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Health Benefi ts of Physical Activity

Regular physical activity has been 
recognized to confer health benefi ts 
since antiquity [1]. However, for most 
of humankind, voluntary discretion 
over whether or not to exercise is 
a recent phenomenon limited to 
advanced industrialized societies. 

A large body of epidemiological 
literature consistently documents 
greater longevity in persons who are 
physically active on a near-daily basis, 
and reveals inverse relationships 
between levels of daily exercise and 
incidence of major chronic disorders 
such as obesity [2], hypertension 
[3], diabetes [4], ischemic heart 
disease, and all causes of mortality 
[5,6,7,8,9,10,11,12]. From a public 
health perspective, there is little 
question that even modest increases in 
daily activities such as walking or stair 
climbing would have important positive 
consequences in reducing the burden 
of illness. 

However, knowledge of the likely 
health benefi ts accruing to the 
physically active so far has not been 
a suffi cient stimulus to promote 
sustained changes in behavior for 
most of the American population. 
If education and public policies are 
insuffi cient to promote behavioral 
changes to increase physical activity 
among most people, can advances in 
biotechnology confer such benefi ts 
to individuals unable or unwilling to 
perform the necessary physical effort?

Translating Knowledge of Exercise 
Biology to Novel Therapeutics

Greater knowledge of how cells and 
tissues are modifi ed in response 
to recurring bouts of exercise 
provides a basis for more precise 
recommendations as to the mode, 
intensity, and amount of exercise 
required to produce specifi c 

health benefi ts (e.g., treatment of 
dyslipidemia [13], control of body 
weight [14], or prevention of diabetes 
[15]). In addition, an understanding 
of the molecular signaling events that 
drive the benefi cial effects of exercise 
on human physiology could foster the 
development of novel drugs, devices, or 
biological agents designed to substitute 
for exercise. 

Many individuals who otherwise 
would develop diabetes or 
cardiovascular disease would benefi t if 
advances in exercise biology revealed 
novel measures to promote the 
favorable effects on insulin sensitivity, 
lipoprotein metabolism, and blood 
pressure that are known to accrue 
through regular physical activity. 

Physiological Properties 
of Skeletal Muscle 

What do we know about basic muscle 
and exercise biology? The cells that 
constitute our skeletal muscles are 
called myofi bers—large multinucleated 
cells that may extend for the full 
length of individual muscles. There are 
different types of myofi bers, which vary 
in size and with respect to metabolic 
and contractile capability [16] (Figure 
1). Skeletal myofi bers are innervated 
by motor neurons that contact each 
myofi ber, and the intensity, duration, 
and timing of each muscle contraction 
are determined by the pattern of motor 
neuron fi ring. A pattern of occasional 
intense contractions separated by 
longer periods of rest is called “phasic,” 
while a pattern characterized by brief 
contractions occurring repeatedly 
over an extended period is called 
“tonic.” Endurance training regimens 
like running or cycling employ tonic 
patterns of contractile work, and it is 
this form of habitual activity that serves 
best to reduce risk for obesity, diabetes, 
hypertension, and heart disease.

Dynamics of Muscle Mass

Maintenance of normal muscle 
mass requires some minimal level of 
ongoing work activity, and building 
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Figure 1. Specialized Myofi bers in a 
Mammalian Skeletal Muscle
A cross-section of the gastrocnemius 
muscle of a mouse has been stained 
to detect myoglobin, which is found 
selectively in slow oxidative and fast 
oxidative myofi bers (stained brown), 
but not in fast glycolytic myofi bers 
(unstained). Human muscles exhibit 
a similar mosaic pattern. In response 
to sustained periods of motor nerve 
stimulation repeated daily for several 
weeks, the percentage of myofi bers 
that contain myoglobin is increased, in 
synchrony with an increased abundance 
of mitochondria and a shift of myosin 
subtypes from fast glycolytic to slow or fast 
oxidative. 
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and maintaining muscle mass is 
most effectively done through phasic 
contractions. A slow but inexorable 
loss of muscle mass is a feature of 
advancing age in human populations 
[17]. Loss of muscle mass and strength 
is an important determinant of injury 
and disability in the elderly, but even 
rigorous weight training programs 
cannot completely counteract this 
age-related decline that becomes 
particularly troublesome in the eighth 
and ninth decades of life. Efforts to 
develop effective countermeasures to 
maintain muscle mass in the elderly 
constitute an active and important area 
of current research [18,19,20]. 

