used. In

recognition of these difficulties, the BRISQ guidelines are

presented in three tiers, according to the relative importance

and feasibility of reporting certain types of biospecimen informa-

tion.

Criteria for acceptability of biospecimens for use in marker

studies should be established prior to initiating the study.

Depending on the type of specimen and particular assay to be

performed, criteria could be based on metrics such as percentage

tumor cellularity, RNA integrity number, percentage viable cells,

or hemolysis assessment. These criteria should be reported along

with a record of the percentage of specimens that met the criteria

and therefore were included in the study. The numbers of

specimens examined at each stage in the study should be recorded

in the suggested flowchart and, particularly, in the REMARK

profile (see Item 12). This information permits the reader to better

assess the feasibility of collecting the required specimens and might

indicate potential biases introduced by the specimen screening

criteria.

Often, the specific handling of a particular set of specimens may

not be known, but if the standard operating procedures of the

pathology department are known, it is helpful to report

information such as type of fixative used and approximate length

of fixation time; both fixative and fixation time have been reported

to dramatically affect the expression of some markers evaluated in

tissue [42,43].

Information should be provided about whether tissue sections

were cut from a block immediately prior to assaying for the

marker. If tissue sections have been stored, the storage conditions

(for example, temperature and air exposure) should be noted, if

known. Some markers assessed by immunohistochemistry have

shown significant loss of antigenicity when measured in cut

sections that had been stored for various periods of time [44,45].

The use of stabilizers (for example, to protect the integrity of RNA)

should be reported. For frozen specimens, it is important to report

how long they were stored, at what temperature and whether they

had been thawed and re-frozen. If the specimen studied is serum

or plasma, information should be provided about how the

specimen was collected, including anticoagulants used, the

temperature at which the specimen was maintained prior to

long-term storage, processing protocols, preservatives used, and

conditions of long-term storage.

Typically, some control samples will be assayed as part of the

study. Control samples may provide information about the marker

in non-diseased individuals (biological controls) or they may

provide a means to monitor assay performance (assay controls).

Biological control samples may be obtained from healthy

volunteers or from other patients visiting a clinic for medical care

unrelated to cancer. Apparently normal tissue adjacent to the

tumor tissue (in the same section) may be used or normal tissue

taken during the surgical procedure but preserved in a separate

block may also be used as a control. It is important to discuss the

source of the biological controls and their suitability with respect to

any factors that might differ between the control subjects and

cancer patients (for example, other morbidities and medications,

sex, age, and fasting status) and have an impact on the marker

[46]. Information about the comparability of handling of control

samples should also be provided.

Information about assay control or calibrator samples should

also be reported. For example, if dilution series are used to

calibrate daily assay runs or control samples with known marker

values are run with each assay batch, information about these

samples should be provided (see Item 5).

Assay Methods
Item 5. Specify the assay method used and provide

(or reference) a detailed protocol, including specific
reagents or kits used, quality control procedures,
reproducibility assessments, quantitation methods,
and scoring and reporting protocols. Specify whether
and how assays were performed blinded to the study
endpoint.

Examples

‘Immunohistochemistry was used to detect the presence of p27,

MLH1, and MSH2 proteins in primary tumor specimens using

methods described in previous reports. Positive controls were

provided by examining staining of normal colonic mucosa from

each case; tumors known to lack p27, MLH1, or MSH2 were

stained concurrently and served as negative controls … In this

report, we scored the tumors using a modification of our previous

methods that we believe provides best reproducibility and yields

the same outcome result as that using our previous scoring method

(data not shown). Nuclear expression of p27 was evaluated in a

total of 10 randomly selected high-power fields per tumor. A

tumor cell was counted as p27 positive when its nuclear reaction

was equal to or stronger than the reaction in surrounding

lymphocytes, which were used as an internal control. All cases

were scored as positive (.10% of tumor cells with strong nuclear

staining), negative (,10% of tumor cells with strong nuclear

staining), or noninformative.’ [47]

‘Evaluation of immunostaining was independently performed

by two observers (KAH and PDG), blinded to clinical data. The

agreement between the two observers was .90%. Discordant

cases were reviewed with a gynaecological pathologist and were re-

assigned on consensus of opinion.’ [48]

Explanation

Assay methods should be reported in a complete and

transparent fashion with a level of detail that would enable

another laboratory to reproduce the measurement technique. The

term ‘assay’ is used broadly to mean any measurement process

applied to a biological specimen that yields information about that

specimen. For example, the assay may involve a single biochemical

measurement or multiple measurements, or it may involve a semi-

quantitative and possibly subjective scoring based on pathologic

assessment. It has been demonstrated for many markers that

different measurement techniques can produce systematically

different results. For example, different levels of human epidermal

growth factor receptor 2 expression have been found using

different methods [49,50]. Variations of p53 expression were

observed in bladder tumors due to different staining techniques

and scoring methods in a reproducibility study comparing

immunohistochemical assessments performed in five different

laboratories [51].

Although a complete listing of the relevant information to report

for every class of assay is beyond the scope of this paper, examples

of the general types of technical details that should be reported are

as follows. Specific antibodies, antigen retrieval steps, standards

and reference materials, scoring protocol, and score reporting and

interpretation (for example, if results are reported as positive or

negative) should be described for immunohistochemical assays.

For DNA- and RNA-based assays, specific primers and probes

should be identified along with any scoring or quantitation
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methods used. If another widely accessible document (such as a

published paper) details the exact assay method used, it is

acceptable to reference that other document without repeating

all the technical details. If a commercially available kit is used for

the assay, it is important to state whether the kit instructions were

followed exactly; any deviations from the kit’s recommended

procedures must be fully acknowledged in the report.

It is important to report the minimum amount of specimen that

was required to perform the assay (for example, a 5 mm section or

5 mg DNA) and whether there were any other assessments that

were performed to judge the suitability of the specimen for use in

the study (see Item 4). Assays requiring a large amount of specimen

may not be feasible for broader clinical application, and study

results may be biased toward larger tumors. If there were any

additional specimen pre-processing steps required (for example,

microdissection or polymerase chain reaction amplification), these

should be stated as well.

It is helpful to report any procedures, such as use of blinded

replicate samples or control reference samples, that are employed

to assess or promote consistency of assay results over time or

between laboratory sites. For assays in a more advanced state of

development, additional examples could include qualification

criteria for new lots of antibodies or quantitative instrument

calibration procedures. If reproducibility assessments have been

performed, it is helpful to report the results of those studies to

provide a sense of the overall variability in the assay and identify

major sources contributing to the variability.

Despite complete standardization of the assay technique and

quality monitoring, random variation (measurement error) in assay

results may persist due to assay imprecision, variation between

observers or intratumoral biological heterogeneity. For example,

many immunohistochemical assays require selection of ‘best’ regions

to score, and subjective assessments of staining intensity and

percentage of stained cells. The impact of measurement error is

attenuation of the estimated prognostic effect of the marker. Good

prognostic performance of a marker cannot be achieved in the

presence of a large amount of imprecision. It is important to report

any strategies that were employed to reduce the measurement error,

such as taking the average of two or three readings to produce a

measurement with less error, potentially increasing the power of the

study and hence the reliability of the findings. In multicenter studies,

single reviewers or reference laboratories are often used to reduce

variability in marker measurements, and such efforts should be noted.

There may be a risk of introducing bias when a patient’s clinical

outcome is known by the individual making the marker assessment,

particularly when the marker evaluation involves considerable

subjective judgment. Therefore, it is important to report whether

marker assessments were made blinded to clinical outcome.

Study Design
Item 6. State the method of case selection, including

whether prospective or retrospective and whether strat-
ification or matching (for example, by stage of disease
or age) was used. Specify the time period from which
cases were taken, the end of the follow-up period, and
the median follow-up time.

To clarify the discussion we have split this item into two parts.

a. Case selection

Examples

‘We retrospectively analysed tumour samples from patients who

were prospectively enrolled in phase II and III trials of HDC for

HRPBC at the University of Colorado between 1990 and 2001.’

[52]

‘Seven hundred and seventy female patients with primary

invasive breast cancer, diagnosed between 1992 and 1997 at the

Institute of Oncology, Ljubljana, were included in the study. The

patients had not been previously treated, had no proven metastatic

disease at the time of diagnosis and no synchronous or

metachronous occurring cancer. The primary inclusion criterion

was an adequate histogram obtained from an FNA sample (see

below). The diagnosis of carcinoma was therefore first established

by FNA and subsequently confirmed and specified by histological

examination in 690 primarily resected tumours (80 patients were

not treated surgically).’ [53]

‘Of the 165 patients, all patients who had a pathology report of

a non-well-differentiated (defined as moderately- to poorly-

differentiated) SCC were identified. A matched control group of

well-differentiated SCC was identified within the database.

Matching criteria were (1) age (65 y), (2) gender, and (3) site.’ [54]

Explanation

The reliability of a study depends importantly on the study

design. An explanation of how patients were selected for inclusion

in the study should be provided. Reliance on a label of

‘prospective’ or ‘retrospective’ is inadequate because these terms

are ill-defined [55]. It should be clearly stated whether patients

were recruited prospectively as part of a planned marker study,

represent the full set or a subset of patients recruited prospectively

for some other purpose such as a clinical trial, or were identified

retrospectively through a search of an existing database, for

example from hospital or registry records or from a tumor bank.

Whether patients were selected with stratification according to

clinicopathologic factors such as stage, based on survival

experience or according to a matched design (for example,

matched pairs of patients who did and did not recur) has

important implications for the analysis and interpretation, so

details of the procedures used should be reported.

Authors should describe exactly how and when clinical,

pathologic, and follow-up data were collected for the identified

patients. It should be stated whether the marker measurements were

extracted retrospectively from existing records, whether assays were

newly performed using stored specimens, or whether assays were

performed in real time using prospectively collected specimens.

In truly prospective studies, complete baseline measurements

(marker or clinicopathologic factors) can be made according to a

detailed protocol using standard operating procedures, and the

patients can be followed for an adequate length of time to allow a

comparison of survival and other outcomes in relation to baseline

tumor marker values. Prospective patient identification and data

collection are preferable because the data will be higher quality.

Prospective studies specifically designed to address marker

questions are rare, although some prognostic studies are embed-

ded within randomized treatment trials. Aside from a potential

sample size problem, a prognostic marker study may be restricted

to only some of the centers from a multicenter RCT. Case

selection within participating centers (for example, inclusion of

only younger patients or those with large tumors) may introduce

bias and details of any such selection should be reported.

Most prognostic factor studies are retrospective in the sense that

the assay of interest is performed on stored samples. The benefit of

these retrospective studies is that there is existing information about

moderate or long-term patient follow-up. Their main disadvantage

is the lower quality of the data - clinical information collected

retrospectively is often incomplete and clinicopathologic data may

not have been collected in a standardized fashion (except perhaps if

the data were collected as part of a clinical trial). Eligible patients

should be considered to be part of the study cohort and not excluded

because of incomplete data or loss to follow-up, with the amount of
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missing data reported for each variable. That allows readers to

judge the representativeness of the patients whose data were

available for analysis. (See also Item 10e, Item 12, and Box 2.)

In situations where more complex case selection strategies are

used, those approaches must be carefully described. Given the small

size of most prognostic studies (see Item 9), it is sometimes desirable

to perform stratified sampling to ensure that important subgroups

(for example, different stages of disease or different age groups) are

represented. The stratified sampling may be in proportion to the

prevalences of the subgroups in the population, or more rare

subgroups may be oversampled (weighted with a higher sampling

probability), especially if subgroup analyses are planned.

Occasionally, patients are sampled in relation to their survival

experience - for example, taking only patients with either very

short or very long survival (excluding some patients who were

censored). Simulation studies have shown that sampling which

excludes certain subgroups of patients leads to bias in estimates of

prognostic value and thus should be avoided [56]. If a large

number of patients is available for study but few patients had

events, case-control (a case being a patient with an event, a control

being a patient without an event) sampling methods (matched or

unmatched) may offer improved efficiency.

If standard survival analysis methods are used, unselected cases

or random samples of cases from a given population are necessary

to produce unbiased survival estimates. If more complex stratified,

weighted, or case-control sampling strategies are used, then

specialized analysis methods appropriate for those sampling

designs (for example, stratified and weighted analyses or condi-

tional logistic regression) should have been applied and should be

described [57,58] (see Item 10).

b. Time period

Examples

‘… 1143 primary invasive breast tumors collected between 1978

and 1989 … All patients were examined routinely every 3–6

months during the first 5 years of follow-up and once a year

thereafter. The median follow-up period of patients alive (n = 584)

was 124 months (range, 13–231 months). Patients with events after

120 months were censored at 120 months because after 10 years of

observation, patients frequently are redirected to their general

practitioner for checkups and mammography and cease to visit

our outpatient breast cancer clinic.’ [59]

‘The estimated median follow-up time, as calculated by the

reverse Kaplan-Meier method, was 4.3 years.’ [60]

Explanation

Knowing when a study took place and over what period

participants were recruited places a study in historical context.

