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Abstract

Background

Anthropogenic greenhouse gas emissions have increased summer temperatures in Spain

by nearly one degree Celsius on average between 1980 and 2015. However, little is known

about the extent to which the association between heat and human mortality has been modi-

fied. We here investigate whether the observed warming has been associated with an

upward trend in excess mortality attributable to heat or, on the contrary, a decrease in the

vulnerability to heat has contributed to a reduction of the mortality burden.

Methods and findings

We analysed a dataset from 47 major cities in Spain for the summer months between 1980

and 2015, which included daily temperatures and 554,491 deaths from circulatory and respi-

ratory causes, by sex. We applied standard quasi-Poisson regression models, controlling

for seasonality and long-term trends, and estimated the temporal variation in heat-related

mortality with time-varying distributed lag nonlinear models (DLNMs). Results pointed to a

reduction in the relative risks of cause-specific and cause-sex mortality across the whole

range of summer temperatures. These reductions in turn explained the observed downward

trends in heat-attributable deaths, with the only exceptions of respiratory diseases for

women and both sexes together. The heat-attributable deaths were consistently higher in

women than in men for both circulatory and respiratory causes. The main limitation of our

study is that we were not able to account for air pollution in the models because of data

unavailability.

Conclusions

Despite the summer warming observed in Spain between 1980 and 2015, the decline in the

vulnerability of the population has contributed to a general downward trend in overall heat-

attributable mortality. This reduction occurred in parallel with a decline in the vulnerability dif-

ference between men and women for circulatory and cardiorespiratory mortality. Despite
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these advances, the risk of death remained high for respiratory diseases, and particularly in

women.

Author summary

Why was this study done?

• The Euro-Mediterranean region arises as a major climatic hot spot because of global

warming.

• Warmer temperatures should in principle contribute to an increase in the number of

deaths because of heat.

• We do not know yet if and to what extent societal adaptation and/or socioeconomic

development is modifying this expected increase.

What did the researchers do and find?

• We analysed daily mortality records from 47 major cities in Spain.

• There has been a general and sustained decline in the vulnerability of the population

since 1980.

• Despite the observed warming, the decline of the vulnerability has generally contributed

to a progressive reduction in the number of deaths attributed to heat since 1980.

What do these findings mean?

• It is generally believed that climate change will cause an increase in heat-related

mortality.

• Societal adaptation and/or socioeconomic development contributed, up to now, to a

general decline in heat-related mortality.

• It is still uncertain if this decline in heat-related mortality will also occur at higher future

levels of climate warming.

Introduction

Anthropogenic climate change represents a major threat for human health and a challenge for

public health services [1]. One of its most important effects is the potential increase in heat-

related mortality resulting from rising temperatures and the associated increase in the fre-

quency, intensity, and duration of extreme heat events [2,3]. However, the extent of this

impact will not only depend on the increase in the level of exposure to heat but also on any

underlying change in the vulnerability of the exposed population [4].

Several factors have the potential to modify population vulnerability over time and, there-

fore, the eventual incidence of increasing temperatures on heat-related mortality. In ageing
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societies such as Europe, the rising elderly population is expected to increase vulnerability to

high ambient temperatures, given that the elderly have diminished physiological capacity for

the regulation of body core temperature under heat stress conditions [5]. On the contrary, gen-

eral improvements in housing conditions (e.g., wider use of air conditioning systems in retire-

ment homes) and healthcare services (e.g., improved treatment of heat-related morbidity)

[6,7] as well as some planned adaptive measures to reduce the exposure and vulnerability to

heat (e.g., implementation of effective heat health warning systems) [8] could all contribute to

reducing the negative health consequences of temperatures and warming trends.

