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SUPPLEMENTAL METHODS 
Urban Contact Network Generation 

For this study, we generate plausible contact networks for an urban setting using demographic 

information for the Greater Vancouver Regional District, which is the third largest metropolitan 

area in Canada. We use publicly available data from sources such as Statistics Canada to 

estimate the distribution of ages, household sizes, school and classroom sizes, hospital 

occupancy, workplaces, and public spaces [S1-S4].  Qualitatively similar age and household size 

distributions are found for other cities in Canada ranging in population sizes from 120,000 to 4.6 

million [S5].  We begin assembling the urban network by choosing 100,000 households at 

random from the Vancouver household size distribution [S1], which yields approximately 

257,000 people according to a mean household size of approximately 2.6.  Based on ages 

assigned from the measured Vancouver age distribution [S2], each member of the population is 

assigned to activities: to schools according to school and class size distributions [S3]; to 

occupations according to (un)employment data; to hospitals as patients and caregivers according 

to hospital employment and bed data [S4]; to nursing homes according to nursing home 

occupancy data; and to other public places.  

To model heterogeneities in contact patterns, we create random connections (edges) 

between individuals (nodes) based on the location and nature of their overlapping daily activities.  

Individuals in households are connected with probability 1, while individuals encountering 

others in public places are connected with probabilities ranging from 0.003 to 0.3.  Each school 
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and hospital is subdivided into classrooms or wards. Pairs of students and pairs of patients within 

these subunits are connected with higher probability than pairs associated with different subunits. 

Teachers are assigned to classrooms and connected stochastically to appropriate students. 

Caregivers are assigned wards and then connected to appropriate patients. There are also low 

probability neighborhood contacts between individuals from different households. 

 

Epidemiological Analysis 

The methods described in this section are derived and described fully in Ref S6.  Here, we only 

present the epidemiological equations with a few motivating details.  Our contact network 

models are semi-directed – containing both undirected and directed edges.  In a semi-directed 

network, each vertex (individual) has an undirected-degree representing the number of 

undirected edges joining the vertex to other vertices as well as both an in-degree and an out-

degree representing the number of directed edges coming from other vertices and going to other 

vertices, respectively. The undirected-degree and in-degree indicate how many contacts can 

spread disease to the individual, and thus is related to the likelihood that an individual will 

become infected during an epidemic; and the undirected-degree and out-degree indicate how 

many contacts may be infected by that individual should he or she become infected, and thus is 

related to the likelihood that an individual will ignite an epidemic. 

Given the degree distribution of the contact network within a population, one can 

analytically predict what will happen when an infectious disease like influenza enters the 

population. Let jkmp  be the probability that any given person in the population has in-degree 

equal to j, out-degree equal to k, and undirected-degree m.  Let T be the transmissibility of the 

disease, that is, the average probability that transmission of the disease occurs between an 
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infected individual and a susceptible individual with whom they are in contact. 

Network theory makes a technical distinction between outbreaks and epidemics.  An 

outbreak is a causally connected cluster of cases which, by chance or because the transmission 

probability is low, dies out before spreading to the population at large.  In an epidemic, on the 

other hand, the infection escapes the initial group of cases into the community at large and 

results in population-wide incidence of the disease. The crucial difference is that the size of an 

outbreak is determined by the spontaneous dying out of the infection, whereas the size of an 

epidemic is limited only by the size of the population through which it spreads. 

To predict the fate of an outbreak, we use probability generating functions, to summarize 

useful information about network topology.  Thus, if a graph has degree distribution jkmp , then 

the probability generating function (PGF, henceforth) for jkmp is 
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If you choose a random directed edge in the network and follow it to the nearest 

vertex, then the PGF for the number of the three types of edges (in, out, and undirected) 

emanating from that vertex other than the one that we arrived on is 
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Likewise, if you choose a random undirected edge in the network and follow it to the nearest 

vertex, then the PGF for the various edges at that vertex is given by 
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 Using these methods, we can derive the reproductive ratio, R0, the average size of an 

outbreak, s , the size of an epidemic, eS , the probability of an epidemic, eP , and the probability 

that an individual with a certain (in- and undirected-) degree will become infected, jmv . 

