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ABSTRACT

Background

A Phase | clinical trial has been proposed that uses neutralising monoclonal antibodies
(MAbs) as passive immunoprophylaxis to prevent mother-to-child transmission of HIV-1 in
South Africa. To assess the suitability of such an approach, we determined the sensitivity of
paediatric HIV-1 subtype C viruses to the broadly neutralising MAbs IgG1b12, 2G12, 2F5, and
4E10.

Methods and Findings

The gp160 envelope genes from seven children with HIV-1 subtype C infection were cloned
and used to construct Env-pseudotyped viruses that were tested in a single-cycle neutralisation
assay. The epitopes defining three of these MAbs were determined from sequence analysis of
the envelope genes. None of the seven HIV-1 subtype C pseudovirions was sensitive to 2G12 or
2F5, which correlated with the absence of crucial N-linked glycans that define the 2G12 epitope
and substitutions of residues integral to the 2F5 epitope. Four viruses were sensitive to
IgG1b12, and all seven viruses were sensitive to 4E10.

Conclusions

Only 4E10 showed significant activity against HIV-1 subtype C isolates, while 2G12 and 2F5
MAbs were ineffective and IgG1b12 was partly effective. It is therefore recommended that 2G12
and 2F5 MAbs not be used for passive immunization experiments in southern Africa and other
regions where HIV-1 subtype C viruses predominate.

The Editors’” Summary of this article follows the references.
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Introduction

Only four broadly neutralising monoclonal antibodies
(MAbs) against HIV-1 have been generated to date, all of
which were derived from patients with HIV-1 subtype B
infection. IgG1b1l2 recognizes an epitope overlapping the
CD4 binding site in the envelope glycoprotein complex [1-5],
and 2GI12 recognizes a mannose-rich epitope on the silent
face of gpl120 [6-10]. The 2F5 and 4E10 linear MAbs are
located in the membrane-proximal external region of gp4l
[11-13]. Passive transfer studies in primates using combina-
tions of these MAbs have provided strong evidence that MAbs
are able to control viral replication [14-17] and prevent HIV-
1 infection parenterally and through mucosal tissues [18,19].
More recent data have shown that in some individuals with
HIV infection, these MAbs can reduce the rate of viral
rebound following a structured treatment interruption [20].
Furthermore, oral challenge studies in neonatal macaque
monkeys support the use of neutralising MAbs for prevention
of virus transmission to human infants [21,22].

Mother-to-child transmission (MTCT) of HIV-1 infection
remains a significant problem in developing countries. While
the use of single-dose nevirapine, acting to prevent intra-
partum transmission, has reduced the number of infections,
more potent interventions are needed, particularly to
prevent postpartum transmissions. It is estimated that in
South Africa alone, approximately 96,000 children with HIV-
1 infection were born in 2003 [23]. Passive immunization
using neutralising MAbs has been suggested as a strategy to
prevent breast milk-borne infections [24,25]. Whether this
approach is valid is likely to depend on the efficacy of these
MAbs against the targeted viruses.

The most common subtype of HIV-1 infection in southern
Africa as well as globally is subtype C (http://www.unaids.org).
Results from a previous study indicated that a combination of
the MAbs 2F5, 2G12, IgG1bl2, and 4E10 successfully
neutralised 100% of HIV-1 subtype C isolates tested [26].
However, other studies have shown that 2F5 and 2G12 MAbs
are usually ineffective against HIV-1 subtype C viruses, while
4E10 is able to neutralise isolates from all subtypes [27,28]. To
further address whether 2G12, 2F5, IgG1b12, and 4E10 are
active against HIV-1 subtype C viruses, we tested them in an
Env-pseudotyped virus infectivity assay. We chose to use
specifically those viruses derived from infants and children
who had perinatally acquired HIV-1 infection to determine
whether or not these MAbs are effective in vitro as an
indication of their potential use for prevention of MTCT.

Methods

HIV-1 Subtype C Viral Isolates

Viruses were isolated from the blood of children with HIV-
1 infection by standard co-culture techniques using periph-
eral blood mononuclear cells (PBMCs) [29,30]. Blood samples
were collected from children residing in an orphanage or
receiving medical care at the Chris Hani Baragwanath
Hospital in Johannesburg between 1999 and 2002 (Table 1)
[29]. Informed consent was obtained from either a parent or a
guardian of each child at the time of blood collection. This
study received ethical approval from the University of the
Witwatersrand Committee for Research on Human Subjects
(Medical) (Johannesburg, South Africa).
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MADbs, sCD4, and Plasma Samples

MAbs were obtained from the National Institutes of Health
Reference and Reagent Program (Germantown, Maryland,
United States) and the International AIDS Vaccine Initiative
Neutralizing Antibody Consortium (New York, New York,
United States), and used at a starting concentration of 50 pg/
ml. Recombinant soluble CD4 (sCD4) comprising the extrac-
ellular domain of human CD4 produced in Chinese hamster
ovary cells was obtained from Progenics Pharmaceuticals
(Tarrytown, New York, United States), and tested at 50 pug/ml.
Two plasma samples (BB12 and IBU21) from blood donors
with HIV-1 subtype C infection were tested at a starting
dilution of 1:50.

Cell Lines

JC53-bl cells were obtained from the National Institutes of
Health Reference and Reagent Program (catalog number
8129). These cells were derived from a HeLa cell clone that
expresses CD4, CCR5, and CXCR4 constitutively [31] and
contains two reporter genes: firefly luciferase and Escherichia
coli B-galactosidase under the control of the HIV-1 LTR
promoter [32]. The 293T cells used for transfection were
obtained from the American Type Culture Collection
(Manassas, Virginia, United States). Both cell lines were
cultured in D-MEM containing 10% heat-inactivated fetal
bovine serum. Cell monolayers were disrupted at confluency
by treatment with 0.25% trypsin in 1mM EDTA.