The Euro-Mediterranean region arises as a major climatic hot spot as a result of global

warming [9], and, particularly, Spain was the country with the largest relative number of excess

deaths during the record-breaking summer 2003 heat wave [10], even if interannual tempera-

ture anomalies were twice as large in France during the episode [11]. Some authors have

shown that there has been a decline in heat-mortality associations during the last decades in

some, albeit not all, of the countries [12–15], and especially since this event in a subset of loca-

tions [16–18]. In the case of Spain, the vulnerability associated with heat was found to decrease

for the range of extreme summer temperatures [12], suggesting an adjustment response of the

Spanish society to rising temperatures despite the ageing of the population. However, evidence

about the risk attributable to heat, either as absolute or relative excesses or its temporal evolu-

tion, is lacking, with no clear upward or downward trend in the number of deaths. Further-

more, changes by cause of death and sex have not been described for Spain, nor for the rest of

the countries.

In the present work, we assess the impact of the summer warming observed in Spain during

the period 1980–2015 on cause-specific mortality by sex. The main objective was to determine

whether warmer summers were associated with an upward trend in excess mortality attribut-

able to heat. Addressing the early impacts of increased ambient temperatures on human health

is a relevant question that could translate into more effective public health adaptation strategies

to current and future climate change conditions.

Methods

Study design and data

The Spanish National Statistics Institute (INE) provided daily death counts from circulatory

(ICD-9: 390–459, ICD-10: I00–I99) and respiratory (ICD-9: 460–519, ICD-10: J00–J99) dis-

eases, disaggregated by sex and covering the period from 1 January 1980 to 31 December 2015

in 47 major Spanish cities. Daily mortality data had no missing value. We derived daily mean

2-meter temperature observations from the European Climate Assessment and Dataset

(ECA&D), which were computed as the average between daily maximum and minimum val-

ues from meteorological stations. About 1% of the temperature time series was missing data.

Statistical analysis

The analysis was restricted to the warm season from June to September, and it was performed

in two stages. In the first part, standard quasi-Poisson regression models allowing for overdis-

persion were individually applied in each of the 47 cities included in the analysis in order to

estimate location-specific temperature-mortality associations, summarised in terms of relative

risk (RR) values by cause of death and sex. The seasonal trend was controlled for in the models

by using a natural cubic B-spline of day of the season, with 2 degrees of freedom per year/sum-

mer and equally spaced knots, and it was allowed to vary from one year to another through the

specification of an interaction between the B-spline and indicators of summer/year. The mod-

els also included a natural cubic B-spline of time, with 1 degree of freedom per decade and
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equally spaced knots to control for the long-term trend, as well as a categorical variable to con-

trol for the day of the week.

The complex nonlinear and delayed dependencies found for temperature and mortality

were captured by using a distributed lag nonlinear model (DLNM), a flexible methodological

framework widely used to investigate the health effects of air pollution and temperature. This

model is based on the definition of a cross-basis function, obtained by the combination of two

functions describing the exposure-response association and the lag-response association [19].

Specifically, the exposure-response curve was modelled through a natural cubic B-spline, with

one internal knot placed at the 15th percentile of the daily temperature distribution, and the

lag-response curve was modelled through a natural cubic B-spline, with an intercept and two

internal knots placed at equally spaced values in the log scale, with a lag period extended up to

10 days to account for the lagged effects of heat and short-term harvesting. In this way, the

overall effect of a given summer day temperature on mortality was defined as the sum of the

effect on that day and the 10 subsequent days. These modelling choices were thoroughly tested

in sensitivity analyses, which are shown in the Supporting information (S1 Fig). The Poisson

regression model for the whole study period was given as follows:

Log E ðYtÞ ¼ interceptþ cbþ dow þ S1ðdos; df ¼ 2Þ : factorðyearÞ þ S2ðtime; df
¼ 1 per decadeÞ

where Yt denotes the series of daily mortality counts, cb the cross-basis matrix produced by

DLNM, dow the day of the week, S1 the natural cubic B-spline of the day of the season, and S2

the natural cubic B-spline of time.

To model temporal variations in the bidimensional exposure-lag-response associations

between temperature and mortality, the DLNM model described above was extended to a

time-varying DLNM, specified through a linear interaction between the cross-basis and time

variables [20]. This extension allowed us to predict the temperature-mortality relationship for

each summer in the series, by centring the time variable in the central day of the respective

summer season.