 

The basic reproductive ratio: When calculating the expected number of new cases arising from 

an infection in a naïve population we consider the source vertex of the infection.  That is, the 

initial case may arise through infection along a directed or undirected edge. Thus, if we know 

the source of the infection we can more accurately predict the R0. In particular, 
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0  respectively, where T is the average 

disease transmissibility and the second term is the average out-degree plus the average 

undirected-degree of a vertex that has become infected along a randomly selected edge. When 

we do not know anything about the transmission event that led to the initial infection, then our 

best estimate is  

  
R0 = T

( j(k + m) + m(k + m −1)) pjkm
jkm
∑

< kin > + < kun >
. 
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Since R0 is a product of both transmissibility (T) and the connectivity of the population, 

for a given value of T, different populations (networks) may have different values of R0.  If we 

are given range of R0 values for a certain population, p < R0 < q for example, we can derive the 

lower and upper bounds for transmissibility that correspond to that range of R0 as follows. 

Assuming we have no further information about the vaccination status of the population, we take 

the value of T that yields R0 = p for the population (network) with no vaccination (a worse-case 

scenario) and we take the value of T that yields R0 = q for the population (network) with 

maximum vaccination coverage (a best-case scenario.)  For interpandemic flu, R0 has been 

estimated to be 1 < R0 < 2.4.  For an unvaccinated population, R0 = 1 corresponds to T = 0.06 

and for a population with maximum vaccination coverage (13%), R0 = 2.4 corresponds to T = 

0.26.  Thus we estimate the transmissibility of interpandemic influenza to be 0.06 < T < 0.26. 

 

The average size of small outbreaks and the epidemic threshold: By nesting PGFs for the 

number of new infections emanating from an infected vertex one can construct a PGF for 

the size of a small outbreak, and hence derive the average size of a small outbreak: 
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f .  When T is small, the average size of a small outbreak is finite, but 

s  grows with increasing transmissibility, until it diverges when the denominator of the 

expression above reaches its first zero.  This point marks the phase transition at which the 

typical outbreak ceases to be confined to a finite number of cases and expands to a large-

scale epidemic covering most of the network.  This transition happens when T is equal to 
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the critical transmissibility cT , given by 
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The expected size of a full-blown epidemic eS : We can compute the size of the epidemic (the 

proportion of the population infected), eS , for the case when T is larger than cT .  We first 

calculate the likelihood that infection of a randomly chosen individual will spark only a limited 

outbreak instead of a full-blown epidemic, and then take one minus that probability: 
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where a and b are the solutions to the self-consistent equations 
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numerical root finding methods (such as Newton’s method) to solve for a and b.   

 

The probability of a full-blown epidemic eP : The expression for eP  comes from first calculating 

the likelihood that a single infection will lead to only a small outbreak instead of a full-blown 

epidemic, and then and then taking one minus the probability: 

Pe = 1− pjkm (1+ (α −1)T )k (1− (β −1)T )m

jkm
∑ , 

where α and β are the solutions to the self-consistent equations 
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numerical root finding methods (such as Newton’s method) to solve for α and β.   



  7

The probability that an individual will be infected during an epidemic jmv  : The likelihood that 

an individual of in-degree j and undirected-degree m will be infected during an epidemic is 

equal to one minus the probability that none of his or her mj + contacts will transmit the 

disease to him or her.  The average probability that an individual at the (origin) end of a 

randomly selected directed edge is spared by an epidemic is a. For an individual at the end of a 

randomly selected undirected edge, this probability is b.  Thus, the probability that one is not 

infected by a neighbor is the probability that the neighbor is infected but does not transmit 

disease (1-a)(1-T) for directed edges and (1-b)(1-T) for undirected edges, plus the probability 

that the neighbor is not infected, a for directed edges or b for undirected edges.  These 

probabilities sum to (1-T+Ta) and (1-T+Tb) for directed and undirected edges, respectively. 

Thus, a randomly chosen vertex of in-degree j and undirected-degree m will become infected 

with probability 

mj
jm TbTTaTv )1()1(1 +−+−−= . 

 

Demographic-Specific Attack Rates:  We calculate demographic-specific epidemiological risks 

by combining demographic information (age, occupation, etc.) for each member of the 

population with the jmv , defined above.  We first divide the population into 14 demographic 

groups:   
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Demographic Group (g) Demographic Group Description 
1 Infants (age < 3) 
2 Toddlers (3 ≤ age < 5) 
3 Children (5 ≤ age < 18) 
4 Adults (18 ≤ age < 50) 
5 Elderly ( age > 50) 
6 Nursing home residents 
7 Infants in daycare 
8 Toddlers in preschool 
9 Health care workers 
10 Nursing home workers 
11 Day care workers 
12 Preschool workers 
13 Teachers (and school staff) 
14 Unemployed 

 

For each demographic group (g), we find the expected number of infections ( gN ) at a 

particular transmission probability T by summing the probabilities of infection ( jmv ) across all 

individuals in that group. We denote the in-degree and undirected degree of an individual (i) 

by )(ij and )(im , respectively: 

Ng = vj (i )m(i )
i∈g
∑  ]14,1[∈∀g . 