Cloning of Envelope Genes and Production of
Pseudovirions

Proviral DNA extracted from in vitro infected PBMCs was
used to amplify full-length envelope genes. The 3-kilobase
PCR fragments, generated using envA and envM primers [33],
were cloned into the pCDNA 3.1-TOPO vector (Invitrogen,
Carlsbad, California, United States) and bacterial colonies
screened by PCR for insertion and correct orientation using
T7 and envM primers. The Env-pseudotyped virus stocks were
generated by co-transfecting 2 ug of the env encoding plasmid
DNA with 3.3 pg of the HIV genomic vector SG3delta env (a
gift from Beatrice Hahn) into an 80% confluent monolayer of
293T cells in a T-25 culture flask in the presence of 40 pl of
PolyFect Transfection Reagent (Qiagen, Heidelberg, Ger-
many). The media was replaced 6-8 h after transfection; 48 h
later, culture supernatant containing the pseudoviruses was
harvested, filtered (0.45 pm), and stored at —70 °C. The tissue
culture infectious doses (TCIDj5p) were quantified by infecting
JC53-bl cells with serial 5-fold dilutions of the supernatant in
quadruplicate in the presence of DEAE dextran (30 pg/ml)
(Sigma, St. Louis, Missouri, United States). The infection was
monitored 48 h later by evaluating the luciferase activity
using the Bright Glo Reagent (Promega) following manufac-
turer instructions. Luminescence was measured in a Wallac
1420 Victor Multilabel Counter (Perkin Elmer, Wellesley,
California, United States). TCID5, was calculated as described
[34]. Wells with relative light units greater than 2.5 times the
negative control (mock infection) were considered positive
for infection.

Single-Cycle Neutralisation Assay

Neutralisation was measured as a reduction in luciferase
gene expression after a single-round infection of JC53-bl cells
with Env-pseudotyped viruses [35]. Briefly, 200 TCID5, of

1024 July 2006 | Volume 3 | Issue 7 | €255



Neutralisation of HIV-1 Subtype C

Table 1. Patient Information and Viral Isolate Characteristics for HIV-1 Subtype C Cloned Envelope Genes

Cloned Env Date of Gender  Age Viral Load Clinical Biotype of Env Genetic  Accession Number of
Sample Collection (Copies/ml) Category® Pseudovirus Subtype Cloned Env Gene
RP1.12 February 2002 F 1y 178,830 C X4 C DQ447271
RP4.3 March 2002 M 4 mo >500,000 C RS C DQ447270
RP6.6 March 2002 M 4 mo >500,000 C R5 C DQ447269
COT6.15 May 1999 F 2y 267,999 C R5 C DQ447266
COT9.6 May 1999 M 1y >500,000 C R5 C DQ447272
TM7.9 September 1999 M 9y 66,774 B R5 C DQ447267
TM3.8 July 1999 F 6y 11,178 B R5 @ DQ447268

B, moderately symptomatic; C, symptomatic with an AIDS defining condition.
DOI: 10.1371/journal.pmed.0030255.t001

pseudoviruses in 50 pl culture media was incubated with 100
ul of serially diluted MAbs, plasma, or sCD4 using D-MEM
with 10% fetal bovine serum in a 96-well plate in triplicate
for 1 h at 37 °C. MAbs were either tested singly starting at 50
ug/ml (before addition of cells) or in combination also at 50
pg/ml for each MAb. Thus, TriMab contained 2G12, IgG1b12,
and 2F5 (50:50:50 pg/ml) and TriMab plus 4E10 contained
2G12, IgG1b12, 2F5, and 4E10 (50:50:50:50 pg/ml). A 100-pl
solution of JC53-bl cells (1 X 10* cellsiwell) containing 75 ug/
ml DEAE dextran was added; the cultures were then
incubated at 37 °C in 5% COs/95% air for 48 h. Infection
was monitored by evaluating the luciferase activity. Titres
were calculated as inhibitor concentration (ICjp) or recip-
rocal plasma dilution (ID5() values causing 50% reduction of
relative light units compared to the virus control (wells with
no inhibitor) after subtracting the background (wells without
virus infection). IC5, values obtained for MAb combinations
were compared to MAbs tested singly. The HIV-1 subtype B
pseudovirus QH692.42 was included as a positive control,
because this virus has been known to be sensitive to all four of
the test MAbs [36,37].

gp160 Sequencing

Cloned env genes were sequenced using the ABI PRISM Big
Dye Terminator Cycle Sequencing Ready Reaction kit
(Perkin-Elmer Applied Biosystems, Foster City, California,

United States) and resolved on an ABI 3100 automated
genetic analyzer. The full-length gpl60 sequences were
assembled and edited using Sequencher (version 4.0) software
(Gene Codes, Ann Arbor, Michigan, United States).