Log E ðYtÞ ¼ interceptþ cbþ dow þ S1ðdos; df ¼ 2Þ : factorðyearÞ þ S2ðtime; df
¼ 1 per decadeÞ þ intðtime�cbÞ

In the second stage, a simple multivariate random-effects meta-analysis [21] was used to

estimate the average temperature-mortality association across cities for the whole study period

(estimates provided by the model without interaction) and for each year in the series (esti-

mates provided by the model with interaction). The fitted meta-analytical model was also used

to derive the best linear unbiased predictions (BLUPs) of the temperature-mortality relation-

ships and the related point of minimum mortality temperature (MMT) in each location.

Uncertainty in estimated MMTs was investigated through the method described in Tobı́as

et al. [22].

To assess the temporal evolution in the effect of heat on mortality, the pooled RR curves

from the time-varying DLNMs with interaction terms were compared between years. The tem-

poral variations in the RR curves were analysed by means of a multivariate Wald test on the

pooled coefficients of the interaction terms, which represent the change in the average temper-

ature mortality curves. The null hypothesis of the test is that no change in the temperature-

mortality association ocurred throughout the study period. We also summarised the results by

calculating the pooled RR at the 90th and 99th temperature percentiles from year-specific

curves between 1980 and 2015.

Heat-related mortality and climate warming
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The mortality burden attributable to heat across the whole study period, reported as relative

excess (i.e., attributable fraction) of deaths, was estimated by using the methodology developed

by Gasparrini and Leone [23]. First, the RR of mortality corresponding to each day and city

was used to calculate the attributable fraction of deaths on that day and the next 10 days. Then,

the daily attributable number of deaths was computed by multiplying the daily attributable

fraction by the daily number of deaths. The overall number of attributable deaths caused by

heat was given by the sum of the contributions from all days of the series with temperatures

higher than the value of MMT derived from the BLUP of the model with no interaction in

each city, and its ratio with the total number of deaths provided the total heat-attributable frac-

tion. This attributable component was separated further into the contributions of moderate

and extreme heat. Moderate heat was defined as the range of temperatures between the city-

specific MMT and the city-specific 97.5th daily temperature percentile, and extreme heat as

the range of temperatures warmer than this threshold. We also computed the attributable risk

of heat for each summer from time-varying DLNMs (model with interaction) to investigate

temporal variations in heat-attributable deaths. Confidence intervals (CIs) of attributable risk

were obtained empirically through Monte Carlo simulations.

All statistical analyses were performed with R software (version 3.4.3) using functions from

the packages dlnm (first-stage regression) and mvmeta (second-stage meta-analysis).

No data-driven changes were done during the analyses. The development of the statistical

analysis plan, including changes inspired by referees, is described in S1 Analysis Plan. This

study is reported as per the Strengthening the Reporting of Observational Studies in Epidemi-

ology (STROBE) guidelines (S1 STROBE Checklist).

Results

We analysed data from 47 major cities representing about 32% of the total Spanish population,

which includes 544,491 summer deaths, corresponding to the period 1980–2015. Circulatory

counts represented 78.9% of the total cardiorespiratory mortality (here the word ‘cardiorespi-

ratory’ is used to refer to deaths from circulatory and respiratory deaths together), while respi-

ratory deaths accounted for the remaining 21.1%. The temporal pattern of each cause of death

was similar in men and women (S2 Fig), with a decline in the number of deaths from circula-

tory diseases and an increase in the number of deaths from respiratory diseases. Nevertheless,

mortality decreased at a slower pace in women for circulatory diseases, therefore increasing

the magnitude of the difference between women and men. Moreover, for respiratory diseases,

mortality increased at a faster pace in women, therefore reducing the magnitude of the differ-

ence between women and men. The geographic distribution of the cities included in the analy-

sis, along with the corresponding evolution in overall summer mean temperature, are

displayed in Fig 1. As expected, summer temperatures have been increasing, on average, at a

rate of 0.32˚C per decade.