 

Age-Specific Mortality:  The predicted number of deaths in the population caused by an 

epidemic (M) is the product of the predicted number of infections in each of the age groups 

(demographic groups 1 through 5 in the Table above) and the age-specific mortality rate ( gR ) 

specified in Table 3:  
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The predicted total mortality rate for the population is M normalized by the population size. 

 

Multiple Introductions:  We can also analytically predict the probability of an epidemic given 

independent multiple introductions of disease into a population.  For a given number of 

introductions, n, the probability of an epidemic is given by: 

,)1(1 n
en P−−=π  

where, eP , is the probability of an epidemic assuming a single introduction.  We note that the 

calculation of nπ above assumes that all n introductions occur independently at the outset of an 

outbreak.  This assumption yields an upper bound estimate for the probability of an epidemic 

with multiple introductions. 

 

Epidemic Simulation 

We verify the analytic predictions using simulations of a Susceptible-Infectious-Recovered (SIR) 

model.  The simulations are initialized with an entirely susceptible population, except for a single 

infected case (patient zero).  An infected vertex passes the disease on to each of its neighbors 

(those with whom that individual has disease-causing contacts) with probability T (the average 

transmission probability).  This process continues until the population no longer includes any 

susceptible individuals that are in contact with any infected individuals.  Once an individual has 

had the chance to infect its neighbors, it is immediately moved into the recovered class. 
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SUPPLEMENTAL ANALYSIS 
 

Network Properties of Demographic Groups 

Here we describe basic properties of the simulated urban networks that we have analyzed.  The 

epidemiological calculations consider the degree distribution of the network (as described in the 

previous section.)  Recall that most of the edges in our network are undirected and many 

individuals have the same out-degree as in-degree, with the exception of health care workers and 

individuals who are at high risk for complications due to flu.  In Figure S1, we show the in-

degree distributions for the total population and select demographic groups before and after 

vaccination by the morbidity and mortality-based strategies.  Children have a much higher mean 

in-degree (24.1) than adults and elders (10.7 and 10.6, respectively).  Figure S1c illustrates that 

the contact patterns for adults are relatively unaffected by both the morbidity- and mortality-

based strategies.  The morbidity-based strategy primarily alters the degree distribution of 

children (Figure S1b) and the mortality-based strategy primarily alters the degree distribution of 

elders (Figure S1d).  The mortality-based strategy does not affect the degree distribution of the 

total population a great deal (Figure S1a) as it effectively only targets small groups, either due to 

low vaccine efficacy levels (elders) or few individuals in the demographic group (infants.) 

 

Sensitivity to Population Structure 

The urban networks are stochastically generated, yielding Poisson distributions of contact 

numbers within each setting (schools, hospitals, workplaces, etc.). To achieve this, we specify 

setting-specific probabilities that determine whether or not any given pair of individuals in the 

same location will have an edge drawn between them. We examined the sensitivity of our results 

to the specific probabilities used in generating the network.  First, we generate 100 networks 
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each with 5000 households.  (The smaller population size allowed for more extensive sensitivity 

analyses. In prior studies, we found that epidemiological predictions for small urban networks 

apply to large urban networks [S5], and thus we expect that these sensitivity results will also 

apply to large networks.)  To generate variation in these networks, we draw contact probabilities 

between individuals from a Gaussian distribution, and allow them to deviate by up to 100% from 

the original contact parameters (which range from 0.003 to 0.3 depending on the location/nature 

of the interaction).  The stochastic formation of edges according to these probabilities yields 100 

unique networks, each with its own degree distribution.  We then vaccinate each population 

according to the morbidity-based and mortality-based strategies, as described in the methods 

section. The dashed lines in Figure S2 indicate the standard deviations for each epidemiological 

prediction (morbidity and mortality) across the 100 networks. The small variation in the 

predictions indicates that our results are robust to stochastic variation in network structure.  Even 

with a 100% deviation in contact structure, the morbidity and mortality-based strategies are 

superior for lower and higher values of T, respectively.  The value of T at which preferred 

strategy switches falls in the range [0.10, 0.14].  In the main text, we report a transition point of 

T=0.11.  These results suggest that even a 100% uncertainty in contact rates produces an 

uncertainty of [-0.01, 0.03] around the transition point. 