Results

HIV-1 Subtype C Cloned Envelopes from Paediatric
Patients

We cloned complete (gpl160) envelope genes from seven
HIV-1 subtype C isolates cultured from the blood of children
with perinatally acquired HIV-1 infection. Five of these
isolates were from rapidly progressing infants (RP and COT)
who developed severe clinical symptoms within the first year
of life, most of whom died shortly after blood collection
(Table 1). Two isolates were from children who had survived
for between 6 and 9 y and were moderately symptomatic with
illnesses, such as lymphocytic interstitial pneumonitis. All
isolates used the CCRb5 co-receptor, while viruses from one
rapidly progressing infant (RP1) also used the CXCR4 co-
receptor and was therefore dualtropic [29]. The Env-
pseudotyped virus derived from the latter isolate was able
to use only CXCR4 as co-receptor, while the other six
pseudoviruses used CCR5 (Table 1). All cloned envelopes
were sequenced and compared to the original viral isolate.
Phylogenetic analysis indicated that all samples were HIV-1

Table 2. Sensitivity of HIV-1 Subtype C Pseudovirions to Anti-HIV MAbs, sCD4, and Plasma

Env Clone 1Cs0 (pg/ml)? Plasma IDs,"
2G12 IgG1b12 2F5 4E10 TriMAb® TriMAb-+ 4E10¢ sCD4 BB12 IBU21

RP1.12 >45 >45 >45 13.2 >50 8.9 16.4 28 <22
RP4.3 >45 0.9 >45 171 1.6 1.0 8.4 <22 383
RP6.6 >45 11.9 >45 45.8 20.1 11.1 27.0 587 1,018
COT6.15 >45 >45 >45 3.0 >50 0.9 8.3 153 128
COT9.6 >45 3.4 >45 35.9 5.0 2.6 0.4 114 <22
T™7.9 >45 0.2 >45 34.5 0.2 0.2 7.3 <22 <22
TM3.8 >45 >45 >45 21.6 >50 13.5 26.0 218 2,399
QH692.42 0.8 <0.4 7.1 15.2 ND ND 2.7 <22 47

?Concentration of each MAb alone or in combination that achieves 50% neutralisation are in bold.

PReciprocal plasma dilution.

“TriMAb: Equimolar combination of 2G12:2F5:1gG1b12.
“TriMAb-+4E10: Equimolar combination of 2G12:2F5:1gG1b12:4E10.
ND, not determined.

DOI: 10.1371/journal.pmed.0030255.t002
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subtype C isolates; sequences from the same individual
clustered together with high bootstrap values (unpublished
data).

Neutralisation Sensitivity of HIV-1 Subtype C Env-
Pseudotyped Viruses to MAbs

The HIV-1 subtype C envelope clones were used to
generate Env-pseudotyped viruses by co-transfection with a
subgenomic plasmid. These pseudoviruses were tested for
their sensitivity to neutralisation by the MAbs IgG1b12, 2G12,
2F5, and 4E10. The MAbs 2G12 and 2F5 failed to neutralise
any of the seven HIV-1 subtype C pseudoviruses at 50 pg/ml,
whereas the HIV-1 subtype B virus QH692.42 had ICj, values
of 0.8 and 7.1, respectively (Table 2). The IgG1b12 neutralised
four of the seven HIV-1 subtype C viruses as well as the HIV-1
subtype B control. The IC5, values of the sensitive pseudo-
viruses ranged from 0.2 pg/ml to 12 ug/ml, indicating high
potency of this MAb. The MAb 4E10 neutralised all the
viruses. The IC5, values were generally high, supporting the
notion that this MAb has broad specificity but lower potency
than other MAbs [27].

Neutralisation Using Combinations of MAbs

Synergistic neutralisation among MAbs that recognize
different specificities in the envelope glycoprotein has been
suggested [38,39], although it has been a controversial topic.
We decided, therefore, to test combinations of these MAbs
using equimolar concentrations of 2G12, IgG1b12, and 2F5
(TriMADb), and TriMAb plus 4E10. The ICs, values in the
presence of TriMAb were similar to those for IgG1b12 alone
(Table 2), indicating that the activity in TriMAb was probably
due to the activity of IgGlb12. When 4E10 was added to
TriMAD, it was not surprising that neutralisation of all
isolates was achieved, because 4E10 was active against all
isolates when used alone at this concentration range.

Analysis of the dose-response curves confirmed the lack of
significant synergy among MAbs. Those viruses sensitive to
IgG1bl2 (RP4.3, RP6.6, TM7.9, and COT9.6) had similar
neutralisation curves in the presence of IgGlbl2 alone or
when tested as part of TriMAb with or without 4E10 (Figure
1A). However, among isolates insensitive to IgGlbl2
(COT6.15, TM3.8, and RP1.12), slightly greater potency was
observed with TriMAb plus 4E10, compared to 4E10 alone
(Figure 1B).

Sensitivity to sCD4 and Polyclonal Anti-HIV Antibodies

Given the relative resistance of the HIV-1 subtype C
pseudovirions to neutralisation by MAbs, we chose to test
their responses to sCD4 and polyclonal antibodies from
individuals with HIV-1 infection. sCD4, which blocks gp120
binding to the CD4 receptor, neutralised all of the pseudovi-
rions (Table 2), indicating that the CD4 binding site is
accessible on the pseudotyped envelope glycoproteins. The
IgG1b12 binding site overlaps with the CD4 binding site;
however, there was no correlation between the ID5, values for
sCD4 and IgG1b12 in this assay, similar to what others have
reported [28,40].

All pseudovirions except TM7.9 were neutralised by one or
both of the plasma samples with a wide variation in ICjy,
titres, as is often seen when using polyclonal antibodies,
suggesting that these envelopes were not atypical in their
ability to be neutralised (Table 2).