Although the molecular signaling 
mechanisms that transduce the effects 
of phasic patterns of work activity to 
modify muscle mass are incompletely 
understood, recent evidence implicates 
pathways that include the signaling 
molecules PI3 kinase, Akt, mTOR, 
S6K, and ERK, the ubiquitin ligases 
MAFbx and MuRF1, and transcription 

factors of the FOX superfamily in the 
control of both catabolic and anabolic 
processes [21,22,23,24]. 

Contractile and Metabolic 
Properties

With respect to variations in contractile 
and metabolic properties, myofi bers 
are classifi ed on a spectrum between 
two extremes on the basis of contractile 
(fast versus slow) and metabolic 
(glycolytic versus oxidative) properties. 
At one extreme, the fastest glycolytic 
fi bers have high levels of enzymes 
that generate ATP via glycolysis but 
few mitochondria (approximately 1% 
of cell volume). At the other end of 
the spectrum, slow oxidative fi bers 
generate force with slower kinetics but 
are capable of long periods of repeated 
contraction without fatigue. They are 
rich in mitochondria (3%–10% of cell 
volume). Other myofi bers, called fast 
oxidative, are both relatively fast and 
resistant to fatigue, and are rich in 
mitochondria (like the slow oxidative 

fi bers). Muscles composed primarily 
of fast glycolytic fi bers are needed for 
rapid movements (e.g., escape from 
predators) but fatigue when sustained 
periods of activity are required (e.g., 
migration). 

Most human muscles exhibit a 
mosaic pattern of different fi ber types 
(Figure 1), with a great deal of variation 
among individuals, which is infl uenced 
at least in part by patterns of use. When 
we exercise daily, or at least several 
times weekly, we deliver a stimulus to 
the specifi c muscle groups involved in 
these activities that is suffi cient to alter 
specialized properties of myofi bers 
within these muscles. While habitual 
physical activity promotes a great 
variety of physiological adaptations 
that alter vascular reactivity, cardiac 
function, adipocyte function, and 
neurophysiology, adaptive responses of 
skeletal myofi bers confer at least some 
of the health benefi ts. 

Patterning of skeletal muscle fi ber 
composition is initially determined 
during embryonic development, 
but can be partially or completely 
overturned by stimuli applied to fully 
mature adult myofi bers: by hormonal 
infl uences (e.g., thyroid hormone), but 
most importantly by different patterns 
of motor nerve activity and contractile 
work. Myofi bers that experience phasic 
patterns of contractile work—brief 
bursts of activity interspersed within 
long periods of inactivity—will 
assume the fast glycolytic phenotype. 
Myofi bers subjected to tonic patterns 
of work activity—sustained periods of 
repetitive contraction on a habitual 
basis—will take on fast oxidative or 
slow oxidative properties. Under 
experimental conditions in laboratory 
animals, it is possible to transform 
muscles completely from one myofi ber 
phenotype to another in a reversible 
manner, solely by altering the pattern 
of neural stimulation. We know that 
having a high proportion of oxidative 
muscle fi bers conveys health benefi ts, 
and the possibility to control fi ber 
composition through therapeutic 
intervention is promising. 