Medical and surgical therapies evolve continuously and may affect

the routine care given to patients over time. In most studies where

the outcome is the time to an event, follow-up of all participants is

ended on a specific date. This date should be given, and it is also

useful to report the median duration of follow-up.

The method of calculating the median follow up should be

specified. The preferred approach is the reverse Kaplan-Meier

method, which uses data from all patients in the cohort [61]. Here,

the standard Kaplan-Meier method is used with the event

indicator reversed so that censoring becomes the outcome of

interest. Sometimes it may be helpful to also give the median

follow-up of those patients who did not have the event (in other

words, those with censored survival times). The amount of follow-

up may vary for different endpoints, for example when recurrence

is assessed locally but information about deaths comes from a

central register.

It may also be useful to report how many patients were lost to

follow-up for a long period (for example, over one year) or the

completeness of the data compared to that if no patient was lost to

follow-up [62,63].

In a review of 132 reports in oncology journals in 1991 that used

survival analysis, nearly 80% included the starting and ending

dates for accrual of patients, but only 24% also reported the date

on which follow-up ended [64]. A review of articles published in

2006 found those dates reported in 74% and 18% of articles,

respectively. Of 331 studies included in 20 published meta-

analyses, the time period during which patients were selected was

precisely defined in 232 (70%) [18].

Item 7. Precisely define all clinical endpoints exam-
ined.

Examples

‘Survival time was defined to be the period of time in months

from the date of diagnosis to the date of death from breast cancer.

Patients who died from causes other than those relating to breast

cancer were included for the study, and data for these records were

treated as right-censored cases for evaluation purposes. Relapse

time was defined as the period of time in months from the date of

diagnosis to the date at which relapse was clinically identified.

Data on patients who dropped out of the study for reasons other

than a breast-cancer relapse were considered right-censored for

these analyses.’ [65]

Box 2. Missing Data

Missing data occur in almost all studies. The most common
approach to dealing with missing data is to restrict analyses to
individuals with complete data on all variables required for a
particular analysis. These complete-case analyses can be
biased if individuals with missing data are not typical of the
whole sample. Furthermore, a small number of missing values
in each of several variables can result in a large number of
patients excluded from a multivariable analysis. The smaller
sample size leads to a reduction in statistical power.

Imputation, in which each missing value is replaced with
an estimated value, is a way to include all patients in the
analysis. However, simple forms of imputation (for exam-
ple, replacing values by the stage-specific mean) are likely
to produce standard errors that are too small.

Data are described as missing completely at random (MCAR)
if the probability that a specific observation is missing does
not depend on the value of any observable variables. Data
are missing at random (MAR) if missingness depends only on
other observed variables. Data are missing not at random
(MNAR) if the probability of being missing depends on
unobserved values including possibly the missing value itself.

Small amounts of missing data can be imputed using simple
methods, but when multiple variables have missing values,
multiple imputation is the most common approach
[130,195,196]. Most imputation methods assume data are
MAR, but this cannot be proved, and these methods require
assuming models for the relationship between missing values
and the other observed variables. Use of a separate category
indicating missing data has been shown to bias results [195].

The plausibility of assumptions made in missing data
analyses is generally unverifiable. When more than
minimal amounts of data are imputed it is valuable to
present results obtained with imputation alongside those
from complete case analyses, and to discuss important
differences (Item 18).
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‘The primary end point was tumour recurrence or death of a

patient. RFS was defined as time from mastectomy to the first

occurrence of either locoregional or distant recurrence, contralat-

eral tumour, secondary tumour or death; overall survival as time

from operation to death.’ [66]

Explanation

Survival analysis is based on the elapsed time from a relevant

time origin, often the date of diagnosis, surgery, or randomization,

to a clinical endpoint. That time origin should always be specified.

Most prognostic studies in cancer examine few endpoints,

mainly death, recurrence of disease, or both, but these endpoints

are often not clearly defined (see Box 3). Analyses of time to death

may be based on either deaths from any cause or only cancer

related deaths. The endpoint should be defined precisely and not

referred to just as ‘survival’ or ‘overall survival’. If deaths from

cancer are analyzed, it is important to indicate how the cause of

death was classified. If known, it can also be helpful to indicate

what records (such as death certificate or tumor registry) were

examined to determine the cause of death.

If there was a specific rationale for choosing the primary clinical

endpoint, it should be stated. For example, if the studied marker is

believed to be associated with the ability of a cell to metastasize, an

endpoint that focuses on distant recurrences might be justified. For

a marker believed to be associated with sensitivity to radiation

therapy, local-regional recurrences in a population of patients who

received radiotherapy following primary surgery might be

relevant.

The lack of standardized definitions also affects the analysis of

recurrence of disease. Relapse-free survival, disease-free survival

(DFS), remission duration, and progression-free survival are the

terms most commonly used; however, they are rarely defined

precisely. The first three imply that only patients who were

disease-free after initial intervention were analyzed (although this

is not always the case), while for progression-free survival all

patients are generally included in the analysis. If authors analyze

disease recurrence they should precisely define that endpoint, in

particular with respect to how deaths are treated. Similarly,

outcomes such as distant DFS should be defined precisely.

Further, standardized definitions across studies would be desirable

[67].

Some endpoints require subjective determination (for example,

progression-free survival determined by a review of radiographic

images). For this reason, it can also be helpful to report, if known,

whether the endpoint assessments were made blinded to the

marker measurements. It is helpful to report any additional steps

taken to confirm the endpoint assessments (for example, a central

review of images for progression determination).

The time origin was not stated for at least one endpoint in 48%

of 132 papers in cancer journals reporting survival analyses [64].

At least one endpoint was not clearly defined in 62% of papers.

Among the 106 papers with death as an endpoint, only 50 (47%)

explicitly described the endpoint as either any death or only cancer

death. In 64 papers that reported time to disease progression, the

treatment of deaths was unclear in 39 (61%). Outcomes were

precisely defined in 254 of 331 studies (77%) included in 20

published meta-analyses [18]. The authors noted, however, that

‘this percentage may be spuriously high because we considered all

mortality definitions to be appropriate regardless of whether any

level of detail was provided’.

Item 8. List all candidate variables initially examined
or considered for inclusion in models.

Example

‘Cox survival analyses were performed to examine prognostic

effects of vitamin D univariately (our primary analysis) and after

adjustment for each of the following in turn: age (in years), tumor

stage (T2, T3, or TX v T1), nodal stage (positive v negative),

estrogen receptor status (positive or equivocal v negative), grade (3

Box 3. Clinical Outcomes

It is important to clearly define any endpoints examined (see
Item 7). Events typically considered in tumor marker
prognostic studies include death due to any cause, death
from cancer, distant recurrence, local recurrence, tumor
progression, new primary tumor, or tumor response to
treatment. The clinical endpoint is reached when the event
occurs. For death, recurrence, progression, and new primary
tumor, there is usually interest not only in whether the event
occurs (endpoint reached), but also the time elapsed (for
example, from the date of surgery or date of randomization
in a clinical trial) until it occurs. Time until last evaluation is
used for patients without an event (time censored). The
clinical outcome is the combination of the attainment or
non-attainment of the endpoint and the time elapsed. Such
clinical outcomes are referred to as time-to-event outcomes.
Commonly examined outcomes in tumor marker prognostic
studies are disease-free survival (DFS), distant DFS, and
overall survival (OS). Different event types are sometimes
combined to define a composite endpoint, for example DFS
usually includes any recurrence (local, regional, or distant)
and death due to any cause. For composite endpoints, the
time-to-event is the time elapsed until the first of any of the
events comprising the composite endpoint occurs. As
recently shown, a majority of articles failed to provide a
complete specification of events included in endpoints [197].

Many clinical endpoints do not have standard definitions,
although there have been some recent efforts to
standardize definitions for some disease sites. The STan-
dardized definitions for Efficacy End Points (STEEP) system
[67] proposed standardized endpoint definitions for
adjuvant breast cancer trials to address inconsistencies
such as the fact that new primary tumors, non-cancer
death, and in situ cancers may or may not be included as
events in DFS for breast cancer. Different names may be
used interchangeably for one survival time outcome, for
example, recurrence-free survival and DFS. Furthermore,
there is not always agreement on which endpoint is the
most relevant endpoint to consider in a particular disease
setting. For example, reliable information about cause of
death is sometimes not available, so considering death
due to any cause is often preferred. In some situations, for
example, in an older patient population with small risk of
dying from the cancer, it can be argued that death due to
cancer is more relevant because it is expected that many
deaths will be unrelated to the cancer and including them
in the endpoint could make the estimated prognostic
effect of the marker difficult to interpret.

The endpoints to be examined should be decided on the
basis of clinical relevance. The results for all endpoints that
were examined should be reported regardless of the
statistical significance of the findings (see Items 15 to 17
and Box 5). A demonstrated association of a marker with one
of these endpoints does not guarantee its association with
all of the endpoints. For example, local recurrence may be an
indication of insensitivity to local or regional therapy (such as
radiation therapy) whereas distant recurrence requires that
tumor cells have the ability to metastasize. Different markers
may be indicative of these distinct characteristics.
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v 1 or 2), use of adjuvant chemotherapy (any v none), use of

adjuvant hormone therapy (any v none), body mass index (BMI; in

kilograms per square meter), insulin (in picomoles per liter), and

season of blood draw (summer v winter). Simultaneous adjustment

for age, tumor stage, nodal stage, estrogen receptor status, and

grade was then performed.’ [68]

Explanation

It is important for readers to know which marker measurements

or other clinical or pathological variables were initially considered

for inclusion in models, including variables not ultimately used.

The reasons for lack of inclusion of variables should be addressed;

for example, variables with large amounts of missing data (see Box

2). Authors should fully define all variables and, when relevant,

they should explain how they were measured.

All of the variables considered for standard survival analyses

should be measured at or before the study time origin (for

example, the date of diagnosis) [69,70]. (For tumor markers, this

means the measurements are made on specimens collected at or

before study time origin even if the actual marker assays are

performed at a later time on stored specimens.) Variables

measured after the time origin, such as experiencing an adverse

event, should more properly be considered as outcomes, not

predictors [71]. Another example is tumor shrinkage when the

time origin is diagnosis or start of treatment. Statistical methods

exist to allow inclusion of variables measured at times after the

start of follow-up (‘time-dependent covariates’) [72], but they are

rarely used and require strong assumptions [73,74].

A list of the considered candidate variables was presented in

71% of a collection of 331 prognostic studies [18]. Of 132 articles

published in cancer journals, 18 (13%) analyzed variables that

were not measurable at the study time origin [64], of which 15

compared the survival of patients who responded to treatment to

survival of those who did not respond. Out of 682 observational

studies in clinical journals that used a survival analysis, 127 (19%)

included covariates not measurable at baseline [69].

Item 9. Give rationale for sample size; if the study
was designed to detect a specified effect size, give the
target power and effect size.

Examples

‘Cost and practical issues restricted the sample size in our study

to 400 patients. Only 30 centres entered ten or more patients in

AXIS, so for practical reasons, retrieval of samples began with

these centres within the UK, continuing until the target sample

size of 400 had been reached.’ [75]

‘Assuming a control survival rate of 60% and 50% of patients

with high TS expression or p53 overexpression, then analysis of

tissue samples from 750 patients will have 80% power to detect an

absolute difference of 10% in OS associated with the expression of

either of these markers.’ [76]

‘Although it was a large trial, FOCUS still lacked power to be split

into test and validation data sets. It was therefore treated as a single

test-set, and positive findings from this analysis need to be validated

in an independent patient population. A 1% significance level was

used to allow for multiple testing. The number of assessable patients,

variant allele frequencies, and consequent power varied by

polymorphism; however, with an overall primary outcome event

rate of 20%, we could detect differences of 10% (eg, 14% v 24%)

between any two treatment comparisons, and we could detect a

linear trend in genotype subgroups varying by 6% (eg, 13% v 19% v

25%) with a significance level of 1% and 90% power … Even with a

dropout rate of 14% for incomplete clinical data, there was 85%

power at a significance level of 1% to detect a 10% difference from

14% to 24% in toxicity for any two treatment comparisons or a

linear trend in genotype subgroups from 13% to 19% to 25%.’ [77]

Explanation

Sample size has generally received little attention in prognostic

studies, perhaps because these studies are often performed using

pre-existing specimen collections or data sets. For several reasons,

the basis for a sample size calculation in these studies is less clear

than for a randomized trial. For example, the minimum effect size

of interest for a prognostic marker study may be quite different

from that of an intervention study, and the effect of the marker

adjusted for other standard variables in a multivariable model may

be of greater interest than the unadjusted effect. Authors should

explain the considerations that led to the sample size. Sometimes a

formal statistical calculation will have been performed, for

example calculation of the number of cases required to obtain

an estimated hazard ratio with prescribed precision or to have

adequate power to detect an effect of a given size. More often

sample size will be determined by practical considerations, such as

the availability of tumor samples or cost. Even in this situation, it is

still helpful to report what effect size will be detectable with

sufficient power given the pre-determined sample size.