@ PLoS Medicine | www.plosmedicine.org
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Analysis of Amino Acid Sequences Comprising the
Neutralisation Epitopes

Sequence analysis of the predicted N-linked glycosylation
(PNG) sites at positions 295, 332, and 392, which are critical
for the 2G12 epitope, indicated that all HIV-1 subtype C
isolates lacked the glycan 295. TM7.9 also lacked the glycan
392 (Table 3). Another site (position 386), reported to play an
indirect role in the formation of the 2G12 epitope, was also
absent from one of the HIV-1 subtype C envelopes. The HIV-
1 subtype B pseudovirus QH692.42 was the only virus
possessing all five PNG sites and was the only virus sensitive
to 2G12. These data suggest that the lack of the glycan 295
renders isolates resistant to 2G12, as previously suggested
[9,10].

The 2F5 epitope is centred on the sequence ELDKWA [11].
Mutagenesis studies have revealed that the amino acid
residues DKW are indispensable for the recognition by this
MAb [13,41]. In particular, substitutions at residue K665
appear to be the major determinant of resistance [27]. In this
study, all HIV-1 subtype C isolates had substitutions at
position 665 with the lysine (K) residue replaced by serine (S)
or other amino acids (R or N), while the HIV-1 subtype B
pseudovirus QH692.42 had no such substitution. These data
support the finding that the residue K665 is crucial for
neutralisation by 2F5.

4E10 recognizes an epitope containing the sequence
NWEFD/N)IT [12,42] at the C-terminal of the 2F5 epitope.
Mutagenesis experiments have shown that the residues W672,
F673, and W680 are indispensable for recognition by 4E10
[13], while the crystal structure of the Fab 4E10-epitope
complex indicates that W672, F673, 1675, and T676 are the key
residues in this interaction [43]. All the viruses analyzed in this
study had a conserved 4E10 epitope (W672, F673, W680),
consistent with their phenotypic sensitivity to this MAb.

Discussion

The neutralisation sensitivity of HIV-1 subtype C isolates
derived from children appears similar to previously reported
sensitivity of isolates from adults with HIV-1 subtype C
infection [27,28]. Thus the broadly cross-reactive neutralising
MAbs 2G12 and 2F5 are ineffective against both paediatric
and adult HIV-1 subtype C viruses, while IgG1b12 potently
neutralised approximately 50% of the tested viruses. Only
4E10 showed broad activity against HIV-1 subtype C viruses,
although its potency was low. Collectively, these data caution
against the use of 2G12 and 2F5 MAbs for passive immuniza-
tion in areas where HIV-1 subtype C viruses are highly
prevalent.

In this study, we have used cloned envelope genes in a
single-cycle neutralisation assay, which is a high-throughput
assay that, to our knowledge, is rapidly becoming the method
of choice for measuring antibody neutralisation [37,44].
Comparative studies have shown a positive correlation
between results derived from this assay and the more
traditional PBMC-based neutralisation assay (Taylor et al,
unpublished data) [37]. However, the 293T-derived pseudovi-
rions were found to be more sensitive to neutralisation by
MAbs and serum samples when compared to the uncloned
PBMC-derived viruses [27,37]. It has been suggested that this
effect is due to the cells used to generate the pseudoviruses
[44] and not the nature of the target cells or the clonal nature
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Figure 1. Neutralisation Dose-Response Curves of the MAbs 2G12, 2F5, IgG1b12, and 4E10, Alone and in Combination

The MAb concentrations in the triple and quadruple combination are represented as the concentration of each MAb in the equimolar mix starting at 50
pg/ml. Results are shown as the reduction of virus infectivity relative to the virus control (without MAbs) with 50% inhibition indicated by a dotted line.

Note those viruses sensitive to IgG1b12 and 4E10 (A) and those viruses sensitive to 4E10 alone (B).

DOI: 10.1371/journal.pmed.0030255.g001
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Table 3. Amino Acid Sequences of MAb Epitopes in Cloned Subtype C Envelope Genes

Env Clone 2G12 Epitope® 2F5 Epitope®

4E10 Epitope®

295 332 392 339 386 662 663 664 665 666 667 668 671 672 673 674 675 676 677 678 679 680
Nx(S/T) Nx(S/T) Nx(S/T) Nx(S/T) Nx(S/T) E L D K W A S N W F D |1 T N W L w

RP1.12 vdl NIS NGT NKT NTS A R N N S o S

RP4.3 ECT NIS® NNS NDT NTT A N N S N

RP6.6 VCT NIS NRT NNT DTS A s N N S K

COT6.15 VCT NIS NTS NRT NTS A . S K N S K

COT9.6 VCT NIS NGT NKT NTS A N S Q N S 5 S

T™M7.9 VCT NIS NRR NKT NTS A s K N S S

TM3.8 MCT NIS NST NKT NTS A S K N S N S

QH692.42 NCT NLS NST NDT NTT N R

“Predicted N-linked glycosylation (PNG) sites are in bold and italic.
PResidues crucial for 2F5 and 4E10 MAb activity are in bold and italic.
“The PNG is moved two amino acids downstream.

DOI: 10.1371/journal.pmed.0030255.t003

of the envelope [27,45]. Overall, we can be confident that the
observed resistance of HIV-1 subtype C isolates to 2G12 and
2F5 is not due to the use of an Env-pseudotyped virus-based
neutralisation assay. Instead, the extra sensitivity of the latter
assay might be expected to generate false-positive and not
false-negative outcomes.