Molecular Signaling Pathways

At a cellular and molecular level, how 
does a fast glycolytic myofi ber sense 
a tonic pattern of contractile activity 
and transduce that information to 
transform itself into a cell with fast 
oxidative or slow oxidative properties? 
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Figure 2. Molecular Signaling Pathways Link Changes in Contractile Activity to Changes in Gene 
Expression That Establish Myofi ber Diversity
A tonic pattern of motor nerve activity promotes changes in intracellular calcium 
that trigger a variety of intracellular events that modify the function of nuclear 
transcription factors. The pathway transduced by calcineurin and NFAT is highlighted 
in larger type. Other signals are received by cell surface receptors to activate similar or 
parallel signaling events. Signaling proteins that participate in transducing effects of 
contractile activity to specifi c genes include ion channels (TRP), scaffolding proteins 
(Homer), protein phosphatases and protein kinases (calcineurin, CAMK, p38MAPK), 
DNA-binding transcription factors (shown in red; NFAT, MEF2, PGC-1, ATF2), and 
endogenous inhibitors (shown in blue; GSK3, HDAC, and MCIP) (inhibitors antagonize 
gene activation via the pathways indicated, in some cases acting as negative feedback 
regulators).
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We know that such signals must be 
transduced to the nucleus, activating 
certain genes and suppressing others, 
for myofi ber plasticity to occur. We 
know the identities of some of the 
nuclear transcription factors that carry 
these signals, and of other proteins 
that regulate the function of these 
transcription factors (Figure 2). 

Quite a variety of intracellular 
messengers have been proposed to 
provide the proximate signals in 
exercising muscles to stimulate activity-
dependent gene regulation. This 
discussion will focus on a signaling 
cascade mediated by calcineurin, a 
calcium-regulated protein phosphatase 
that signals to the nucleus via 
transcription factors of the nuclear 
factor of activated T cells (NFAT) 
family. Upon receipt of the appropriate 
calcium signal, calcineurin is activated 
and removes phosphate groups from 
NFAT, thereby permitting translocation 
of NFAT to the nucleus. Within 
the nucleus, NFAT binds DNA and 
activates transcription (in concert with 
other transcription factors) of relevant 
downstream target genes that encode 
proteins necessary for fast oxidative or 
slow oxidative myofi ber phenotypes.

Calcineurin and NFAT proteins are 
abundant in skeletal myofi bers, and 
several lines of evidence support the 
viewpoint that the calcineurin–NFAT 
pathway plays a role in mediating 
activity-dependent gene regulation 
in muscle [25,26,27,28,29,30,31,32,
33,34,35,36,37,38,39]. For example, 
in mice genetically engineered to 
distinguish the inactive (cytoplasmic) 
from active (nuclear) forms of NFAT 
by means of a sensor, it is evident that 
NFAT is inactive in resting muscles, but 
activated by tonic patterns of muscle 
contraction (running or electrical 
stimulation of the motor nerve) [40]. 
Using other genetic manipulations in 
mice to produce in muscle a form of 
calcineurin that remains active even 
in the absence of calcium signals, 
myofi bers are converted from fast 
glycolytic to fast oxidative or slow 
oxidative forms [41]. And in muscles 
of mice genetically engineered to lack 
calcineurin, fi ber type switching is 
impaired [42].

Cellular Memory

Muscle contractions are initiated 
under the infl uence of the motor 
nerve by release of calcium from 

the sarcoplasmic reticulum, which 
triggers actin–myosin crossbridge 
cycling (Figure 3). Calcium released 
via ryanodine receptors is completely 
suffi cient to activate muscle 
contractions, and the effects are 
immediate (within milliseconds). It is 
also suffi cient to initiate calcineurin–
NFAT signaling to the nucleus, but 
cannot by itself sustain the signal in a 
manner necessary to promote myofi ber 
remodeling [40]. Changes in gene 
expression evoked by neuromuscular 
activity are not immediate but require 
that the stimulus be sustained for an 
extended period (minutes to hours). 
Moreover, tonic stimulation of the 
motor nerve must be repeated daily, 
or nearly so, over several weeks for 
the changes in myofi ber properties 
to become fully manifest. We have 
characterized this requirement for 
repetition of the activity stimulus over 

days as a form of “cellular memory.” 
The effects of the tenth or 20th day of 
exercise are not the same as the effects 
of the fi rst day. The myofi ber somehow 
“remembers” not only the pattern of 
activity it has experienced today, but 
what has gone on over the preceding 
days or weeks, such that the changes 
in abundance of proteins that control 
contractile function and metabolism 
accrue over time.