Several authors have addressed the issue of sample size

calculations applicable to prognostic studies [78–80]. The most

important factor influencing power and sample size requirement

for a study with a time-to-event outcome is the number of

observed events (effective sample size), not the number of patients.

For a binary outcome, the effective sample size is the smaller of the

two frequencies, ‘event’ or ‘non-event’. Additional factors, such as

the minimum detectable effect size, distribution of the marker (or

the prevalence of a binary marker), coding of the marker (whether

treated as a continuous variable or dichotomous; see Item 11 and

Box 4), and type of analysis method or statistical test also have an

impact. As a consequence of the importance of the number of

events, studies of patients with a relatively good prognosis, such as

lymph node negative breast cancer, require many more patients or

longer follow-up than studies of metastatic disease in which events

are more frequently observed. Choice of an endpoint that includes

recurrence as an event in addition to death will also result in more

observed events and higher power, an important reason as to why

DFS is often preferred as an endpoint [81].

Sample size requirements will differ depending on the goal of

the study and stage of development of the marker. For markers

early in the development process, investigators may be most

interested in detecting large effects unadjusted for other variables

and may be willing to accept higher chances of false positive

findings (that is, a higher type I error) to avoid missing interesting

marker effects. Targeting larger effect sizes and allowing higher

error rates will result in a smaller required sample size. As a

prognostic marker advances in the development process, it will

typically be studied in the context of regression models containing

other clinically relevant variables, as discussed in Item 10d. These

situations will require larger sample sizes to account for the

diminished size of marker effects adjusted for other (potentially

correlated) variables and to offer some stability even when multiple

variables will be examined and model selection methods will be

used.

When the goal is to identify the most relevant variables in a

model, various authors have suggested that at least 10 to 25 events

are required for each of the potential prognostic variables to be

investigated [82–85]. Sometimes the primary focus is estimation of

the marker effect after adjustment for a set of standard variables,

so correctly identifying which of the other variables are really

important contributors to the model is of less concern. In this

situation, sample size need not be as large as the 10 to 25 events

per variable rule would recommend [86] and other sample size

calculation methods that appropriately account for correlation of
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the marker with the other variables are available [78,87].

Required sample sizes are substantially larger if interactions are

investigated. For example, an interaction between a marker and a

treatment indicator may be examined to assess whether a marker

is predictive for treatment benefit (see Box 3).

Several studies have noted the generally small sample size of

published studies of prognostic markers. In a review of lung cancer

prognostic marker studies, the median number of patients per

study was 120 [88], while three quarters of studies in a review of

osteosarcoma prognostic marker literature included fewer than

100 patients [89]. In a systematic review of tumor markers for

neuroblastoma, 122 (38%) of 318 eligible reports were excluded

because the sample size was 25 or lower [90]. As mentioned above,

the number of events is a more relevant determinant of power of a

study, and it is usually much smaller and often not even reported

(see Item 12).

Twenty meta-analyses that included 331 cancer prognostic

studies published between 1987 and 2005 were assessed to

determine the quality of reporting for the included studies [18].

Only three (0.9%) of the 331 studies reported that a power

calculation had been performed to determine sample size.

Statistical Analysis Methods
Item 10. Specify all statistical methods, including

details of any variable selection procedures and other

model-building issues, how model assumptions were
verified, and how missing data were handled.

After some broad introductory observations about statistical

analyses, we consider this key item under eight subheadings.

All the statistical methods used in the analysis should be

reported. A sound general principle is to ‘describe statistical

methods with enough detail to enable a knowledgeable reader with

access to the original data to verify the reported results’ [91]. It is

additionally valuable if the reader can also understand the reasons

for the approaches taken.

Moreover, for prognostic marker studies there are many

possible analysis strategies and choices are made at each step of

the analysis. If many different analyses are performed, and only

those with the best results are reported, this can lead to very

misleading inferences. Therefore, it is essential also to give a

broad, comprehensive view of the range of analyses that have been

undertaken in the study (see also the REMARK profile in Item

12). Details can be given in supplementary material if necessary

due to publication length limitations.

Analysis of a marker’s prognostic value is usually more complex

than the analysis of a randomized trial, for which statistical

principles and methods are well developed and primary analysis

plans are generally pre-specified. Many of the marker analysis

decisions can sensibly be made only after some preliminary

examination of the data and therefore generally only some key

Box 4. Continuous Variables

Many markers are recorded as continuous measurements, but
in oncology it is common to convert them into categorical
form by using one or more cutpoints (Item 11). Common
reasons are to simplify the analysis, to make it easier for
clinicians to use marker information in decision making,
because the functional form of the influence of a marker is
often unknown, and to facilitate graphical presentation (for
example, Kaplan-Meier curves). Although categorization is
required for issues such as decision making, it has to be
stressed that categorization of continuous data is unnecessary
for statistical analysis. The perceived advantages of a simpler
analysis come at a high cost, as explained below. The same
considerations apply to both the marker being studied and
other continuous variables.

Categorization

Categorization allows researchers to avoid strong assump-
tions about the relationship between the marker and risk.
However, this comes at the expense of throwing away
information. The information loss is greatest when the
marker is dichotomized (two categories).

It is well known that the results of analyses can vary if different
cutpoints are used for splitting. Dichotomizing does not
introduce bias if the split is at the median or some other pre-
specified percentile, as is often done. If, however, the cutpoint
is chosen based on multiple analyses of the data, in particular
taking the value which produced the smallest P value, then
the P value will be much too small and there is a large risk of a
false positive finding [198]. An analysis based on the so-called
optimal cutpoint will also heavily overestimate the prognostic
effect, although bias correction methods are available [199].

Even with a pre-specified cutpoint, dichotomization is
statistically inefficient and is thus strongly discouraged
[153,200,201]. Further, prognosis is usually estimated from
multivariable models so if cutpoints are needed as an aid in

classifying people into distinct risk groups this is best done
after modeling [153,202].

Categorizing a continuous variable into three or more
groups reduces the loss of information but is rarely done
in clinical studies (by contrast to epidemiology). Even so,
cutpoints result in a model with step functions which is
inadequate to describe a smooth relationship [110].

Keeping variables continuous

A linear functional relationship is the most popular approach
for keeping the continuous nature of the covariate. Often that
is an acceptable assumption, but it may be incorrect, leading
to a mis-specified final model in which a relevant variable may
not be included or in which the assumed functional form
differs substantially from the unknown true form.

A check for linearity can be done by investigating possible
improvement of fit by allowing some form of nonlinearity.
For a long time, quadratic or cubic polynomials were used to
model non-linear relationships, but the more general family
of fractional polynomial (FP) functions provide a rich class of
simple functions which often provide an improved fit [203].
Determination of FP specification and model selection can
be done simultaneously with a simple and understandable
presentation of results [108,110].

Spline functions are another approach to investigate the
functional relationship of a continuous marker [101]. They are
extremely flexible, but no procedure for simultaneously
selecting variables and functional forms has found wide
acceptance. Furthermore, even for a univariable spline model,
reporting is usually restricted to the plot of the function because
presentation of the parameter estimates is too complicated.

When the full information from continuous variables is used
in the analysis, the results can be presented in categories to
allow them to be used for tasks such as decision making.
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features of the analysis plan can be pre-specified. Many decisions

will be required, including coding of variables, handling of missing

data, and specification of models. It would be useful to clarify

which of these decisions were pre-specified and which were made

post hoc or even in deviation from the original analysis plan.

Reporting of key features of an analysis is important to allow

readers to understand the reasons for the specific approach chosen

and to assess the results. No study seems yet to have investigated in

detail the large variety of statistical methods used and the quality

of their reporting, but the common weaknesses in applying

methods and the general insufficient reporting of statistical aspects

of a multivariable analysis have been well known for many years.

Empirical investigations of published research articles seem to

concentrate more on randomized trials and epidemiological

studies, but the methods and problems of multivariable models

in the latter are similar to prognostic studies. Concato et al.

identified 44 articles which considered risk factors in the

framework of a logistic regression model or a proportional hazard

model [92]. All had at least one severe weakness, and they

concluded ‘the findings suggest a need for improvement in the

reporting and perhaps conducting of multivariable analyses in

medical research’. Recently Mallett and colleagues assessed 50

articles reporting tumor marker prognostic studies for their

adherence to some items from the REMARK checklist [20]. In

49 out of 50 studies (98%), the Cox model was used. Proportional

hazards is one of the key assumptions of this model but only four

articles (8%) reported testing this assumption (see Item 18).

Sigounas et al. assessed 184 studies on prognostic markers for acute

pancreatitis. Multivariable analyses were performed in only 15 of

them, of which only one provided all details requested in Item 10

[21]. Although bad reporting does not mean that bad methods

were used, the many studies identifying specific issues of bad

reporting clearly show that a substantial improvement of reporting

of statistical methods is needed [18,21,33,64,93–98].

In the following sections we consider specific aspects of analyses

under eight headings. Not all aspects will be relevant for some

studies. More extensive discussions of statistical analysis methods

for binary outcome and for survival data can be found elsewhere

[73,99–111].

a. Preliminary data preparation

Example

‘Ki67 was measured as a continuous score which is typically

positively skewed. Analysis was undertaken by log transforming

Ki67 and using log(Ki67) as a covariate to investigate whether

there is a linear increase in the probability of relapse with

increasing Ki67 value.’ [112]

Explanation

Some assessment of the data quality usually takes place prior to

the main statistical analyses of the data, and some data values may

be changed or removed if they are deemed unreliable. These

manipulations and pre-modeling decisions could have a substantial

impact on the results and should be reported, but rarely are [113–

117].

There are many examples of steps typically taken in initial data

analyses. The distribution of the marker values and distributions of

any other variables that will be considered in models should be

examined for evidence of extreme values or severe skewness. It may

be appropriate to truncate or omit extreme outliers. Preliminary

transformations of specific variables (for example, logarithm or

square root) may be applied to remove severe skewness. For

categorical variables, re-categorization is often performed to

eliminate sparse categories (for example, histological types of

tumors). Graphical representations or summary statistics calculated

to assess the distribution of the marker or other variables (for

example, boxplot; mean, median, SD, range, and frequencies)

should be described because different methods will depict features of

the data with varying degrees of sensitivity (such as outliers and

skewness). If some marker measurements were judged to be

unreliable and consequently omitted or adjusted to lessen their

influence in the analysis, it is recommended these details be reported

as they can be informative about the robustness of the assay and

stability of the analysis results. It is helpful to report these early steps

of the analysis along with the number of data values that were

excluded or somehow modified (see also Items 12 and 13).

b. Association of marker values with other variables

Example

‘The associations of cathepsin-D with other variables were

tested with non-parametric tests: with Spearman rank correlation

(rs) for continuous variables (age, ER, PgR), and the Wilcoxon

rank-sum test or Kruskal-Wallis test, including a Wilcoxon-type

test for trend across ordered groups where appropriate, for

categorical variables.’ [29]

Explanation

Early steps in an analysis may include an examination of the

relationship of the marker to other variables being considered in

the study. These variables might include established clinical,

pathologic, and demographic covariates (see Items 13 and 14). If

more than one marker is being evaluated in a study, the

relationships between the multiple markers should be examined.

Methods for summarizing associations with other variables (for

example, correlation coefficients, chi-square tests, and t-tests)

should be described. Extreme or unusual associations may be

relevant to the validity of analyses and stability of results and may

suggest further data modifications are advisable (see section a

above) or that certain variables are redundant.

c. Methods to evaluate a marker’s univariable associ-
ation with clinical outcome

Example

‘Median survival time and median DFI [disease free interval]

for the whole test set were estimated using the Kaplan-Meier

product limit method. Univariate associations between survival

time, DFI, and glucose were examined using Cox proportional

hazards regression models. These analyses examined glucose as a

continuous variable, using an increment of 70 mg/dL to derive

hazard ratios, and adjusted for time of blood draw to control for

circadian effects on glucose levels … Wald Chi-square P values

were used to calculate univariate statistical significance, and 95%

confidence intervals were estimated.’ [118]

Explanation

A marker’s association with clinical outcome is of key importance.

The first evaluation will usually be conducted without adjustment for

additional variables, that is, a univariable analysis. The method of

analysis (for example, logrank test or estimated effect with confidence

interval in a Cox regression or a parametric model for survival data),

including options such as choice of test statistic (for example, Wald

test, likelihood ratio test, or score test), should be reported.

Any variable codings or groupings, or transformations of

continuous values applied to the marker variable or any other

variables, should be stated to allow for proper interpretation of the

estimated associations (see Box 4 and Item 11).