It has been shown in multiple studies that 2G12 is generally
ineffective against HIV-1 subtype C isolates [27,28]. The 2G12
epitope binds a cluster of mannose residues; the absence of
an N-linked glycan at position 295 appears to correlate with
resistance to this MAb [9,10]. The absence of N295 may
prevent the correct processing and presentation of glycans at
position 332, affecting antibody binding and therefore
neutralisation [7]. A recent study has shown that reintroduc-
tion of this PNG site into a subtype C isolate restored binding
of 2G12, although sensitivity to neutralisation was not tested
[46]. An analysis of 339 HIV-1 subtype C envelope sequences
obtained from Los Alamos Database showed that 83% of
sequences lacked a glycosylation site at position 295. If the
lack of the PNG at position 295 is indeed a cause of resistance
to 2G12, then a majority of HIV-1 subtype C viruses would be
insensitive to this MAb.

The 2F5 MAD has been shown to have broadly neutralising
activity but has minimal efficacy against HIV-1 subtype C
viruses [27,28]. An alanine scan over the ELDKWAS epitope
defined the motif DKW in positions 664-666 as a determinant
for 2F5 recognition [13], although some viruses with this
epitope are insensitive to this MAb [27]. However, all viruses
with a substitution at residue K665 are resistant to 2F5 [27].
Similarly, in this study, we found that all resistant viruses had
a substitution at K665 while the subtype B virus did not.
Analysis of 324 sequences in Los Alamos Database showed
that the subtype C consensus for the 2F5 epitope is ALDSWA,
with only approximately 12% bearing a K at position 665.
This suggests that the majority of HIV-1 subtype C viruses will
also be resistant to 2F5. However, a geographical clustering of
some HIV-1 subtype C variants that may be sensitive to 2F5
due to the presence of the DKW epitope has been suggested
[27].

Our data with IgG1b12 agree with other studies in that this
MAD is more effective than 2F5 or 2G12 at neutralising HIV-1
subtype C viruses, although IgG1b12 inhibited only approx-
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imately 50% of the isolates tested [27,28]. Among sensitive
isolates, this MAD is particularly potent and requires very low
antibody concentrations for 50% inhibition. Due to the
conformational nature of the IgG1b12 epitope, it is difficult
to predict resistance to this MAb by simple sequence analysis.
Some studies have described neutralisation escape mutations
for this MAb, such as a proline-to-alanine substitution in
position 369 in the C3 region of gp120 [47,48]. In this study,
we found no correlation between the presence of a proline at
this position and sensitivity to IgG1b12, which suggests that
this escape mutation was specific to the isolate used in the
referred study.

The 4E10 epitope appears to be the most broadly cross-
reactive MAb described to date, neutralising all viruses so far
tested. In previous studies, 4E10 has been shown to neutralise
100% of viruses in a comprehensive panel that included all
genetic subtypes of HIV-1 group M and some recombinant
forms [27,49]. However, 4E10 is a low-potency antibody
generally requiring high concentrations to reduce infectivity
by 50%, as seen in this and other studies [20,27]. Whether this
is a property of the antibody or inaccessibility of the epitope
remains to be determined. The motif WF on the 4E10 epitope
was 100% conserved in 324 sequences of this portion of gp41
from HIV-1 subtype C viruses in Los Alamos Database. This
suggests that HIV-1 subtype C viruses will be universally
sensitive to 4E10.

Some studies have suggested that MAbs can act synergisti-
cally to increase neutralisation potency against HIV-1
[26,38,39,50,51]. However, this has been a controversial topic,
and isolate dependency has been observed [51,52] with
different results obtained with T-cell line-adapted virus and
primary isolates [39,50,52]. In this study, we did not observe
strong synergy among these MAbs. The combination of the
four MAbs neutralised all the tested viruses in agreement with
other study results for HIV-1 subtype C isolates [26]. This is
likely due to the neutralisation activity of individual MAbs
rather than the combined effect of them, because a significant
increase in potency was not observed with the mixtures.
There may have been a slight synergistic effect for RP1.12,
TM3.8, and COT6.15 as demonstrated by increased neutral-
isation when 4E10 was combined with IgG1b12, 2F5, and
2G12. Such an effect is probably due to IgG1b12, given the
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absence of the 2G12 and 2Fb epitopes in these viruses. A
more thorough analysis of synergism would require titrating
4E10 against IgG1b12 and evaluating the data based on the
Chou-Talalay method [39,53]. It is also possible that the clonal
nature of the envelope glycoproteins used in this study
precluded the detection of synergism. Some researchers have
suggested that the heterogeneity of the virus is the cause of
the synergistic effects of some neutralising antibody combi-
nations [b4]. However, others have observed no differences
between virus isolates passaged in PBMCs and cloned
envelope pseudotype viruses [39].

The MTCT of HIV-1 infection is usually associated with
transmission of single variants [26]. In this study, four of the
cloned envelopes were from children infected for fewer than
12 mo, two of which were infected for 4 mo and therefore
represent relatively early variants. Although these clones may
not have been the earliest transmitted variants, it is unlikely
that earlier variants would differ in their neutralisation
sensitivity to these MAbs. We base this assumption on the fact
that the MAD sensitivities of viruses from adults with HIV-1
subtype C infection, who would be the source of infection in
perinatally infected children, are similar. In addition, we did
not observe variation in the susceptibility to neutralisation or
in the epitope sequences that can be related to the age of the
child: infants and children in this study had identical
phenotypic and genotypic profiles. Overall, we feel confident
that the MAb neutralisation profiles of the viruses analyzed in
this study would be representative of the earliest transmitted
variants.