To explain this cellular memory, 
we propose that, as the bursts of 
contractile activity are sustained over 
time (through a tonic pattern of 
neural stimulation), a second source 
of calcium is mobilized from outside 
of the cell and enters via a class of 
calcium channels that are called 
“store-operated” or “non-voltage-
dependent.” This second source of 
calcium is not required for muscle 
contractions, but is required to sustain 
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Figure 3. Proposed Model for Cellular Memory, Based on Activity-Induced Changes in TRPC3—A 
Putative Store-Operated Calcium Channel
Neural activation triggers muscle contraction by releasing calcium stored within the 
sarcoplasmic reticulum (SR) through mechanisms that involve channel proteins called 
dihydropyridine receptors (DHPR) and ryanodine receptors (RYR). Inactive myofi bers 
have a low abundance of TRPC3 channels, and calcium released from SR is not 
suffi cient to maintain the calcium-regulated transcription factor NFAT in the nucleus. 
Under conditions of tonic activity (training stimulus), TRPC3 channels become more 
abundant, and are regulated by the scaffold protein Homer, which binds RYR. Under 
these conditions, the combined effect of calcium entering the cell via TRPC3 channels 
and exiting the SR via RYR channels maintains NFAT in the nucleus, where it promotes 
transcription of genes that establish the slow oxidative phenotype in myofi bers. Once the 
slow oxidative phenotype is established (trained myofi ber), the continued expression of 
TRPC3 allows this state to be maintained even with a less intensive tonic activity pattern 
of neural stimulation. (Figure adapted from [40].)
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calcium-dependent signaling to the 
nucleus. Phasic patterns of contractile 
activity do not promote calcium entry 
via store-operated channels. Tonic 
patterns of activity, in contrast, would 
not only promote the mobilization 
of extracellular calcium but also 
increase the number of store-operated 
calcium channels with each bout of 
exercise. Myofi bers would thereby 
grow progressively more responsive 
to tonic activity. Consistent with this 
model, we know that daily running 
increases the expression of a putative 
store-operated calcium channel called 
TRPC3. Moreover, increasing the 
abundance of TRPC3 in cultured 
myotubes prolongs the period in 
which intracellular calcium is elevated 
following a depolarizing stimulus, 
sustains the transcription factor NFAT 
within the nucleus, and augments 
expression of NFAT-dependent target 
genes [40]. 

A great deal of additional research 
remains to be done before we have 
a comprehensive understanding 
of how habitual physical activity 
promotes changes in gene expression 
in skeletal muscles, and in turn 
improves fi tness and reduces risk for 
diabetes, hypertension, dyslipidemia, 
and coronary artery disease. However, 
studies of the relationships between 
the proteins of calcium metabolism 
and calcium-regulated signaling 
pathways—as described here in a 
simplifi ed manner with respect to 
TRPC3, calcineurin, and NFAT 
proteins—are illustrative of progress 
in this fi eld. Other notable fi ndings 
point to additional signaling proteins 
(CAMK, p38MAPK, and AMPK) and 
transcription factors (PGC-1, MEF2, 
ATF2, PPARs) active in pathways 
that intersect with calcineurin–NFAT 
signaling [31,43,44,45,46,47,48] (see 
Figure 2). It is encouraging that some 
of these proteins are attractive targets 
for drug discovery.

Summary and Conclusions

Long the province of physiologists who 
have contributed valuable insights in 
past decades, exercise science more 
recently has attracted the attention 
of molecular biologists, who have 
recognized the biological interest 
and medical importance of this fi eld. 
Biotechnology and pharmaceutical 
companies also are beginning to take 
interest. 

This review has focused on adaptive 
responses of skeletal muscle to 
changing patterns of physical activity, 
and on the role of the calcium–
calcineurin–NFAT signaling cascade in 
controlling gene expression in skeletal 
myofi bers. Further advances in our 
understanding of signaling mechanisms 
that govern activity-dependent gene 
regulation in skeletal muscle could 
lead to drugs, gene therapy, or devices 
that can, at least in part, substitute 
for daily exercise. Although it is 
unlikely that such technologies would 
fully recapitulate exercise-induced 
adaptations that affect other tissues 
of the body, benefi cial effects on 
work performance and whole-body 
metabolism have been demonstrated 
using gene transfer techniques to alter 
skeletal muscles in animal models. 
If it proves possible to drive similar 
effects in skeletal muscles in humans, 
the interventions capable of providing 
such effects would almost certainly fi nd 
broad clinical application. �
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