Fig 2 depicts the pooled RR values associated with the temperature-mortality relationships

by cause of death and sex from the model with no interaction, interpreted as the average rela-

tion throughout the whole study period (1980–2015). The temperature-mortality relationships

computed as BLUPs for the 47 cities and the corresponding MMTs are provided in the Sup-

porting information, S3 Fig and S4 Fig. All these curves are J shaped, indicating a monotoni-

cally increasing mortality risk for temperatures above and below the MMT. The slope of the

curve above this point varied greatly among cases, being generally larger for respiratory than

circulatory diseases, and for women than for men. Thus, in each of these two groups of causes,

taken either individually or together, women showed systematically higher values of RR for the

whole range of warm temperatures, with generally lower MMT than men. For the ensemble of
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PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002617 July 24, 2018 5 / 17

https://doi.org/10.1371/journal.pmed.1002617


cities, the values of the MMT and the summer mean temperature are largely correlated, with a

spatial dependency of between 0.81 and 0.96˚C in MMT per 1˚C in summer mean tempera-

ture (Student t test/p-value< 0.001, S5 Fig).

Results from the analysis of the temporal evolution of the temperature-mortality associa-

tions predicted from the model with interaction (time-varying DLNM) are summarised by

cause of death and sex in Figs 3 and 4. On the one hand, Fig 3 displays the comparison of the

pooled RR curves for representative years (i.e., every 5 years; see also S6 Fig for estimates in

each of the 47 cities for years 1980 and 2015). On the other hand, Fig 4 shows the temporal

evolution of the pooled RR corresponding to the 99th temperature percentile of the whole

time period (left panels) and corresponding to the time-varying 99th temperature percentile

computed from data of each individual summer (right panels; find equivalent results for the

90th percentile in S7 Fig). Temporal changes suggest a strong and progressive reduction in the

RR of heat-related mortality during the whole study period for the pooled analysis and gener-

ally for the ensemble of cities, but despite these advances, the RR to extreme warm tempera-

tures remained high for respiratory diseases, and particularly in women. The significance test

(S1 Table) indicates strong evidence for significant temporal changes in the RR curves, with

the only exception being respiratory mortality for women. As a result of all these results, differ-

ences in mortality risk between men and women from both circulatory and cardiorespiratory

diseases generally declined during the study period.

Table 1 summarises the estimates of mortality deaths attributable to heat during the whole

study period. The overall fraction of deaths caused by summer heat was 10.65% (95% CI 9.93–

11.33), with moderate heat being responsible for almost nine times as many deaths as extreme

heat. This was explained by the fact that the days with moderate temperatures occur more fre-

quently in the series, and, therefore, they have a higher absolute impact on the total number of

deaths. The attributable fraction due to respiratory causes (17.60%, 95% CI 16.00–18.95) was

twice as high as that from circulatory causes (8.94%, 95% CI 8.22–9.61), although in absolute

terms circulatory deaths accounted for most of the mortality burden. When considering these

two groups of causes by sex, both the attributable fractions and numbers were substantially

higher for women. The same pattern was separately observed for moderate and extreme heat.

Fig 1. Geographic distribution of the 47 major Spanish cities (left) and the corresponding evolution of overall summer mean temperature (expressed as the

difference relative to the average of the 1981–2010 period, right).

https://doi.org/10.1371/journal.pmed.1002617.g001
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The black curves in Fig 5 depict the temporal evolution of the attributable fraction by cause

of death and sex (see S8 Fig for the relative contribution of moderate and extreme heat).