In addition, similar analyses may be conducted to examine the

association of other variables with clinical outcome.

d. Multivariable analyses

Examples

‘A Cox regression model was used with individual marker as the

exposure variables and OS [overall survival] (from time of surgery

to time of death or end of current follow-up) as the outcome. The

analyses were adjusted simultaneously for sex, age, tumour size,
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grade (World Health Organization), stage and sites as well as use

of post-operative adjuvant therapies.’ [76]

‘Univariable and multivariable Cox regression models ad-

dressed CSM after NU or SU. Covariates consisted of patholog-

ically determined T stage (pT1 versus pT2 versus pT3 versus pT4),

N stage (N0 versus N1–3), tumour grade (I versus II versus III

versus IV), primary tumour location (ureter versus renal pelvis),

type of surgery (NU with bladder cuff versus NU without bladder

cuff versus SU), year of surgery, gender (male versus female) and

age. Since pT and pN stages, as well as tumour grade, may

contribute to a multiplicative increase in CSM rate, we tested

three first-degree interactions between these variables. Specifically,

multivariable interaction tests were performed between pT and

pN stages, between T stage and tumour grade and between N

stage and tumour grade.’ [119]

‘For both models 1 and 2 a competing risk analysis was

performed using cause-specific hazards. This analysis follows

separate Cox models for each event assuming proportional

hazards. In such competing risks analyses with two endpoints, it

is possible to interpret both cause-specific hazard ratios simulta-

neously for each risk factor. Cumulative incidence functions have

been displayed for each endpoint. The proportional hazard

assumptions were assessed by study of the graphs of the

Schoenfeld’s residuals; this technique is especially suitable for

time-dependent covariates.’ [120]

Explanation

Univariable analyses are useful but, except in early studies, are

generally insufficient because of the possible relationship of the

marker with other variables. Thus the prognostic value of the marker

after adjustment for established prognostic factors, as estimated from

a multivariable model (see Item 17), will be of major interest. To

facilitate comparison of the unadjusted and adjusted measures of

association, it is helpful to report results from univariable analyses that

used the same general approach as the approach used for the

multivariable analysis. For example, if multivariable analyses

adjusting for standard prognostic factors are based on a Cox

regression model with the log-transformed marker value as one of the

independent variables, then it is helpful also to report the

corresponding results of a univariable Cox regression analysis. This

allows for direct assessment of how the marker’s regression coefficient

is altered by inclusion of standard covariates in the model.

Whereas the Cox proportional hazards model allows a flexible

form of baseline hazard, parametric models assume specific

functional forms [109,121,122]. Parametric models [123] will be

statistically more efficient if the model is correct and may be more

easily adaptable to situations involving complex censoring

patterns, but if the assumed functional form of the baseline

hazard is incorrect, they can be misleading. It is important that

authors report which model was used.

Multivariable methods can also be used to build prognostic

models involving combinations of several candidate markers or

even many hundreds of markers (for example, gene expression

microarray data). Although the same basic analysis principles

apply to these situations, even greater care must be taken to ensure

proper fit of such models and avoid overfitting, and to rigorously

evaluate the model’s prognostic performance. These topics are

covered in many articles and books [99,101,108,110,124–126]

and are not a focus of this paper.

Investigators may use statistical approaches other than classic

multivariable regression to take into account multiple variables.

Such techniques include classification and regression trees and

artificial neural networks. Their detailed discussion is beyond the

scope of the current guidelines; for details the reader is referred

elsewhere [107].

e. Missing data

Example

‘Thirteen patients (all either ductal carcinoma, lobular carcino-

ma or mixed histology) had no grade information recorded in the

data and one patient had no tumour size recorded. These patients

were included in the analysis using multiple imputation methods to

estimate the missing values. The hazard ratios were derived from

the average effect across 10 augmented datasets, with the

confidence intervals and significance tests taking into account

the uncertainty of the imputations. The multiple imputation was

performed by the MICE library within the S-Plus 2000 Guide to

Statistics Volumes 1 and 2 (MathSoft, Seattle, WA, USA) … ’

[127]

Explanation

Almost all prognostic studies have missing marker or covariate

data for some patients because clinical databases are often

incomplete. Also, some marker assays may not yield interpretable

results for all specimens. However, not all papers report in detail

the amount of missing data and very few attempt to address the

problem statistically [33].

Authors should report the number of missing values for each

variable of interest. They should give reasons for missing values if

possible, and indicate how many individuals were excluded

because of missing data when describing the flow of participants

through the study (see Item 12). Many authors omit cases without

all relevant information from all analyses or they may vary who is

included according to which variables are included in the analysis.

Including only cases with complete data may greatly reduce the

sample size and potentially lead to biased results if the likelihood of

being missing is related to the true value (see Box 2) [33,128–131].

Modern statistical methods exist to allow estimation (imputation)

of missing observations. These issues are clarified in Box 2.

Authors should describe the nature of any such analysis (for

example, multiple imputation) and specify assumptions that were

made (for example, ‘missing at random’).

In a review of 100 prognostic articles, the percentage of eligible

cases with complete data was obtainable in only 39; in 17 of these

articles more than 10% of patients had some missing data. The

methods used to handle incomplete covariates were reported in

only 32 out of 81 articles with known missing data [33].

f. Variable selection

Example

‘When using a stepwise variable selection procedure to identify

independent factors prognostic for survival, variables were added

using forward selection according to a selection entry criterion of

0.05 and removed using backward elimination according to a

selection stay criterion of 0.05. The importance of a prognostic

factor was assessed via Wald-type test statistics, the hazard ratio

and its 95% confidence interval for survival.’ [132]

Explanation

Sometimes several multivariable models containing different

subsets of variables are considered. The rationale for these choices

and details of any model selection strategies used should be

described. The REMARK profile can provide a concise summary

of all analyses performed (Item 12).

If patients in the study received different treatments, one or

more variables indicating treatments received can be considered in

models, treatment can be used as a stratification factor, or separate

models may be built for each treatment. For many cancer types,

there are a few generally accepted staging variables or other

clinical or pathologic variables that would be available in most

cases, and these variables would usually be considered in

multivariable models (see also Item 17).
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The main multivariable model may sometimes be pre-specified,

which helps to avoid biases caused by data-dependent model

selection. More often, however, many candidate variables are

available and some type of variable selection procedure is sensible

in order to derive simpler models which are easier to interpret and

may be more generally useful [108,133]. It is particularly

important to state if the variables included in a reported model

were determined using variable selection procedures. Any

selection procedures used should be described (for example,

stepwise regression or backward elimination) along with specific

criteria used to determine inclusion or exclusion of variables from

the model (for example, P values) or to select a best fitting model

(for example, Akaike information criterion) [101]. It is well known

that, unless sample sizes are large, use of variable selection

procedures will lead to biased parameter estimates and exagger-

ated measures of statistical significance [66,121,134]. For this

reason, Item 17 requests that results from a particular multivar-

iable model which includes the marker along with ‘standard’

prognostic variables, regardless of statistical significance, be

reported.

g. Checking model assumptions

Examples

‘In the basic form of the Cox regression model, the coefficients

corresponded to the logarithm of the HR and were constant in

time. This assumption was graphically evaluated by means of

smoothed Schoenfeld residuals and tested as suggested by

Grambsch and Therneau.’ [135]

‘The proportional hazards assumptions were checked by plots of

log(- log survival time) versus log time.’ [136]

‘We evaluated the proportional hazards assumption by adding

interaction terms between the time-dependent logarithm of follow-

up time plus 1 and tamoxifen treatment, ERaS118-P status, or

both and found no evidence for nonproportional hazards

(P = .816, .490, and .403, respectively).’ [24]

Explanation

Any statistical model, univariable or multivariable, makes

certain assumptions about the distributions of variables or the

functional relationships between variables. For example, the Cox

proportional hazards regression model commonly used for survival

data requires several important assumptions, including propor-

tional hazards and linear relationships between continuous

covariates and the log hazard function. Proportional hazards

assumptions are often violated when there is long follow-up, for

example, for certain types of cancers in which a portion of patients

can be considered cured. How the variables are coded or

transformed will also affect the appropriateness of linear versus

non-linear relationships (see Item 11 and Box 4).

Methods used to empirically check model assumptions should

be reported. For example, residual plots and models containing

time-by-covariate interactions are often used to diagnose depar-

tures from linearity and proportional hazards [122,137–139].

Influential points and outliers can often be detected by diagnostic

plots such as added variable plots [140]. Parametric survival

models, such as lognormal or Weibull models, make additional

assumptions about the distribution of the survival times [123]. The

suitability of parametric models can be checked using methods

such as residual plots and goodness of fit tests [109,121]. Many

extensions of the Cox model have been proposed to handle

departures from the basic assumptions [138,139] but they will not

be discussed here. More complex models require larger sample

sizes than often are available in tumor marker prognostic studies to

avoid overfitting to noise in the data [107,141].

Alternative models evaluated for purposes of sensitivity analyses

should also be described (see Item 18).

h. Model validation

Examples

‘For internal validation of the multivariate models, 1000

bootstrap samples were created and stepwise Cox regression

analysis was applied to each sample. The relative frequencies of

inclusions of the respective factors were calculated.’ [142]

‘For this study, and future studies using this TMA, the primary

investigator is given access to all clinical, outcome, and TMA data

from the training set only. The training set is used to generate and

refine hypotheses regarding the biomarker under study. Significant

findings are then formally presented … Those findings considered

to be of clinical and scientific interest are then re-tested on the

validation set. A separate researcher who did not participate in the

training set analysis performs the re-testing on the validation set.

Our statistical approach is intended to minimize false positive

results, particularly with subgroup analysis.’ [143]

Explanation

Invariably, the strongest evidence for the validity of results is

confirmation of the findings on data not involved in the original

analysis [144,145]. The ideal approach is to confirm findings from

the main (final) model on completely independent data, preferably

collected by different investigators but under pre-defined appro-

priate conditions. If successful, this approach would indicate that

the results are transportable to other settings. This would be a type

of ‘external validation’. A prospectively designed and conducted

clinical trial is the strongest form of validation, but trials designed

with the primary objective to validate a prognostic marker or

model are rare. More often, evaluations of markers occurring

within trials are secondary aims in trials primarily designed to

evaluate a treatment or other intervention. The marker evaluation

could occur during the trial, or the evaluation might take place

even years after completion of the trial using specimens banked

during the course of the trial. This latter option has been referred

to as a ‘prospective-retrospective’ design, and it can provide a high

level of evidence for the utility of a marker if conducted under

appropriate conditions [146]. Complete specification of the

marker assay method and model (if relevant), a pre-specified

analysis plan, and enforcement and documentation of lock-down

of marker analytical results prior to unblinding of clinical outcome

data (see also Item 5) are among the conditions that should be

satisfied for a rigorous prospective-retrospective validation.

A completely independent data set (a ‘similar’ study) often will

not be available, but ‘internal’ validation procedures, such as

cross-validation, bootstrapping, or other data resampling methods

[133,147], are useful to give insights into critical issues such as bias

of regression parameter estimates, overoptimism of prognostic

model discriminatory ability, or stability of the model derived (see

also Item 18). Internal validation involves holding out some

portion of the data (‘test set’) while a model is built on the

remaining portion (‘training set’); when the model is completely

specified on the training set, it is then evaluated (tested) on the

held-out data. A limitation of internal validation is that there may

be biases affecting the entire data set that will not be detected by

internal validation because the biases will affect the training and

test sets equally [46]; however, if a model has been seriously

overfitted to random noise in the training set, properly performed

internal validation should reveal failure of the model on the test

data. The study report should include a description of any

validations that were performed, internal or external.

For internal validation, the specific validation algorithm used

should be described (for example, bootstrapping, 10-fold or leave-

one-out cross-validation) [147–149]. If a study performs any

external validation, basic details of the study population, design,

and analysis approach should be provided. It should be clarified
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whether the external validation sample came from the same or

different centers or periods as the samples used to develop the

model. In cases where the whole study represents a validation of a

previously developed model this should be stated, along with

proper reference to the previous study that developed that model.

Item 11. Clarify how marker values were handled in
the analyses; if relevant, describe methods used for
cutpoint determination.

Examples

‘In the regression models, steroid receptors content and age

were considered as continuous variables, the latter in its original

measure scale and the former in terms of its natural logarithms

because of the positive skew of its distribution. Null values for

steroid receptor content were arbitrarily set to 1 considering a

sensitivity threshold value of 2 fmol/mg of cytosolic protein.’ [135]

‘Hazard ratios (HRs) and 95% CIs for CRP and SAA tertiles

were estimated using Cox proportional hazards regression … CRP

and SAA values were log transformed to account for skewness, and

HRs and 95% CIs were generated for these continuous measures.’