 

Sensitivity to Mortality Rates  

To evaluate the sensitivity of our predictions to variations in virulence among different strains of 

influenza, we evaluated vaccination strategies for two markedly different estimated mortality 

distributions. Here we extend this analysis to several other estimated influenza mortality 

distributions.  We compare the total mortality caused by an influenza epidemic after the 
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population has been vaccinated with a morbidity-based or mortality-based strategy for five 

different age-specific mortality distributions.  The first two mortality distributions are the focus 

of the main text.  The third is a different estimate for 1918 flu mortality rates that includes high 

mortality rates for adults and the elderly; and the remaining two are U-shaped mortality 

distributions reported for the epidemics of 1892 and 1936 [S8].  The mortality-based strategy is 

designed to target the demographic groups with the highest mortality rates, and thus varies from 

one mortality distribution to the next. The morbidity-based strategy is identical across all five 

mortality distributions, targeting school children and staff as specified in the main text.  We are 

particularly interested the cross-points (in transmissibility values) where the mortality-based 

strategy becomes superior to the morbidity-based strategy.  These lie between T = 0.15 and T = 

0.20 for the three additional mortality distributions shown in Figure S3, very close to that 

predicted for the 1918 mortality distribution considered in the main text, further suggesting that 

the results are fairly insensitive to uncertainties in estimates of influenza mortality rates. 

 

Sensitivity to Vaccine Coverage Level 

We test the sensitivity of our results to a change in the vaccine coverage level.  The vaccine 

priorities in the main text are implemented at a 13% coverage level.  Here, we implement the 

morbidity-based strategy (school children and staff) and mortality-based strategy (based on the 

second mortality distribution of Figure S3) at a 20% coverage level.  (During the influenza 

vaccine shortage of 2004, enough vaccine was available to cover 20% of the population.)   

Figure S4 shows that the increase in vaccination coverage produces a smaller mortality rate for 

both strategies but the comparison is qualitatively similar:  the mortality-based strategy 

outperforms the morbidity-based strategy for higher values of transmissibility. 
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Vaccine Effectiveness and Efficacy 

Vaccine efficacy is defined as E = 1 – (attack rate among vaccinated population/attack rate 

among unvaccinated population). To model vaccination of a proportion C of a demographic 

group at an efficacy of E, we remove a fraction C*E of individuals in the group from the network 

entirely. This reduces the attack rate in the vaccinated group by exactly a fraction E, which yields 

an efficacy of E. Although this method technically assumes that the vaccine has 100% 

effectiveness for the fraction E of the vaccinated group and no effectiveness on the remaining 

fraction 1-E of vaccinated individuals, it provides a reasonable model for the more realistic 

scenario in which most vaccinate individuals enjoy some level of protection. To test that the 

100% effectiveness model is a reasonable approximation, we have compared its predictions to 

simulations in which all vaccinated individuals have partially reduced susceptibility. In 

particular, to vaccinate a fraction C of a group with a vaccine of efficacy E > 0, we select C 

individuals at random from the group and reduce the transmission probability along all edges 

leading to each of those individuals by a factor
1/(1 )

(1 )
mE

T b
−

− , where m is the undirected 

degree of the node, T is the average transmissibility, and b is the average probability that an 

individual at the end of a randomly selected undirected edge is spared by an epidemic.  This 

factor is based on the fact that the probability of infection for each vaccinated individual will be 

1-E, and this yields a reduction in the attack rate in the group of E. We then simulate the spread 

of disease through the network. We find that mathematical predictions assuming 100% 

effectiveness closely match the results of these simulations, as illustrated in Figure S5. 

 

Sensitivity to Variation in Infectivity and Susceptibility 
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There is certainly heterogeneity in influenza infectivity and susceptibility among individuals.  

Some of the heterogeneity is caused by variation in contact patterns [S9].  Individuals with more 

contacts will have greater opportunities to catch and spread disease.  Our models explicitly 

capture this source of variation.  The remaining heterogeneity in transmission rates is caused by 

intrinsic physiological and behavioral differences among individuals.  Our analytical calculations 

allow for such heterogeneity so long as it is distributed somewhat randomly with respect to the 

structure of the population.  That is, there should not be significant correlations between 

individual contact patterns and individual likelihoods of infection and/or transmission.  There is 

evidence, however, that such correlations may exist. Cauchemez et al. statistically argue that 

children have a higher infectiousness and a higher susceptibility than adults per contact [S10].  