Based on our results, we question the use of MAb
combinations that include 2F5 and 2G12 as a prophylactic
treatment in regions where HIV-1 subtype C viruses
predominate, even if such combinations were to include
4E10 and IgG1bl2. In passive immunoprophylaxis studies
using a single MAb, protection was not observed even when
the challenge strain was successfully neutralised in vitro. Only
a combination of at least three MAbs with bona fide
neutralisation activity against the challenge strain offered
complete protection [17]. Such a combination is not likely to
be achievable against HIV-1 subtype C isolates. Furthermore,
a recent study using a combination of 2G12, 2F5, and 4E10
for the treatment of individuals with HIV-1 infection has
denoted that the ability of 2F5 and 4E10 to affect the virus in
vivo is unclear and may require very high serum concen-
trations of these MAbs [20]. This further questions the use of
MAD combinations in which only 4E10 has the potential to be
100% effective.

Overall, we believe that the use of these MAbs to prevent
MTCT of HIV-1 subtype C infection is unlikely to be
efficacious; therefore, a clinical trial should not be conducted.
A recent study has confirmed our viewpoint that these MAbs
would have limited benefit when used to prevent MTCT in
populations with HIV-1 non-B subtype infection [55]. In
addition, recent data have suggested that the MAbs 2F5 and
4E10 react against self-antigens, such as cardiolipin, and the
MADb IgGlbl2 reacts with double-stranded DNA [56].
Although safety concerns exist surrounding the use of these
MADbs for treatment [57], no adverse effects have yet been
reported in treated adults [20]. It should be noted that this
work remains to be corroborated by others. Nevertheless, if
these findings on autoreactivity prove to be true, then the
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utility of these MAbs for in vivo use is in further doubt,
particularly if they are to be used in infants.

The study of the epitopes recognized by these broadly
neutralising MAbs contributes to the knowledge necessary for
the rational design of an immunogen capable of inducing a
broad and potent neutralisation response against HIV-1
infection. Considerable efforts have been invested in design-
ing immunogens based on these epitopes [41]. However, given
the subtype constraints of some of these epitopes, new, more
broadly occurring epitopes need to be found for the design of
vaccines that will be able to elicit an efficient neutralising
response against a broad spectrum of HIV subtypes.

Supporting Information

Accession Numbers
The GenBank (http://[www.ncbi.nlm.nih.gov/Genbank) accession
numbers for nucleotide sequences of the cloned envelope genes

discussed in this paper are DQ447266-DQ447272 (Table 1).

Acknowledgments

We thank Dennis Burton, James Binley, and the National Institutes of
Health Reference and Reagent Program for supplying MAbs and
Progenics for supplying sCD4. We are grateful to Penny Moore for
her help with the sequence analysis and the critical reading of the
manuscript.

Author contributions. ESG and LM designed the study. ESG and
LM analyzed the data. TM and GG enrolled patients. DM provided
reagents and technical advice. ESG, TM, GG, DM, and LM contributed
to writing the paper. ESG collected data and performed experiments
for the study.

References

1. Barbas CF 3rd, Collet TA, Amberg W, Roben P, Binley JM, et al. (1993)

Molecular profile of an antibody response to HIV-1 as probed by

combinatorial libraries. ] Mol Biol 230: 812-823.

Burton DR, Barbas CF 3rd, Persson MA, Koenig S, Chanock RM, et al.

(1991) A large array of human monoclonal antibodies to type 1 human

immunodeficiency virus from combinatorial libraries of asymptomatic

seropositive individuals. Proc Natl Acad Sci U S A 88: 10134-10137.

Roben P, Moore JP, Thali M, Sodroski J, Barbas CF 3rd, et al. (1994)

Recognition properties of a panel of human recombinant Fab fragments to

the CD4 binding site of gpl120 that show differing abilities to neutralize

human immunodeficiency virus type 1. J Virol 68: 4821-4828.

Burton DR, Pyati J, Koduri R, Sharp SJ, Thornton GB, et al. (1994) Efficient

neutralization of primary isolates of HIV-1 by a recombinant human

monoclonal antibody. Science 266: 1024-1027.

Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, et al. (2001)

Crystal structure of a neutralizing human IGG against HIV-1: A template

for vaccine design. Science 293: 1155-1159.

Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, et al. (1996)

Human monoclonal antibody 2G12 defines a distinctive neutralization

epitope on the gp120 glycoprotein of human immunodeficiency virus type

1. J Virol 70: 1100-1108.

Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, et al. (2003)

Antibody domain exchange is an immunological solution to carbohydrate

cluster recognition. Science 300: 2065-2071.

Scanlan CN, Pantophlet R, Wormald MR, Saphire EO, Calarese D, et al.

(2003) The carbohydrate epitope of the neutralizing anti-HIV-1 antibody

2G12. Adv Exp Med Biol 535: 205-218.

Sanders RW, Venturi M, Schiffner L, Kalyanaraman R, Katinger H, et al.

(2002) The mannose-dependent epitope for neutralizing antibody 2G12 on

human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76:

7293-7305.

Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R,

et al. (2002) The broadly neutralizing anti-human immunodeficiency virus

type 1 antibody 2G12 recognizes a cluster of alphal->2 mannose residues

on the outer face of gp120. J Virol 76: 7306-7321.

. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, et al. (1993) A
conserved neutralizing epitope on gp41 of human immunodeficiency virus
type 1. ] Virol 67: 6642-6647.

. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, et al. (2001)

Broadly neutralizing antibodies targeted to the membrane-proximal

external region of human immunodeficiency virus type 1 glycoprotein

gp41. J Virol 75: 10892-10905.

Zwick MB, Jensen R, Church S, Wang M, Stiegler G, et al. (2005) Anti-

human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10

require surprisingly few crucial residues in the membrane-proximal

10.