Regardless of the interannual variability and warming trend associated with the year-to-year

changes in summer temperature, the heat-attributable fraction shows no clear and generalised

upward trend during the study period. The only exception is found for respiratory diseases

Fig 2. Temperature-mortality relationships from the model with no interaction for the period 1980–2015. The dashed lines represent the 95% empirical

confidence interval. MMP, minimum mortality percentile; MMT, minimum mortality temperature; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002617.g002

Heat-related mortality and climate warming

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002617 July 24, 2018 7 / 17

https://doi.org/10.1371/journal.pmed.1002617.g002
https://doi.org/10.1371/journal.pmed.1002617


(for men and women together, and for women only), in which case the rather small reduction

in RR only partially contributed to reducing the negative impact of increasing summer tem-

peratures. Apart from these few exceptions, however, the general evolution shows that, regard-

less of the summer warming trend shown in Fig 1, the general lack of increasing trends in the

Fig 3. Temperature-mortality relationships from the model with interaction (time-varying DLNM) for representative years. DLNM, distributed lag

nonlinear model; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002617.g003
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Fig 4. Temporal evolution of mortality RR at the 99th temperature percentile from the model with interaction

(time-varying DLNM). In the left column panels, RR estimates correspond to the 99th temperature percentile of the

summer time series for the whole study period, while in the right column graphs, they correspond to the 99th temperature

percentile of the summer days of the given year (i.e., the 99th percentile of the 122 daily summer values of the year,

computed separately for each year). The shaded areas represent the 95% empirical confidence interval. DLNM,

distributed lag nonlinear model; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002617.g004
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attributable fraction is explained by the large decrease in the mortality RR shown in Figs 3 and

4.

The red and blue curves in Fig 5 show the temporal evolution of the attributable fraction to

heat if the effect of long-term warming temperatures were removed. This hypothetical evolu-

tion is constructed by replacing the temperature time series by the daily time series of a given

summer (i.e., 122 values corresponding to the four summer months here considered) that is

repeated by construction for all the years in the study period. Thus, the blue and red lines

result from predicting the attributable fraction by applying the time-varying annual RR curves

(1980–2015) to the daily time series of temperatures for summers 1984 (i.e., the coldest during

the study period) and 2003 (the warmest), respectively. In this way, given that more moderate

summer temperatures were observed in 1984 and more extreme temperatures in 2003, the

magnitude of the corresponding trends in the attributable fraction results to a large extent

from the decreasing magnitude in the RR for the moderate or extreme temperature percentiles,

respectively (cf. with Fig 4). In this way, the range between these lines as well as differences

with regard to the central curves show the relative contribution of interannual temperature

anomalies and year-to-year climate variability to the evolution of the attributable fraction; they

also show a rough estimation of the potential impact range of near-future summer tempera-

tures. For example, compared with the attributable fraction observed in 2003, the estimated

Table 1. Mortality attributable fraction and number because of moderate and/or extreme heat, together with the 95% empirical confidence interval. Attributable

fractions and numbers were predicted from the model without interaction and, therefore, are interpreted as values representing the whole study period (1980–2015).

A. Attributable fraction of deaths

Heat Moderate heat Extreme heat

AF 95% CI AF 95% CI AF 95% CI

Circulatory causes 8.94% (8.22–9.61) 8.00% (7.34–8.62) 0.94% (0.87–0.99)

Men 5.60% (4.62–6.50) 4.96% (4.07–5.79) 0.64% (0.55–0.71)

Women 11.71% (10.75–12.64) 10.54% (9.66–11.41) 1.17% (1.09–1.23)

Respiratory causes 17.60% (16.00–18.95) 15.88% (14.36–17.17) 1.73% (1.64–1.79)

Men 13.80% (12.28–15.20) 12.44% (11.05–13.76) 1.35% (1.23–1.44)

Women 24.26% (20.75–26.57) 22.02% (18.63–24.26) 2.24% (2.12–2.31)

Circulatory and respiratory

causes

10.65% (9.93–11.33) 9.55% (8.88–10.18) 1.10% (1.05–1.15)

Men 7.54% (6.68–8.31) 6.72% (5.94–7.43) 0.82% (0.74–0.89)

Women 13.50% (12.44–14.42) 12.15% (11.17–13.02) 1.34% (1.27–1.40)