We have modified our contact network to explicitly model this diversity in 

transmissibility.  Cauchemez et al. suggest that, within a household, susceptible children (under 

15 years of age) have a 15% higher susceptibility per day of contact with an infectious household 

member compared to susceptible adults. They estimate that infectious children have 84% higher 

infectivity per day of contact with susceptible household members compared to infectious adults 

(0.26 and 0.48 for adults and children, respectively).  Finally, they find that the expected 

infectious periods of flu for children and adults are 3.6 and 3.9 days, respectively [S10].  

To test the sensitivity of our model to such heterogeneity, we make the extreme 

assumption that the different transmission probabilities will also hold for contacts outside the 

home. Accordingly, contacts between children were given the highest probability of transmission 

(TCC), followed by those from children to adults (TCA), from adults to children (TAC), and finally 

between adults (TAA). We assigned probabilities of transmission to the edges in the network 

based on the ratios between these values calculated from the data reported in [S10]. In particular, 
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each transmissibility is the average probability of transmission between an infectious and 

susceptible individual during the infectious period, or 1 (1 )p τ− −  where τ is the length of the 

infectious period and p is the per day probability of infection. Borrowing notation from [S10], 

for an edge pointing from an infected individual of type I (child or adult) to a susceptible 

individual of type J (child or adult) this is equal to 1− 1− βIε J( )τ I  where βI  is the per day 

probability of transmission from I to one of his or her contacts, τ I  is the duration of I’s 

infectious period, and εJ  is the susceptibility factor of individual J. The table below gives the 

ratios that we used to determine transmissibilities in the model.  

Contact Type 

(I  → J) 

Transmissibility calculated from 

estimates reported [S10] 

1− 1− βIε J( )τ I  

Ratio of  

TIJ to TAA 

Adult → Adult 1− 1− 0.26( )3.9  1 

Adult → Child 1− 1− 0.26 ⋅1.15( )3.9  1.09 

Child → Adult 1− 1− 0.48( )3.6  1.31 

Child → Child 1− 1− 0.48 ⋅1.15( )3.6  1.37 

 

           For a range of possible values for TAA, we assigned transmissibilities according to these 

ratios and ran 250 SIR simulations on the network for each of three scenarios: no vaccination, 

mortality-based vaccination, and morbidity-based vaccination. We also calculated the average 

transmissibility T across all contacts in the network, with which we made analytical predictions.  

In Figure S6, we compare analytical predictions that consider only the average transmissibility T 

(lines) to the outcome of these simulations (circles). Our current analytic methods give 

qualitatively similar results to those of the simulations. Although there is a bit of a discrepancy 
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between the predicted and simulated results for the morbidity-based strategy and consequently 

for the transition point between the two strategies, the important results still hold. That is, the 

mortality-based strategy remains advisable over a large range of highly contagious strains (even 

larger in the simulations than the analytics), and the cross-point between the two strategies 

remains within the range of estimates of R0 for interpandemic flu. 

Although the results in Figure S6 may seem counter-intuitive, they point to some of the 

important features of our model.   Generally, the morbidity-based strategy reduces mortality via 

herd immunity while the mortality-based strategy reduces mortality by directly protecting those 

with highest mortality rates. By assuming that edges to and from children have higher 

transmissibilities, it becomes more difficult to achieve herd immunity via the morbidity-based 

strategy. Despite the fact that the morbidity-based strategy targets a core group (50% of all 

children), it leaves a substantial population of children with high degree and high infectiousness 

which continues to act as a core group sufficient enough to reach the high-risk individuals.  The 

mortality-based strategy is relatively unaffected by the heterogeneity because it continues to 

protect the same fraction of high-risk individuals (in neither case does it achieve much herd 

immunity). 

This sensitivity analysis was based on a fairly extreme form of heterogeneity in 

transmission probabilities. In reality, variation in transmission probabilities outside households 

may be less demographically-structured, in which case, the assumption that variation in 

transmission probabilities is fairly random with respect to network structure may be valid. 

Similar analytic methods that explicitly capture demographic-specific patterns of transmission 

rates give more exact predictions for this extreme scenario, but are beyond the scope of this 

paper. 
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