[150]

‘As there was no clinically defined cutoff point for serum IL-6

level, the median was used to divide the patients into two groups

(low versus high serum IL-6 level).’ [151]

‘In the absence of a reliable gold standard and following

distributional studies, we used the 25th percentile of observed

hormonal receptor mRNA expression levels and the median of

observed MAP-Tau mRNA levels as thresholds for categorization

of tumors to positive or negative cases.’ [152]

Explanation

Many markers are measured as continuous variables. A central

question is how to analyze these variables, including how to

incorporate them in a multivariable model. The same consider-

ations apply to several standard variables, such as age and tumor

size.

Two main approaches are to keep the variables as continuous

(but not necessarily assume a linear relation with the outcome), or

to group the data into categories. Although categorization is

ubiquitous in cancer studies, there are some major concerns about

that approach, as discussed in Box 4 [153]. The common practice

of using only two categories makes it impossible to detect any

nonlinearity in the relation between the variable and outcome.

However, for later clinical use, dichotomization may be necessary.

Authors should report how each continuous variable was

incorporated into the analyses. For categorized variables, they

should specify the cutpoints and how they were chosen. It is

especially important to declare any cutpoints chosen after

examining many options (see Box 4). For continuous variables,

authors should clarify whether the data were kept on the original

scale or, say, log transformed, and indicate whether the

relationship was modeled as linear or non-linear, and how. If

treated as linear, it is helpful to report whether the assumption of a

linear relationship for continuous variables was checked (Box 4).

Similar concerns relate to variables with three or more ordered

categories, such as Karnofsky score. For markers and other

variables with several categories (for example, from three to six) it

is important to specify how they were treated in the analyses. If

dummy variables were created, it is important to specify how they

were defined and analyzed [110]. If multiple methods of coding

dummy variables are considered in the analysis, there is a risk of

selective reporting of the results that look most interesting.

Reviews of published prognostic factor studies show that

categorization is very common, with almost all studies reporting

results for dichotomized marker values [15]. Further, there is

usually considerable variation in cut-off values across studies,

hindering a sound comparison of results. For example, a review of

p53 in bladder cancer found that definitions of positive p53

staining cut-off values ranged from 1% to 75% [154].

Results

Data
Item 12. Describe the flow of patients through the

study, including the number of patients included in each
stage of the analysis (a diagram may be helpful) and
reasons for dropout. Specifically, both overall and for
each subgroup extensively examined report the number
of patients and the number of events.

Examples

‘Tumor samples from 375 patients were sent to the central

laboratory for EGFR assays by IHC, and evaluable assay results

were obtained for 325 patients (87%). Among the 50 patients with

unevaluable results, 38 (76%) had insufficient tumor cells in their

tumor sample, six (12%) had extensive necrosis, three (6%) had

inadequate control staining, two (4%) had poor tumor preserva-

tion, and one (2%) had a broken slide.’ [155]

See also Figure 1.

Explanation

The interpretation of prognostic studies depends on having a

good understanding of the patients included in the study, the

methods used, the analyses conducted, and the amount of data

available at each stage. In contrast to RCTs, exploratory analyses

play a much more important role (see Item 10). In general, several

analyses are conducted of which only some are fully reported, with

the results of others mentioned only briefly in the text (and easily

overlooked) or not reported at all. This selective reporting practice

gives rise to biased results and biased interpretation and should be

avoided. Important information, such as the effective sample size

(see Item 9), is usually not given for many analyses. At present,

hardly any report fully meets the needs of readers [20,21].

One way to ensure completeness of reporting of key information

is via a structured display. Even for RCTs, which are relatively

straightforward, it is often impossible to understand from the text

why the numbers of patients in analyses differs from the numbers

enrolled in the trial. Thus the CONSORT flow diagram [8] has

become a widely used simple depiction of the flow of participants

in an RCT from enrolment through to inclusion in the final

analysis.

Analyzing and reporting prognostic studies is in general more

complicated than for RCTs. Therefore, we suggest two comple-

mentary displays that authors can use to summarize key aspects of

a prognostic study, especially the derivation of the sample and

details of the analyses performed. A flow diagram provides an easy

to follow view of the major changes in the population as the study

proceeds; a study profile (see below) provides a succinct summary

of the analyses performed and the data used in them.

The upper part of a study profile can be used to show the

derivation of the sample of patients included in the study. It is

analogous to the CONSORT [8] and STROBE [156] flow

diagrams, but gives the information in a more condensed way and

may make a flow diagram, as shown in the examples, redundant

(see also Item 2). Its inclusion in reports of prognostic studies

would help to clarify the extent to which the analyzed patients

were selected from a larger series.

Knowing how many patients were included in a study is

important, but information should be given about the amount of

data available for each analysis. Missing values (see Box 2) are

much more common in retrospective studies than in prospective

studies due to the use of historical data. The complete case analysis
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is the most widely used method (see Item 10e); as a consequence,

the number of patients and events will often vary across analyses

according to the choice of adjusting variables. Further, the

outcome measure and any restriction to a subgroup also affect the

number of patients and events. These numbers are a key element

determining the statistical reliability of any analysis. Readers thus

need to understand which patients (and how many events) were

included in each analysis, and also which variables were used. For

all of these reasons, a standard format for reporting all analyses

performed would be extremely helpful and is strongly recom-

mended.

We developed a two-part study profile which has already been

used in a paper on the reporting of prognostic studies [20]. As

illustrated in the examples below, the first part gives details about

how the marker of interest was handled in the analysis and which

further variables were available. In addition, key information can

usefully be provided in this part about the patient population,

inclusion and exclusion criteria, and the number of eligible

patients and events for each outcome in the full data set. In the

first example (Table 2), the number and reasons for patients

excluded are given, but not the numbers for each reason. These

numbers can easily be given and would help readers to assess a

study.

As the patient population is often heterogeneous with regard to

stage of the disease, treatment and other factors, it is common

practice to assess the marker in several more homogeneous

subgroups of the population. Furthermore, several outcomes (for

example, DFS, distant DFS, or overall survival, OS) are usually

considered. Figures showing Kaplan-Meier estimates are often

presented for a univariable assessment, for a continuous marker

divided into subgroups. However, the results of further analyses

and details about variables in a multivariable model are often only

briefly summarized in the text or perhaps not mentioned at all.

(See Box 5 for discussion of the implications of selective reporting.)

To help the reader understand the multiplicity of analyses and

better assess the results, the second part of the proposed profile

gives an overview of all analyses. Nearly all reports of prognostic

marker studies include univariable, multivariable, and subgroup

analyses. Several multivariable analyses are often reported in

prognostic marker studies. It is critical to know which variables

were available in order to determine the most appropriate

multivariable analysis for a given study. Also, it is frequently

unclear which variables have been adjusted for in each analysis.

Often, some analyses and their results are mentioned in just one

sentence in the text (for example, ‘the effect of marker x was the

same in subgroup A’ or ‘the effect of marker x was unchanged

when adjusting for the three variables v1, v2 and v3’) and will only

be noticed by a careful reader. Further, it may not be obvious that

some analyses were based on only a small number of patients and

a handful of events.

Reporting of estimated effects from models and estimates of

survival curves often concentrate on DFS and results from OS are

less prominently shown. One reason may be the larger number of

DFS events, even though OS may be the more important

outcome. Reporting the number of deaths may reveal that the

effective sample size is very small. To assess the value of any

analysis it is important to know both the number of patients and

events (the effective sample size) for the outcome.

We attempt to illustrate the issues described above in relation to

two rather different studies. The study by Pfisterer et al. [157]

Figure 1. Example of a participant flow diagram [177].
doi:10.1371/journal.pmed.1001216.g001
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investigated the effect of ploidy in advanced ovarian cancer (see

Table 2). As the disease has a very bad prognosis, the authors

decided to consider OS as the only outcome of interest. Part (a)

presents the information about the patients, treatments, and

variables studied. Part (b) gives an overview of all analyses with

numbers of patients and events, and the reader is guided to where

those results are presented in the report.

The study by Wadehra et al. [158] investigated the expression of

epithelial membrane protein-2 in patients with endometrial

adenocarcinoma (Table 3). In contrast to the first example, both

DFS and OS were investigated. Several features are immediately

apparent: the sample sizes for these two outcomes differ, only one

multivariable analysis was reported for each of the two outcomes,

and the marker of interest did not enter the final model for OS.

The profile thus gives reviewers, editors, and readers a greater

opportunity to evaluate what was done and whether anything

important is missing. Indeed, creating such a profile should be

helpful to authors too.

Because of the large variety of analyses that may be performed,

the profile for a specific study may need to differ in structure from

these examples. However, we propose that the key elements of the

profile, as shown in the two examples, be included. Wide adoption

of this presentation format would considerably aid the transparent

reporting of prognostic marker research and help to remedy the

widespread deficiencies that have been well documented.

The need for a study profile is supported by the difficulty we

encountered in finding published articles that presented all the

information to construct a profile. Also, a review of 50 articles in

cancer journals in 2006 to 2007 reporting tumor marker

prognostic studies found that typically only half of the REMARK

profile items were reported and these were often difficult to find

[20]. Half of the articles did not report the number of events for

any analyses or outcomes.

Item 13. Report distributions of basic demographic
characteristics (at least age and sex), standard (disease-
specific) prognostic variables, and tumor marker,
including numbers of missing values.

Examples

See Table 4 and Figure 2, and Figure 1 in [29].

Explanation

Inclusion and exclusion criteria (Item 2) describe the target

patient population. The group of patients included in a particular

study is a sample from that population. Distributions of basic

demographic variables and standard prognostic variables should

be reported to characterize the group of patients who were

actually studied. These demographic and standard prognostic

variables are often the variables to be considered for inclusion in

multivariable analyses (see Item 8). Distributions of age and sex

should routinely be reported. If available, racial or ethnic

distributions are sometimes helpful to report, as some markers

Table 2. Example of the REMARK profile illustrated using data from a study of ploidy in patients with advanced ovarian cancer
[157] (from [20]).

a) Patients, treatment and variables

Study and marker Remarks

Marker (If non-binary: how was
marker analyzed? continuous or
categorical. If categorical, how
were cutpoints determined?)

M = ploidy (diploid, aneuploid)

Further variables (variables
collected, variables available for
analysis, baseline variables,
patient and tumor variables)

v1 = age, v2 = histologic type, v3 = grade, v4 = residual tumor, v5 = stage, v6 = ascitesa, v7 = estrogena, v8 = progesteronea,
v9 = CA-125a

Patients n Remarks

Assessed for eligibility 257 Disease: Advanced ovarian cancer, stage III and IV
Patient source: Surgery 1982 to 1990, University Hospital Freiburg
Sample source: Archived specimens available

Excluded 73 General exclusion criteriab, non-standard therapyb, coefficient of variation .7%b

Included 184 Previously untreated.
Treatment: all had platinum based chemotherapy after surgery

With outcome events 139 Overall survival: death from any cause

b) Statistical analyses of survival outcomes

Analysis Patients Events Variables considered Results/remarks

A1: Univariable 184 139 M, v1 to v5 Table 2, Figure 1

A2: Multivariable 174 133 M, v1, v3 to v5 Table 3 [v2 omitted because many missing data; Backward
selection, see text]

A3: Effect for ploidy adjusted for v4 184 139 M, v4 Figure 2 [Based on result of A2]

A4: Interaction: ploidy and stage 175 133 M, v1, v2, v4, v5 See text

A5: Ploidy in stage subgroups

v5 = III 128 88 M Figure 3

v5 = IV 56 51 M Figure 4

aNot considered for survival outcome as these factors are not considered as ‘standard’ factors and/or number of missing values was relatively large;
bvalues not given in the paper.
doi:10.1371/journal.pmed.1001216.t002
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have shown association with race and/or ethnicity (for example, the

positive association between epidermal growth factor receptor gene

mutation and Asian ethnicity). For most types of cancers, there are

some standard clinical and pathologic prognostic variables (for

example, pathologic stage information including nodal status, tumor

size and presence of metastases, or clinical measures such as

performance status), and distributions of these variables should be

reported. The number of patients with missing values should be

reported for each variable as should the number of patients for whom

there are complete data on all variables or on those variables whose

effect on a survival outcome is assessed in a multivariable model.

If patients are a subsample from a randomized trial or large

defined cohort it is helpful to compare the characteristics of those

with and without tumor marker measurements to help judge the

generalizability of the findings.

A thorough description of the distribution of the marker of

interest should also be provided. The distribution may be

described by a frequency table or bar chart for categorical

variables or numerically by use of summary statistics such as mean,

median, percentiles, range, and standard deviation for continuous

variables. Figures such as histograms or boxplots are informative

for continuous variables. Presenting continuous data only in

categories is insufficient (see Box 4), but grouped data can be

presented in addition to the summary statistics.

Analysis and Presentation
Item 14. Show the relation of the marker to standard

prognostic variables.

Examples

See Tables 5, 6, and 7.