13.

July 2006 | Volume 3 | Issue 7 | €255



18.

19.

20.

22,

23.

24.

28.

30.

32.

external region of glycoprotein gp41 to neutralize HIV-1. ] Virol 79: 1252
1261.

. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, et al. (2000)

Human neutralizing monoclonal antibodies of the IgG1 subtype protect
against mucosal simian-human immunodeficiency virus infection. Nat Med
6: 200-206.

. Mascola JR (2002) Passive transfer studies to elucidate the role of antibody-

mediated protection against HIV-1. Vaccine 20: 1922-1925.

. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, et al. (2000)

Protection of macaques against vaginal transmission of a pathogenic HIV-
1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med
6: 207-210.

. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, et al. (1999)

Protection of Macaques against pathogenic simian/human immunodefi-
ciency virus 89.6PD by passive transfer of neutralizing antibodies. ] Virol
73: 4009-4018.

Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, et al. (2001) Antibody
protects macaques against vaginal challenge with a pathogenic R5 simian/
human immunodeficiency virus at serum levels giving complete neutraliza-
tion in vitro. J Virol 75: 8340-8347.

Veazey RS, Shattock R], Pope M, Kirijan JC, Jones ], et al. (2003) Prevention
of virus transmission to macaque monkeys by a vaginally applied
monoclonal antibody to HIV-1 gp120. Nat Med 9: 343-346.

Trkola A, Kuster H, Rusert P, Joos B, Fischer M, et al. (2005) Delay of HIV-1
rebound after cessation of antiretroviral therapy through passive transfer
of human neutralizing antibodies. Nat Med 11: 615-622.

. Hofmann-Lehmann R, Vlasak J, Rasmussen RA, Smith BA, Baba TW, et al.

(2001) Postnatal passive immunization of neonatal macaques with a triple
combination of human monoclonal antibodies against oral simian-human
immunodeficiency virus challenge. J Virol 75: 7470-7480.

Ferrantelli F, Rasmussen RA, Buckley KA, Li PL, Wang T, et al. (2004)
Complete protection of neonatal rhesus macaques against oral exposure to
pathogenic simian-human immunodeficiency virus by human anti-HIV
monoclonal antibodies. J Infect Dis 189: 2167-2173.

Department of Health (2003) National HIV and syphilis antenatal sero-
prevalence survey in South Africa 2003. Pretoria (South Africa): Depart-
ment of Health. 18 p.

Safrit JT, Ruprecht R, Ferrantelli F, Xu W, Kitabwalla M, et al. (2004)
Immunoprophylaxis to prevent mother-to-child transmission of HIV-1. J
Acquir Immune Defic Syndr 35: 169-177.

. Xu W, Hofmann-Lehmann R, McClure HM, Ruprecht RM (2002) Passive

immunization with human neutralizing monoclonal antibodies: Correlates
of protective immunity against HIV. Vaccine 20: 1956-1960.

. Xu W, Smith-Franklin BA, Li PL, Wood C, He ], et al. (2001) Potent

neutralization of primary human immunodeficiency virus clade C isolates
with a synergistic combination of human monoclonal antibodies raised
against clade B. ] Hum Virol 4: 55-61.

. Binley JM, Wrin T, Korber B, Zwick MB, Wang M, et al. (2004)

Comprehensive cross-clade neutralization analysis of a panel of anti-
human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78:
13232-13252.

Bures R, Morris L, Williamson C, Ramjee G, Deers M, et al. (2002) Regional
clustering of shared neutralization determinants on primary isolates of
clade C human immunodeficiency virus type 1 from South Africa. J Virol
76: 2233-2244.

. Choge I, Cilliers T, Walker P, Taylor N, Phoswa M, et al. (2006) Genotypic

and phenotypic characterization of viral isolates from HIV-1 subtype C
infected children with slow and rapid disease progression. AIDS Res Hum
Retro: 22: 458-465.

Morris L, Cilliers T, Bredell H, Phoswa M, Martin D] (2001) CCR5 is the
major coreceptor used by HIV-1 subtype C isolates from patients with
active tuberculosis. AIDS Res Hum Retroviruses 17: 697-701.

. Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) Effects of

CCR5 and CD4 cell surface concentrations on infections by macro-
phagetropic isolates of human immunodeficiency virus type 1. J Virol 72:
2855-2864.

Wei X, Decker JM, Liu H, Zhang Z, Arani RB, et al. (2002) Emergence of
resistant human immunodeficiency virus type 1 in patients receiving fusion
inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46: 1896-
1905.

. Gao F, Morrison SG, Robertson DL, Thornton CL, Craig S, et al. (1996)

Molecular cloning and analysis of functional envelope genes from human
immunodeficiency virus type 1 sequence subtypes A through G. The WHO
and NIAID Networks for HIV Isolation and Characterization. ] Virol 70:
1651-1667.

. Johnson VA, Byington RE (1990) Quantitative assays for virus infectivity. In:

‘Aldovini A, Walker BD, editors. Techniques in HIV Research. New York:
Stockton Press. pp. 71-76.

. Montefiori DC (2004) Evaluating neutralizing antibodies against HIV, SIV

and SHIV in luciferase reporter gene assays. In: Coligan JE, Kruisbeek AM,
Margulies DH, Shevach EM, Strober W, et al., editors. Current Protocols in
Immunology. Hoboken: John Wiley. pp. 12: 1-15.

@ PLoS Medicine | www.plosmedicine.org

1030

36.

37.

38.

39.