B. Attributable number of deaths

Heat Moderate heat Extreme heat

AN 95% CI AN 95% CI AN 95% CI

Circulatory causes 38,287 (35,192–41,174) 34,281 (31,453–36,935) 4,006 (3,738–4,239)

Men 10,693 (8,826–12,428) 9,472 (7,784–11,064) 1,221 (1,042–1,363)

Women 27,790 (25,498–29,995) 25,021 (22,921–27,075) 2,769 (2,577–2,920)

Respiratory causes 20,120 (18,288–21,664) 18,147 (16,410–19,623) 1,972 (1,878–2,041)

Men 9,117 (8,117–10,046) 8,222 (7,302–9,093) 895 (814–953)

Women 11,704 (10,011–12,818) 10,624 (8,987–11,703) 1,080 (1,024–1,115)

Circulatory and respiratory

causes

57,814 (53,866–61,479) 51,844 (48,192–55,251) 5,971 (5,674–6,228)

Men 19,377 (17,174–21,379) 17,273 (15,272–19,100) 2,104 (1,902–2,279)

Women 38,543 (35,519–41,162) 34,705 (31,898–37,162) 3,838 (3,621–4,000)

Abbreviations: AF, attributable fraction; AN, attributable number; CI, confidence interval.

https://doi.org/10.1371/journal.pmed.1002617.t001
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impact of a 2003-like summer with the RR of 2015 would be 21.13% smaller for men, 28.16%

for women, 38.31% for cardiovascular diseases, and 12.34% for respiratory diseases (i.e.,

decrease of the red curves between years 2003 and 2015).

Fig 5. Temporal evolution of the mortality fraction attributable to heat (black). The blue and red lines result from applying the time-varying annual RR

curves (1980–2015) to the daily time series of temperatures for summers 1984 and 2003, respectively. The shaded areas represent the 95% empirical

confidence interval. RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002617.g005
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Discussion

To the best of our knowledge, this is the first study that comprehensively addresses the even-

tual impact of recent climate warming on summer mortality in Spain by cause of death and

sex. The study pointed to a strong reduction in cause-specific and cause-sex mortality RR asso-

ciated with summer temperatures for the last three and a half decades and, with the exception

of respiratory diseases (for men and women together, and for women only), downward trends

in heat-attributable deaths. These results strongly support the hypothesis that the observed

warming trend in summer temperatures in Spain has not been paralleled by a general increase

in the mortality fraction attributable to heat, as a result of substantial decline in population vul-

nerability to warm temperatures [11].

In this study, the effect of heat on mortality largely varied by cause of death. We observed a

greater impact of heat on respiratory rather than circulatory mortality. This is in agreement

with previous studies [24–27] and probably reflects the large health vulnerability among people

with pre-existing or chronic respiratory diseases during hot periods [28]. It should be remem-

bered that respiratory mortality accounted for only 21.1% of cardiorespiratory deaths during

the study period, but the observed rise in the relative prevalence of respiratory diseases over

recent decades might continue in the near future and keep increasing the relative percentage

of the population susceptible to heat-related respiratory mortality. The underlying physiologi-

cal mechanisms behind the effect of heat on mortality from circulatory and respiratory causes

are not well known yet, but they seem to be largely mediated by a thermoregulatory pathway.

We assessed circulatory- and respiratory-specific mortality by sex, and we found that

women were systematically more at risk of dying from heat. This finding has been reported in

many previous articles analysing the effect through the whole range of hot temperatures

[27,29–31] and in many studies based on extreme heat events [16,32–35]. These quantitative

differences between men and women may partially arise from physiological characteristics in

body temperature regulation between males and females [36]. However, most of these differ-

ences could simply be attributed to existing sociodemographic characteristics of the society

(e.g., differences between men and women in age pyramid, life expectancy, or social isolation).