‘On analyzing the relationship between receptor data and the

above-mentioned prognostic factors, we found a significant

correlation between patient age and ER (ICC [immunocytochem-

istry], r = .46; DCC [dextran-coated charcoal], r = .43). While

tumors from patients #50 years old were ER positive in only 41%

(ICC) and 67% (DCC) of cases, patients .50 years had ER-

positive carcinomas in 77% (ICC) and 81% (DCC) of cases. In

addition, a weakly significant negative correlation was found

between the number of positive axillary nodes and ER (ICC,

r = 218; DCC. r = 2.15) and a weakly significant negative

correlation between tumor grade and ER (ICC, r = 2.17) as well

as PR (ICC, r = 2.24; DCC, r = 2.14). No significant correlation

between steroid receptors and the remaining prognostic factors,

tumor size and histology, was found.’ [159]

Explanation

The association of the tumor marker with standard prognostic

variables should be described. A new marker is most useful if it

provides clinically important information beyond that given by

existing prognostic variables or indices, or it offers an advantage

over other markers because it is easier to measure or quantify.

Often a new marker has at least a modest association with some

other standard prognostic markers. In a multivariable model,

modest correlations between the marker value and other standard

variables in the model will influence the estimated effect of the

marker and increase its standard error. If there are very strong

correlations between two or more variables in a model (for

example, between age, estrogen and progesterone receptor in

breast cancer), effects estimated from the model can be very

unstable and difficult to interpret, requiring great care in model

building (see Item 10d). Further, if the marker has a very high

correlation with routinely available standard prognostic variables

that can be measured more easily, reproducibly, and inexpensive-

ly, it is unlikely to have clinical value either as a replacement for

the standard variables or as an adjunct to the standard variables.

Therefore, it is important to report the strength and nature of the

association between the marker and other variables. Additionally,

it is helpful to summarize the associations between the other

Box 5. Selective Reporting

Publication of the findings of only some of the research
that was done in a field will lead to bias when publication
choices are made with the knowledge of study findings.
Selection is mostly in relation to whether or not results
were statistically significant (P,0.05) or show a trend in
the favored direction. Selective reporting of studies, or
selective reporting of only some analyses within studies,
both lead to larger effects being seen in smaller studies,
and literature that is biased towards overestimating the
prognostic importance of tumor markers [204].

Evidence of biased non-publication of whole studies has
been accumulating for many years, but recently research has
demonstrated evidence of additional within-study selective
reporting [205,206]. Empirical evidence of study publication
bias and within-study selective reporting primarily relates to
randomized controlled trials, but it is likely to be a major
concern for prognostic studies. Publication bias in prognos-
tic studies may be worse as many of these studies are based
on retrospective analysis of existing clinical databases.
Indeed, there is no indication that a particular marker or
marker-related hypothesis has been studied until and unless
it is published. A review of 1915 articles on cancer prognostic
markers found that less than 1.5% were fully negative, in that
they did not present any statistically significant prognostic
results [207]. A systematic review of studies of Bcl2 in non-
small cell lung cancer revealed that almost all the smaller
studies showed a statistically significant relationship be-
tween Bcl2 and risk of dying with large hazard ratios,
whereas the three large studies were all non-significant and
showed much smaller effects [208]. A review of the
prognostic importance of TP53 status in head and neck
cancer showed clearly that published studies had larger
effects than unpublished studies [17,209]. Such studies point
to the value of a register of biomarker studies [210].

Possible within-study selective reporting could take several
forms. For example, in cancer studies two principal outcomes
are time to death (overall survival) and time to recurrence of
disease (that is, disease-free survival). Many studies report
only one of these outcomes. Although both unadjusted and
adjusted results are usually provided, some studies only
report unadjusted results [211]; in general they will be larger
than adjusted results. Similar concerns relate to selective
reporting of only some subgroup analyses performed.
Reports should include discussion of all analyses performed
and whether they were pre-planned (see Item 12). Often a
number of exploratory analyses are conducted. The explor-
atory nature should be clearly stated. Reasons for these
analyses and results can be summarized in a few sentences. A
further issue is that some results are only reported partially,
for example, solely as ‘not significant’, preventing that study
from contributing to a subsequent meta-analysis.

Problems that can arise from selective reporting are
discussed in relation to clinical endpoints, the flow of
patients through the study and reporting of events and
estimated effects for all variables in Items 7, 12, and 16,
respectively. Obviously, selective reporting is an important
impediment to reliable assessment of a marker according
to evidence based medicine criteria [19,212–214].
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standard variables, especially when multivariable models contain-

ing combinations of standard variables are being considered.

Graphical displays can be particularly helpful in conveying the

nature of associations between the marker and other variables. For

two continuous variables (for example, a continuous marker versus

a continuous standard variable or prognostic index), scatterplots

are most informative, and these may be accompanied by summary

measures such as correlations. The study report should include a

summary description of the findings of these association assess-

ments. Often the tumor marker and other standard variables are a

mix of continuous and categorical measurements. Displays such as

boxplots, dotplots, or histograms of the continuous measures for

each of the levels or combinations of the categorical variables can

be informative. Categorizing continuous variables should be

avoided (see Box 4). If all variables are categorical, tables showing

cross-classifications of cases by categories of the marker and

categories of each of the standard variables are useful. Such

descriptive analyses are also helpful for interpretation of multi-

variable models and assessment of the stability of those models.

In order for a marker to provide some information independent

of the values of existing variables, it must show variation when the

other variables are held fixed. That variation can take different

forms. The marker might show variation within all possible ranges

of the existing variables, or it might show variation within some

ranges of existing variables but not within others. This informa-

tion, together with an assessment of how the variation in the

marker correlates with clinical outcome (see Items 15–17), will

suggest those patients for whom the new marker might provide

clinically useful new information.

Item 15. Present univariable analyses showing the
relation between the marker and outcome, with the

estimated effect (for example, hazard ratio and survival
probability). Preferably provide similar analyses for all
other variables being analyzed. For the effect of a tumor
marker on a time-to-event outcome, a Kaplan-Meier
plot is recommended.

Examples

See Figure 3 and Table 8.

Explanation

A marker’s simple association with outcome should be shown

first, without adjustment for other clinical or pathologic charac-

teristics to indicate its prognostic strength before allowance is

made for other variables.

For a binary clinical endpoint (for example, tumor response or

disease progression within one year) with a categorical marker,

authors can report the observed outcome probabilities for each

category of marker value. Sparse categories (those with few

patients) may have been combined in the initial data analysis (see

Item 10a and Box 4). For a continuous marker it is informative to

present a summary of marker values (as in Item 13) separately for

those patients with and without the endpoint. Alternatively, a plot

of log odds ratio (or a similar measure) as a function of the

continuous marker value could be presented. A statistical test of

the difference (for example, chi-square test, t-test, or test for trend)

may accompany the summary description of the association of the

marker with the outcome.

For a time-to-event outcome, the relation between a categorical

marker and outcome can be assessed by a statistical test such as the

logrank test (using the test for trend for ordered categories with

more than two groups) [160]. Additionally, a hazard ratio estimate

(for example, as derived from a Cox proportional hazards

regression model) or some other summary estimate of the

Table 3. Example of the REMARK profile illustrated using data from a study of expression of epithelial membrane protein-2 in
patients with endometrial adenocarcinoma [158].

a) Patients, treatment and variables

136 Patients with endometrial adenocarcinoma assessed for eligibility, 37 excluded (33 no informative immune histochemistry, 4 without clinical information)

99 Patients included, stages IA to IVB

Formalin fixed, paraffin embedded endometrial tissue samples, Department of Pathology, UCLA Los Angeles, USA

Marker (and how was the marker handled in analysis?) M = epithelial membrane protein-2
Immunoreactive score obtained by multiplying subscores for intensity (0 to 3+) and distribution of
immunoreactivity (0 to 4+) grouped as negative (score 0), weak (1 to 3) or moderate-to-strong (4 to
12)

Outcomes: DFS (97 patients, 42 events), OS (99 patients, 32 events)

Further variables: v1 = age, v2 = ER, v3 = PR, v4 = vascular invasion, v5 = stage, v6 = histology, v7 = grade

b) Statistical analyses of survival outcomes

DFS OS

Aim Patients Events Patients Events
Variables
considered Results/remarks

A1: Univariable 97 42 99 32 M, v1-v7 Figure 3, Figure 4, Table 2, Table 3

DFS: except v1 all significant

OS: all significant

A2: Multivariable 97 42 99 32 DFS: M, v2-v7 Table 4, Table 5

OS: M, v1-v7 In multivariable analysis: all significant in
A1, then stepwise selection

Variables in final models: DFS: M, v5, v6; OS:
v4, v6, v7 (M is not included)

DFS: disease-free survival; ER: estrogen receptor; M: epithelial protein; PR: progesterone receptor; OS: overall survival.
doi:10.1371/journal.pmed.1001216.t003
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association of the marker with survival time should be presented.

Precision and uncertainty of the estimates should be indicated, for

example by providing confidence intervals. P values may also be

presented. For continuous markers, one can investigate the

influence of the marker on outcome without having to categorize

the marker (see Box 4). If any categorizations or transformations

Table 4. Example of tabular reporting of patient characteristics [180].

Patients

All CK-19 mRNA + CK-19 mRNA 2

Characteristic Number % Number % Number % P

Patients enrolled 444 100 181 40.8 263 59.2

Age, years

Median 54 54 55

Range 26 to 78 26 to 74 30 to 78 0.752

Menopausal status 0.075

Premenopausal 191 43 87 45.5 104 54.5

Postmenopausal 253 57 94 37.2 159 62.8

Tumor size 0.648

T1 157 35.4 61 38.9 96 61.1

T2 251 56.5 103 41 148 59

T3 36 8.1 17 47.2 19 52.8

Histology grade 0.316

I/II 204 46 87 42.6 117 57.4

III 191 43 72 37.7 119 62.3

Unknown 49 11 22 27

Infiltrated axillary lymph nodes 0.538

0 163 36.7 61 37.4 102 62.6

1 to 3 122 27.5 53 43.5 69 56.5

$4 159 35.8 67 42.1 92 57.9

ER 0.779

Negative 175 39.4 71 40.6 104 59.4

Positive 260 58.6 109 41.9 151 58.1

Unknown 9 2 1 8

PR 0.126

Negative 234 52.7 89 38 145 62

Positive 201 45.3 91 45.3 110 54.7

Unknown 9 2 1 8

HER2 0.897

0, 1+ 290 65.3 122 42.1 168 57.9

2+ 53 11.9 21 39.6 32 60.4

3+ by IHC 88 19.8 35 39.8 53 60.2

Unknown 13 3 3 10

Adjuvant chemotherapy 0.425

CMF 43 9.7 14 32.6 29 67.4

FEC 209 47.1 84 40.2 125 59.8

EC-T 192 43.2 83 43.2 109 56.8

Surgery 0.478

L 310 69.8 123 39.7 187 60.3

M 134 30.2 58 43.3 76 56.7

Radiotherapy 0.799

No 81 18.2 32 39.5 49 60.5

Yes 363 81.8 149 41 214 59

CK-19: cytokeratin-19; CMF: cyclophosphamide, methotrexate, fluorouracil; EC-T: epirubicin, cyclophosphamide, docetaxel; ER: estrogen receptor; FEC: fluorouracil,
epirubicin, cyclophosphamide; IHC: immunohistochemistry; L: lumpectomy; M: mastectomy; PR: progesterone receptor.
doi:10.1371/journal.pmed.1001216.t004
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are applied to the marker, these need to be clearly stated in order

for an association estimate to be interpretable (see Item 11).

Similar analyses are useful for showing the relation to outcome

of all other variables being assessed. Such analyses allow

confirmation of expected prognostic relations. Results differing

from expectations may point to some problems in the study, such

as biased patient selection or measurement techniques. Univari-

able measures of association with outcome can sometimes be

presented conveniently along with the distributions of each

variable (see Item 13) in a single table.

For a time-to-event outcome, a plot of Kaplan-Meier survival

curves is recommended [161,162], with one curve shown for each

category of marker value (two curves for a binary marker). The

number of patients at risk should be provided for selected time

points. To plot Kaplan-Meier estimates for continuous markers or

markers with many categories, the marker values are typically

combined into a few groups. For continuous markers, the groups

are often constructed to contain equal numbers of patients (for

example, based on tertiles or quartiles) or the groups may be

defined using cutpoints established in a previous study. Regardless

Table 5. Relation between marker (serum chromogranin A) and patient characteristics [181] (note that missing data were not
indicated).