40.

41.

42.

44.

45.

46.

48.

49.

50.

51.

52.

53.

Neutralisation of HIV-1 Subtype C

Bures R, Gaitan A, Zhu T, Graziosi C, McGrath KM, et al. (2000)
Immunization with recombinant canarypox vectors expressing mem-
brane-anchored glycoprotein 120 followed by glycoprotein 160 boosting
fails to generate antibodies that neutralize R5 primary isolates of human
immunodeficiency virus type 1. AIDS Res Hum Retroviruses 16: 2019-2035.
Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, et al. (2005) Human
immunodeficiency virus type 1 env clones from acute and early subtype B
infections for standardized assessments of vaccine-elicited neutralizing
antibodies. J Virol 79: 10108-10125.

Buchbinder A, Zolla-Pazner S, Karwowska S, Gorny MK, Burda ST (1992)
Synergy between human monoclonal antibodies to HIV extends their
effective biologic activity against homologous and divergent strains. AIDS
Res Hum Retroviruses 8: 1395.

Zwick MB, Wang M, Poignard P, Stiegler G, Katinger H, et al. (2001)
Neutralization synergy of human immunodeficiency virus type 1 primary
isolates by cocktails of broadly neutralizing antibodies. J Virol 75: 12198-
12208.

Pantophlet R, Ollmann Saphire E, Poignard P, Parren PW, Wilson IA, et al.
(2003) Fine mapping of the interaction of neutralizing and nonneutralizing
monoclonal antibodies with the CD4 binding site of human immunode-
ficiency virus type 1 gp120. J Virol 77: 642-658.

Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, et al. (2004) Structure
and mechanistic analysis of the anti-human immunodeficiency virus type 1
antibody 2F5 in complex with its gp41 epitope. J Virol 78: 10724-10737.
Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, et al. (2001) A
potent cross-clade neutralizing human monoclonal antibody against a
novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res
Hum Retroviruses 17: 1757-1765.

. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, et al. (2005)

Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical con-
formation of a highly conserved fusion-associated motif in gp41. Immunity
22: 163-173.

Mascola JR, D’Souza P, Gilbert P, Hahn BH, Haigwood NL, et al. (2005)
Recommendations for the design and use of standard virus panels to assess
neutralizing antibody responses elicited by candidate human immunode-
ficiency virus type 1 vaccines. J Virol 79: 10103-10107.

Reeves JD, Gallo SA, Ahmad N, Miamidian JL, Harvey PE, et al. (2002)
Sensitivity of HIV-1 to entry inhibitors correlates with envelopelcoreceptor
affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 99:
16249-16254.

Chen H, Xu X, Bishop A, Jones IM (2005) Reintroduction of the 2G12
epitope in an HIV-1 clade C gp120. Aids 19: 833-835.

. Mo H, Stamatatos L, Ip JE, Barbas CF, Parren PW, et al. (1997) Human

immunodeficiency virus type 1 mutants that escape neutralization by
human monoclonal antibody IgG1b12. off. J Virol 71: 6869-6874.
Poignard P, Sabbe R, Picchio GR, Wang M, Gulizia R], et al. (1999)
Neutralizing antibodies have limited effects on the control of established
HIV-1 infection in vivo. Immunity 10: 431-438.

Mehandru S, Wrin T, Galovich ], Stiegler G, Vcelar B, et al. (2004)
Neutralization profiles of newly transmitted human immunodeficiency
virus type 1 by monoclonal antibodies 2G12, 2F5, and 4E10. J Virol 78:
14039-14042.

Li A, Katinger H, Posner MR, Cavacini L, Zolla-Pazner S, et al. (1998)
Synergistic neutralization of simian-human immunodeficiency virus SHIV-
vput by triple and quadruple combinations of human monoclonal
antibodies and high-titer anti-human immunodeficiency virus type 1
immunoglobulins. J Virol 72: 3235-3240.

Mascola JR, Louder MK, VanCott TC, Sapan CV, Lambert JS, et al. (1997)
Potent and synergistic neutralization of human immunodeficiency virus
(HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin
combined with monoclonal antibodies 2F5 and 2G12. J Virol 71: 7198-
7206.

Verrier F, Nadas A, Gorny MK, Zolla-Pazner S (2001) Additive effects
characterize the interaction of antibodies involved in neutralization of the
primary dualtropic human immunodeficiency virus type 1 isolate 89.6. ]
Virol 75: 9177-9186.

Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relation-
ships: The combined effects of multiple drugs or enzyme inhibitors. Adv
Enzyme Regul 22: 27-55.

. Vijh-Warrier S, Pinter A, Honnen W], Tilley SA (1996) Synergistic

neutralization of human immunodeficiency virus type 1 by a chimpanzee
monoclonal antibody against the V2 domain of gp120 in combination with
monoclonal antibodies against the V3 loop and the CD4-binding site. J
Virol 70: 4466-4473.

. Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, et al. (2006)

Neutralization escape variants of human immunodeficiency virus type 1 are
transmitted from mother to infant. J Virol 80: 835-844.

. Haynes BF, Fleming ], St Clair EW, Katinger H, Stiegler G, et al. (2005)

Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1
antibodies. Science 308: 1906-1908.

. Nabel GJ (2005) Immunology. Close to the edge: Neutralizing the HIV-1

envelope. Science 308: 1878-1879.

July 2006 | Volume 3 | Issue 7 | €255



Neutralisation of HIV-1 Subtype C

@ PLoS Medicine | www.plosmedicine.org 1031 July 2006 | Volume 3 | Issue 7 | €255