Previous studies have actually shown that this type of difference can in some cases result in

gender being an important variable to predict the mortality risk; i.e., 64% of the deaths were

women during the 2003 heat wave in France [33]. The gender gap was, however, found to be

reduced by the group of planned adaptation measures implemented just after this record-

breaking episode [16]: while 60% of the deaths were expected to be women during the follow-

ing major heat wave in 2006, gender differences in observed mortality were significantly lower;

i.e., 53% of the deaths were women.

The heat attributable fractions reported in our study are higher than those presented, for

example, in Gasparrini et al. [37] and somewhat different, for example, from those reported by

Carmona et al. [38]. However, these results are not comparable, because in our study, mortality

data are analysed only for circulatory and respiratory causes, which are two of the main groups

associated with ambient temperatures (see, for example, Basagaña et al. [39]). Instead, in Gas-

parrini et al. [37], mortality data for Spain are analysed for all causes of death together, and in

Carmona et al. [38] for natural causes, including many causes of death that are not largely asso-

ciated with ambient temperatures. As a result, the attributable fraction (i.e., the ratio between

attributable deaths and total deaths) is understandably higher in our study than in Gasparrini

et al. [37] and Carmona et al. [38]. We note that other methodological differences might

explain (to a lower extent) these differences; e.g., the time period of data is different (taking

into account that the relative risk decreases with time).
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The temporal evolution of heat-related mortality risks here found is, in general, consistent

with those reported by previous studies in some other countries [12–15], which provide evi-

dence for a decrease in vulnerability to climate warming despite the ageing of societies. For

example, in Spain, the proportion of people aged over 64 years increased from 11.6% to 15.0%

in men and from 15.9% to 19.6% in women between 1991 and 2011 [40]. The general down-

ward trend in mortality risks has been attributed by some investigators to socioeconomic

development and structural transformations, such as improvements in housing and healthcare

services [12–15], or even to specific public health interventions [16–18]. The large socioeco-

nomic advances that occurred in Spain during the last decades might have also contributed to

this response, thus reducing the effect of mortality risks over time. For example, the gross

domestic product (from €8,798 per capita in 1991 to €22,813 in 2009), the life expectancy at

birth (from 77.08 years to 81.58), the expenditure in healthcare (from €605 per capita to

€2,182) and social protection (from €1,845 per capita to €5,746), and the number of doctors

(from 3,930 per million inhabitants to 4,760 per million inhabitants) have all largely increased

in Spain [41]. In addition, the use of air conditioning, which has been postulated as a major

contributor to the reduction in heat-related mortality in the United States [13], has also experi-

enced a strong increase in Spanish households within the analysed period (from 5.3% to

35.5%) [42].

Another potential contributing factor to the reduction of the mortality risks might have

been the ‘National plan for preventive actions against the effects of excess temperatures on

health’ from the Spanish Ministry of Health [43], which was implemented in 2004, just after

the 2003 summer heat wave, in order to minimise the negative effects of summer extreme tem-

peratures on the population’s health, particularly among vulnerable groups such as the elderly,

children, people with chronic disease, and disadvantaged persons. Nonetheless, we do not see

a change in the slope of the generally linear declining trend of RR and attributable fraction in

the mid-2000s, which seems to indicate that this measure had at most a minor beneficial

impact (specific analyses will be performed elsewhere). The cause-specific and cause-sex attrib-

utable numbers all showed a rather linear downward trend during the study period as a result

of the strong decrease in RR, which was largest for the warmest temperatures. Although the

range corresponding to moderate hot temperatures had a comparatively lower RR, it included

the majority of days in the series, accounting for most of the overall deaths caused by heat. In

that regard, public health interventions should also be directed towards non-extreme tempera-

tures, to include the whole range of moderate conditions above the MMT [37].

Finally, some limitations of the study deserve to be mentioned. First, we were not able to

control for air pollution because of data unavailability. However, previous studies showed that

effects of hot temperatures on mortality in the US were only slightly reduced after adjusting

for air pollution [24]. Secondly, the study did not take into account the long-term changes in

the age structure of the population, which will be analysed when a more complete dataset by

age is available.
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