Serum CgA levels, ng/mL

Number Median Q1 to Q3 Minimum to maximum P

Subjects

Controls 50 77.4 57.7 to 99.9 28.2 to 196.3

NSCLC patients 88 70.4 37.9 to 114.6 8.7 to 723.8 0.337

Histotype

Adenocarcinoma 22 59.2 35.2 to 85.6 14.8 to 151.2

Squamous 27 80.0 41.0 to 128.6 14.7 to 386.8

Large cell 10 82.1 33.7 to 124.0 11.4 to 217.9 0.465

ECOG PS

0 16 37.7 27.2 to 68.6 8.7 to 103.1

1 59 76.3 43.6 to 119.2 13.9 to 429.7

$2 13 102.8 55.8 to 259.4 32.1 to 723.8 0.0005

Stage

IIIB 29 44.9 29.2 to 85.6 13.9 to 259.4

IV 59 82.5 47.1 to 119.2 8.7 to 723.8 0.043

CgA: chromogranin A; ECOG PS: Eastern Cooperative Oncology Group performance status; NSCLC: non-small cell lung cancer; Q1 to Q3: interquartile range.
doi:10.1371/journal.pmed.1001216.t005

Figure 2. Frequency distribution of Steroid Receptor RNA Activator Protein (SRAP) H-scores in 372 breast tumors, showing median
of 76.67 used to delineate low and high subgroups [179] (for a secondary example see Figure 1 in [29]).
doi:10.1371/journal.pmed.1001216.g002
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Table 7. Relation between patient characteristics and steroid receptor status by immunocytochemistry and dextran-coated
charcoal [159].

Parameter n (%) Estrogen receptor positive Progesterone receptor positive

ICC (%) DCC (%) ICC (%) DCC (%)

Axillary node status (n = 241)

N0 120 (49.8) 88 (73.3) 98 (81.7) 83 (69.1) 93 (77.5)

N+ 121 (50.2) 75 (62.0) 89 (73.6) 75 (61.9) 94 (77.7)

Tumor size (cm) (n = 229a)

,2 86 (37.6) 59 (68.6) 69 (80.2) 60 (69.8) 69 (80.2)

2–5 128 (55.9) 88 (68.8) 101 (78.9) 84 (65.6) 100 (78.1)

.5 15 (6.6) 8 (53.3) 9 (60.0) 8 (53.3) 9 (60.0)

Tumor histology (n = 241)

Invasive ductal 171 (71.0) 120 (70.2) 136 (79.5) 119 (69.6) 136 (79.5)

Lobular 38 (15.8) 26 (68.4) 31 (81.6) 22 (57.9) 30 (78.9)

Otherb 32 (13.2) 17 (53.1) 20 (62.5) 17 (53.1) 21 (65.6)

Tumor grade (n = 217)c

1+2 142 (65.4) 106 (74.7) 118 (83.1) 104 (73.2) 119 (83.8)

3 75 (34.6) 41 (54.7) 52 (69.3) 36 (48.0) 53 (70.7)

Patient age (y) (n = 241)

#50 63 (26.1) 26 (41.3) 42 (66.7) 45 (71.4) 54 (85.7)

.50 178 (73.9) 137 (77.0) 145 (81.5) 113 (63.5) 133 (74.7)

aNo information available on tumor size in 12 cases;
bmucinous, tubular or medullary;
cno information available on tumor grade in 24 cases.
DCC: dextran-coated charcoal; ICC: immunocytochemistry.
doi:10.1371/journal.pmed.1001216.t007

Table 6. Relation between marker (E-Cadherin) and patient characteristics [182].

Variable E-Cadherin staining indexa

Low High

Number of patients % Number of patients %

Histologic type

Endometrioidb 135 53 120 47

Clear-cell or serous papillary 24 83 5 17

FIGO grade

1 25 49 26 51

2 63 51 61 49

3 71 65 38 35

Vascular invasion

0 or 1 vessel 94 52 88 48

$2 vessels 65 64 37 36

Myometrial infiltrationc, %

,50 77 51 74 49

$50 67 66 35 34

FIGO staged

I or II 120 53 108 47

III or IV 39 71 16 29

aResults available in 284 patients.
bAdenosquamous and adenoacanthoma are included.
cInformation available in 253 patients (E-cadherin) and 255 patients (beta-catenin).
dData missing in one patient.
doi:10.1371/journal.pmed.1001216.t006
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of how the groups are constructed, the rationale should be

reported. Choosing groups based on maximizing association with

outcome is dangerous (see Item 11 and Box 4). It can also be

helpful to report estimates of survival probabilities at a few specific

time points of interest along with corresponding confidence

intervals (for example, 95%) for each marker category.

Univariable measures of association of the marker with outcome

and differences between Kaplan-Meier curves might be heavily

Figure 3. Kaplan-Meier plot for disease-free survival comparing patients with HU177 concentrations above and below the median
value. [178]
doi:10.1371/journal.pmed.1001216.g003

Table 8. Univariable analyses of relation of UBE2C protein and standard variables to overall survival in 92 women with node-
positive breast cancer [183].

Variable HR 95% CI P

Age 1.06 1.01 to 1.12 0.026

Histology (IDC versus others) 0.48 0.18 to 1.27 0.139

Histological size (,20 mm versus $20 mm) 2.97 0.68 to 12.94 0.147

SBR (I versus II versus III) 3.97 1.67 to 9.47 0.001

Positive nodes (1 versus 2 versus 3 versus .3) 1.81 1.19 to 274 0.005

Estrogen receptor (+ versus 2) 0.18 0.07 to 0.47 ,0.001

Progesterone receptor (+ versus 2) 0.51 0.19 to 1.37 0.182

IHC Ki-67 (,11% versus $11%) 8.59 1.14 to 64.57 0.037

IHC UBE2C (,11% versus $11%) 7.14 1.64 to 31.11 0.009

NPI scores (1 versus 2 versus 3) 4.48 1.74 to 11.52 0.002

CI: confidence interval; IDC: infiltrating ductal carcinoma; IHC: immunohistochemistry; HR: hazard ratio; NPI: Nottingham Prognostic Index; SBR: Scarff-Bloom-Richardson.
doi:10.1371/journal.pmed.1001216.t008
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influenced by other prognostic variables that are correlated with

the marker. However, those analyses are still useful to report as

they provide a baseline against which to compare measures of

association that are adjusted for other variables (multivariable

analysis - see Item 16). For this reason it is helpful to present

univariable regression analyses as they allow direct comparison of

the unadjusted and adjusted hazard ratios.

Item 16. For key multivariable analyses, report
estimated effects (for example, hazard ratio) with
confidence intervals for the marker and, at least for
the final model, all other variables in the model.

Examples
See Tables 9 and 10.

Explanation
Since a tumor’s biological characteristics are not controllable

experimentally like treatment in a RCT, a study examining the

prognostic value of a tumor marker is subject to the usual

challenges inherent in analysis of observational studies, such as

adjustment for the effect of potential confounding factors. Some of

these other factors are standard variables that are generally

accepted as being related to prognosis while others might be

candidate variables that are available but have unknown

prognostic significance or uncertain relation to the marker of

interest. Any of these variables might be considered for inclusion in

multivariable models that are developed during the course of the

data analysis (see Items 12 and 17). Certain of these multivariable

models are of particular importance and the results associated with

these models should be reported in more detail.

Often the multivariable data analysis involves a model building

process that begins with what we will designate as the ‘full model’

and, after several data-dependent modeling steps, may result in

identification of a ‘final model’. The full model is a model

containing all the available candidate variables (see Item 8), often

depending on decisions from the initial data analysis step

considering missing values, distribution of the variables (for

example, collapsing of small categories), and other aspects of the

data (see Item 10a). Usually the full model contains too many

variables to be readily interpretable, but it may serve as the

starting point for variable selection, if done, using a method such

as backward elimination (see Item 10d) [66]. The final model,

which is a more parsimonious model obtained at the end of the

variable selection and modeling process, will provide estimates of

adjusted effects that are more interpretable, but the effects may

also be biased to appear stronger than they actually are due to the

variable selection process that had been used. The ‘standardized

model’ (for explanation see Item 17) is another important

multivariable model that should be examined in prognostic

studies. However, its components are determined on the basis of

clinical and pathologic considerations rather than through data-

dependent model building, and hence it is discussed separately.

The REMARK profile (see Item 12) illustrates which analyses

were performed.

As discussed for univariable models (see Item 15), precision and

significance of estimated effects should be indicated by providing

confidence intervals and P values. At least for the final model these

measures should be provided for all variables in the model. If

multivariable models are also developed for key patient subgroups

(for example, separate models for men and women, see Box 1),

effect estimates, confidence intervals, and P values should be

provided for all variables in the main subgroup models. For

additional multivariable models that do not differ substantially

from the main models reported in detail, it may be sufficient to

give effect estimates with confidence intervals for the marker of

interest only or to summarize results in simple statements. For

example, such models might have been used in sensitivity analyses

in which a standard variable was eliminated or in which different

assumptions were used (see Items 10g and 18).

In a review of 50 studies published in high impact cancer

journals in 2006 to 2007, more than one multivariable analysis was

reported in 30 of them (60%) [20]. For the primary marker, an

effect estimate with confidence interval from the multivariable

model was reported in 84%, but only 66% of the papers presented

effect estimates for all variables in the final model.

Item 17. Among reported results, provide estimated
effects with confidence intervals from an analysis in
which the marker and standard prognostic variables are
included, regardless of their statistical significance.

Examples

‘When all standard prognostic clinical variables were included

as co-variables in a Cox proportional hazards model, there was

again no evidence that these two markers were significantly

associated with OS (HR = 0.99, 95% CI 0.79–1.25 and P = 0.9 for

TS [thymidylate synthase] and HR = 0.98, 95% CI 0.78–1.23 and

P = 0.8 for p53).’ [76]

See Table 11.

Explanation

For many clinical situations one can identify some standard

variables that have previously been demonstrated to have

prognostic value and are generally measured for most patients

having the particular diagnosis. Although there may be some

difference from study to study, there may be a core group of

variables that are examined in most studies or are recommended

in clinical consensus guidelines. Typical standard variables include

disease stage and its constituent elements, such as tumor size and

nodal status, and sometimes patient demographic variables such as

Table 9. Multivariable Cox regression analysis of relapse-free
survival in patients with primary breast cancer showing the
impact of adding the marker (PMN-E) to a base model of
recognized prognostic variables [59].

Factor HR (95% CI) P

Base model

Age and menopausal status combined 0.005

Age premenopausala 0.68 (0.55 to 0.85)

Age postmenopausala 0.96 (0.84 to 1.09)

Post- versus premenopausal 1.83 (1.27 to 2.46)

Tumor size ,0.001

2 cm to 5 cm versus #2 cm 1.69 (1.36 to 2.10)

.5 cm versus #2 cm 2.31 (1.73 to 3.10)

Nodal status ,0.001

N1–3 versus N0 1.66 (1.30 to 2.11)

N.3 versus N0 2.75 (2.18 to 3.47)

ER (positive versus negative)b 0.87 (0.68 to 1.11) 0.25

PgR (positive versus negative)b 0.76 (0.61 to 0.95) 0.02

Additions to base model

+PMN-E (high versus low)c 1.45 (1.10 to 1.89) 0.01

+PMN-E (continuous)d 1.06 (0.98 to 1.14) 0.13

aAge in decades for pre- and postmenopausal patients;
bPositive, $10 fmol/mg protein; negative ,10 ng/mg protein;
cHigh, .36.4 ng/mg protein; low, #36.4 ng/mg protein;
dLog-transformed variable.
CI: confidence interval; ER: estrogen receptor; PgR: progesterone receptor.
doi:10.1371/journal.pmed.1001216.t009

PLoS Medicine | www.plosmedicine.org 25 May 2012 | Volume 9 | Issue 5 | e1001216



age or sex. Sometimes these variables are used to determine

eligibility for inclusion in a study (see Item 2). It is important to

evaluate whether the new marker maintains some association with

clinical outcome after accounting for these standard prognostic

variables. There should be discussion and explanation of how

these standard variables have been selected. Sometimes these

variables may already belong to an established multivariable score

and this should also be referenced [163].

Evaluation of a marker’s effect adjusted for standard variables is

generally accomplished by examining what we will call the

‘standardized model’, which includes the marker of interest as well

as all of the standard variables, regardless of their statistical

significance. Different treatments may be accounted for by

indicator variables or by stratification. Irrespective of what other

multivariable models are considered, the results of fitting this

standardized model should be explicitly reported as it facilitates

the comparison of estimated effects of the marker across studies.

This model should be clearly distinguished from other multivar-

iable models that may have been fit during the course of the data

analysis (see Item 12), particularly the full model and the final

model (see Item 16).

Comparison of the effect estimates from the standardized model

to univariable effects (see Item 15) and to effects estimated from

other key multivariable analyses (see Item 16) will provide a clearer

picture of whether the marker contributes prognostic information

beyond that provided by existing variables. Therefore, it is

important to present the standardized model including estimated

effects for the marker and each of the standard variables and

measures of their precision and significance as indicated by

confidence intervals and P values. When the goal is to build a

prognostic model and quantify how a model with standard

prognostic variables is improved by incorporating the new marker

into the model, a measure such as change in predictive accuracy

can be presented [164,165] (see also Item 10d).

Item 18. If done, report results of further investiga-
tions, such as checking assumptions, sensitivity analy-
ses, and internal validation.

Examples

‘Estimated effects were similar in the model without stratifica-

tion (data not shown). In a sensitivity analysis on the complete case

population (128 patients, 29 deaths), number of arteries and

angioinvasion were still the strongest prognostic factors.’ [166]

‘No significant deviation from the proportional-hazard assump-

tion could be found by evaluating an interaction term of the

change variables and the logarithm of time. Furthermore, the

interaction between the change during the first and the change

during the second month was not significant.’ [167]

‘A more detailed investigation with the multivariable fractional

polynomial approach did not reveal any strong indication of a

nonlinear effect and selected the same variables.’ [136]

Explanation

Results of many prognostic studies rely on the validity of the

statistical models used in the analysis, and inherent in any model

are certain assumptions (for example, proportional hazards, linear

effects of covariates, and missing data mechanisms). Prognostic

analysis results will have greater credibility if arguments can be

made that the modeling assumptions are likely to be justifiable or

that the results are not unduly sensitive to certain assumptions.

The report should mention the results obtained from any

additional analyses that were performed or diagnostic plots that

were examined for the purpose of checking assumptions or

demonstrating robustness of results (see Item 10g and Box 4). It

will often be impractical or unnecessary to present detailed

Table 10. Multivariable Cox regression models of overall survival for subgroups of size of residual postoperative tumor [184].

Parameter No residual postoperative tumor Residual tumor 1 mm to 10 mm Residual tumor .10 mm

HR 95% CI P HR 95% CI P HR 95% CI P

Age (10 y) 1.24 (1.11 to 1.37) ,0.0001 1.12 (1.03 to 1.21) 0.0068 1.10 (1.02 to 1.18) 0.0103

ECOG 2 versus 0–1 1.78 (1.24 to 2.55) 0.0016 1.47 (1.16 to 1.87) 0.0013 1.22 (1.01 to 1.47) 0.0365

FIGO IIIC-IV versus IIB-IIIB 1.41 (1.13 to 1.75) 0.0024 1.49 (1.20 to 1.85) 0.0003 1.48 (1.16 to 1.90) 0.0019

Grading G2/3 versus G1 2.19 (1.45 to 3.30) 0.0002 1.57 (1.00 to 2.46) 0.0524 1.46 (0.99 to 2.15) 0.0569

Endometrioid versus serous 0.84 (0.61 to 1.16) 0.2867 0.95 (0.69 to 1.30) 0.7328 0.97 (0.73 to 1.29) 0.8355

Mucinous versus serous 1.97 (1.26 to 3.08) 0.0028 2.76 (1.90 to 4.02) ,0.0001 2.29 (1.70 to 3.10) ,0.0001

Ascites, yes versus no 1.92 (1.52 to 2.41) ,0.0001 1.18 (0.96 to 1.45) 0.1178 1.31 (1.10 to 1.56) 0.0023

CI: confidence interval; HR: hazard ratio; ECOG: Eastern Cooperative Oncology Group; FIGO: Fédération Internationale de Gynécologie et d’Obstétrique.
doi:10.1371/journal.pmed.1001216.t010

Table 11. Prognostic values of several factors in a
multivariable analysis of overall survival for 175 patients with
ovarian carcinoma Stage III/IV [157].

Factor HR 95% CI P

Age

#60 1.00 — 0.051

.60 1.46 1.00 to 2.13

Stage

III 1.00 — 0.33

IV 1.20 0.83 to 1.74

Grade

1 1.00 — 0.11

2+3 1.62 0.89 to 2.94

Residual tumor

#5 mm 1.00 — ,0.001

.5 mm 3.95 1.86 to 8.37

Ploidy

diploid 1.00 — 0.93

aneuploid 0.98 0.67 to 1.44

n = 175, number of events = 133. CI: confidence interval; HR: hazard ratio.
doi:10.1371/journal.pmed.1001216.t011
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findings of these assessments, but a brief summary of the findings

should be stated. For example, a statement that a smoothed plot of

martingale residuals against a covariate exhibited a linear trend

would provide support for inclusion of the covariate as a linear

term in a Cox proportional hazards regression model; a statement

that covariates were checked for possible time-varying effects in a

Cox regression model but no significant effect seemed to be

present would provide support for the assumption of proportional

hazards. Results of assessments for differential marker effects

across subgroups or other types of interactions should be reported

(see Box 1). Stability analyses, for example, by using the bootstrap

[147,168], and conducting assessments including, but not limited

to, those mentioned above (see Item 10g) will provide supporting

evidence for the appropriateness of final model(s) that provide the

basis for the conclusions of the study [99,133].

In some situations, modeling assumptions cannot be empirically

verified, and the only recourse may be to demonstrate by

sensitivity analyses whether a reasonable range of alternative

assumptions still lead to similar conclusions as those reported for

the main analysis. For example, this problem is routinely

encountered when applying missing data imputation methods

[128,130] (see also Box 2). Because true missing data mechanisms

are usually unknown, it is recommended that results of any

alternative analyses (including complete case analysis) performed

under different assumptions about the missing data mechanism

(missing completely at random, missing at random, or missing not

at random) be reported so that the amount the results would

change can be assessed.

If either internal validation analyses or external validation

studies have been performed (see Item 10 h), the results of those

analyses should be described, regardless of the findings. Successful

validations greatly improve the chances that the study findings are

real.

Discussion

Item 19. Interpret the results in the context of the
pre-specified hypotheses and other relevant studies;
include a discussion of the limitations of the study.

Examples

‘We evaluated the prognostic significance of three VEGF SNPs

in a large cohort of patients with esophageal cancer. In

multivariate analysis, we showed that the heterozygous and

homozygous variant genotype of VEGF 936C/T conferred an

improved OS compared with the homozygous wild-type genotype

… Although this is the first study to evaluate VEGF SNPs in

esophageal cancer, two prior gastric cancer studies reported

conflicting results … There are limitations to this study. Although

others have correlated these VEGF SNPs with plasma VEGF

levels, due to the lack of available tissue samples, we were unable

to correlate VEGF genotype with VEGF mRNA or protein

expression within tumors … Secondly, the sample size of 361 is

very large for esophageal cancer but is only average for all studies

evaluating VEGF polymorphisms and cancer outcomes (median

sample size, 413; range, 100–1193). Finally, we used a candidate

polymorphism approach, which allows us to compare with studies

of other disease sites and focuses on functional variants, but

therefore will not evaluate the entirety of polymorphic variation

across this gene.’ [169]

‘Our data demonstrate that COX-2 expression is associated

with larger tumors, younger patient age, and generally more

aggressive breast cancer. These findings are consistent with several

other studies that have shown COX-2 expression to be associated

with more aggressive disease. Studies evaluating COX-2 expres-

sion as it relates to breast cancer aggressiveness and outcome are

summarized in Table 4.’ [170]

Explanation

The discussion is the appropriate section for authors to interpret

the data and suggest further research that might be needed. The

section should begin by briefly restating the purpose of the study

and recalling any pre-specified hypotheses. A simple summary of

the major findings should follow. This allows the reader to assess if

the study met its goals and to evaluate the evidence. A clear

distinction should be made between conclusions based on pre-

specified hypotheses and hypotheses suggested during the course of

the data analysis.

The authors should critically evaluate the reported results. This

evaluation should include an acknowledgment of any biases or

inconsistencies in the data, limitations of the assay methods, or

limitations of the design or data analysis methods. For example,

the study may have been underpowered, it may have been limited

to only tumors of sufficiently large size, the assay might be lacking

in reproducibility, important standard variables may have not

been available (for example, tumor grade in breast cancer), and

there may have been a large amount of missing data requiring

certain assumptions to be made in the analyses. If there are strong

biologically plausible subgroup effects, the discussion should

review how the prognostic value of the marker varies across those

subgroups. A thorough and open discussion will maximize the

value of the study results to the broader community, regardless of

whether the study results are as the investigators had hoped at the

initiation of their study. This discussion should include the authors’

assessment of whether the results of the study are generalizable to

other populations not studied in the current report. Any

unexpected findings should be identified. Even disappointing or

unexpected findings can yield important insights.

Following the summary, there should be a discussion of how the

results from the study integrate into the existing body of evidence.

It is helpful to include an explanation for the choice of references

cited (for example, only large studies or only studies in a similar

patient population) to allow the reader to evaluate whether

selective citation of references has influenced the interpretation of

the results. If a systematic review was conducted, it should be

described. (If the review was performed prior to initiation of the

study, its description may fit better in Item 1.) Authors should

comment on whether the results are consistent with, or differ from,

the general tendency in previous studies and offer potential

explanations for differences.

Item 20. Discuss implications for future research and
clinical value.

Example

‘The association of SMAD4 gene inactivation with poorer

prognosis and an increased propensity to metastasize has direct

clinical implications. Some patients with pancreatic cancer have

‘‘borderline’’ resectable tumors - they have resectable pancreatic

head cancers that are at high risk for a margin-positive resection.

Whereas further work is needed, our results, combined with those

previously reported in the literature, suggest that patients with

borderline resectable pancreatic cancers and SMAD4 gene

inactivation might be spared the risk of surgery because their

cancer is more likely to metastasize, whereas patients with

borderline resectable pancreatic cancers and intact SMAD4 may

benefit from the local control provided by neoadjuvant therapy

and surgical resection.’ [171]

Explanation

The rationale for studying any marker, prognostic or otherwise,

is to gain relevant information about the biology of the disease, to

find new tools to aid in clinical decision-making, or to develop new
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treatments. Observation of a statistically significant association

between a marker and an outcome may be encouraging, but in the

long term the difference in outcome should have clinically

important implications for patient care. If a prognostic marker

does not provide added value to existing prognostic information, it

may nevertheless be useful if it can be assessed more easily, at

lower cost, or measured more reproducibly than markers currently

used to provide clinically meaningful information.

In some cases, the results of a study will suggest that a marker

has some promise for clinical value, but a firm conclusion cannot

be drawn due to insufficient information. It is helpful in the

discussion of future research plans to specifically identify

information that is still lacking or inadequate. For example,

further studies might need to be conducted in expanded patient

populations or different patient subsets. Contemporary patient

populations diagnosed and staged using updated methods and

receiving more modern therapies and supportive care might need

to be studied. Further research studies may be required to resolve

differences in the performance of the marker noted in the

literature. The assay method might need refinement to improve its

robustness and accuracy before it is ready to be used in routine

clinical settings.

Ultimately, the goal of the research is to provide a tool of

clinically meaningful value to improve patient outcomes. The

discussion needs to provide a clear understanding of what the

current study has achieved toward that goal and what steps

remain.

Final Comments

Physicians seek information about tumor markers to inform

therapeutic decisions for individual patients. The availability of a

marker that can distinguish subsets of patients may also influence

the design of clinical trials. In order for information about the

utility of tumor markers to be appropriately evaluated, the

methods used to study the markers and the results generated

must be fully reported. The REMARK recommendations were

designed to help authors ensure that reports of their tumor marker

studies contain the information that readers need. Good reporting

reveals the strengths and weaknesses of a study and facilitates

sound interpretation and application of study results. The

REMARK recommendations may also aid in planning new

studies, and may be helpful for peer reviewers and editors in their

evaluation of manuscripts.

It was always our intention to supplement the checklist

publication [1–7] with a long explanatory paper, as has been

done for CONSORT, STROBE, and the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

statement, for example [9–11,172]. Following the same model as

those articles, in this paper we have provided extensive discussion

of each item in the REMARK checklist, providing the rationale

and including illustrative examples of good reporting. Where

possible we have referred to relevant empirical evidence from

reviews of publications. We have also included several boxes to

provide additional discussion of some key aspects of prognostic

studies.

Although we have primarily focused on studies of single

prognostic markers, most of the recommendations apply equally

to other types of prognostic studies, including studies of multiple

markers, studies to predict response to treatment, and studies to

develop prognostic models. The REMARK recommendations

offer criteria against which to judge the completeness of reporting

of marker studies. We hope that improvements will be seen over

time, but as yet reviews have shown that incomplete reporting is

regrettably common [15,18,20,21,173]. We believe that the

REMARK recommendations should be useful in specialties other

than cancer, and there are already examples that this is so

[21,174–176].

REMARK is not intended to dictate standards for the quality of

research and it should not be used as such. However, it can be a

useful tool to help assemble the information needed in order to

assess the quality and relevance of research.

Reporting recommendations should change as necessary to

reflect new empirical evidence and changes in our understanding

of which aspects of research are important. We intend to monitor

the literature for new evidence and critical comments in the

expectation that the checklist will be updated in the future.

Several cancer journals ask authors to follow the REMARK

recommendations in their instructions to authors; we encourage

more journals to follow this example. Up-to-date information on

REMARK and numerous other reporting guidelines can be found

on the website of the EQUATOR Network (http://www.equator-

network.org).

Supporting Information
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