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A B S T R A C T

Background

Epidemic influenza causes serious mortality and morbidity in temperate countries each
winter. Research suggests that schoolchildren are critical in the spread of influenza virus, while
the elderly and the very young are most vulnerable to the disease. Under these conditions, it is
unclear how best to focus prevention efforts in order to protect the population. Here we
investigate the question of how to protect a population against a disease when one group is
particularly effective at spreading disease and another group is more vulnerable to the effects
of the disease.

Methods and Findings

We developed a simple mathematical model of an epidemic that includes assortative mixing
between groups of hosts. We evaluate the impact of different vaccine allocation strategies
across a wide range of parameter values. With this model we demonstrate that the optimal
vaccination strategy is extremely sensitive to the assortativity of population mixing, as well as
to the reproductive number of the disease in each group. Small differences in parameter values
can change the best vaccination strategy from one focused on the most vulnerable individuals
to one focused on the most transmissive individuals.

Conclusions

Given the limited amount of information about relevant parameters, we suggest that
changes in vaccination strategy, while potentially promising, should be approached with
caution. In particular, we find that, while switching vaccine to more active groups may protect
vulnerable groups in many cases, switching too much vaccine, or switching vaccine under
slightly different conditions, may lead to large increases in disease in the vulnerable group. This
outcome is more likely when vaccine limitation is stringent, when mixing is highly structured,
or when transmission levels are high.

The Editors’ Summary of this article follows the references.
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Introduction

Most influenza-associated deaths in the developed world
occur in the elderly population, and current US vaccination
policy gives highest priority to vaccination of persons at risk
for influenza complications (primarily persons 65 y and older,
but also children under age 2 y and those with chronic
respiratory problems), and their contacts [1,2]. Recently,
some authors have renewed suggestions that vaccinating
schoolchildren, who respond well to vaccination and may
have an important role in transmission in the population,
could be an important component of a strategy to protect the
whole population, including elderly people [3–8]. Inspired by
questions arising from influenza policy, here we investigate
the general question of the effects of vaccination in an
infectious disease system in which the population has a
‘‘core’’ group that is particularly effective at spreading disease
and is distinct from a ‘‘victim’’ or ‘‘vulnerable’’ group that is
more vulnerable to the effects of disease (although not
necessarily more susceptible to infection). This question has
also been addressed by Patel and colleagues [9], who used
genetic algorithms to find optimal vaccine strategies in a
structured community model, and by Bansal and coworkers
[10], who simulated a network population model. Both of
these studies make detailed assumptions about population
structure; our more general approach allows us to investigate
the effects of varying mixing parameters.

To investigate vaccine strategies, we must distinguish
between the direct effect of vaccination—protecting vacci-
nated individuals from contracting disease—and the indirect
effect— protecting unvaccinated people by reducing the level
of infectiousness in the population, and thus the risk of
infection. We expect the direct benefit of vaccination to be
greatest if we vaccinate the most vulnerable individuals, while
the indirect benefit may be greatest if we vaccinate those
individuals most active in transmitting infection. Thus, the
best vaccine allocation strategy at the population level is not
always obvious.

We used a simple model (see Methods) to illustrate some of
the complexities that arise. Our model considers a population
with two groups: a core group and a vulnerable group. We
assume assortative mixing: individuals are most likely to mix
with other individuals in the same group. For illustration
purposes, we consider the question of how to allocate a fixed
amount of vaccine between a more actively mixing popula-
tion (e.g., schoolchildren) and a more vulnerable population
(e.g. elderly). This question is directly relevant during a
vaccine shortage (for example, the 2004–2005 influenza
season [11]). It also illustrates the issues that arise from
setting policy and prioritizing resource use, even when there
is not an actual shortage of vaccine. We assume that vaccine is
given before the influenza season begins, and that the effects
last until the end of the season.

Methods

We assume that the core and vulnerable groups differ only
in their contact rate (extending this framework to differences
in susceptibility to infection or tendency to transmit will
produce qualitatively similar results). We implement assorta-
tivity using ‘‘preferred’’ mixing [12], meaning that people
reserve a proportion of their contacts (the preferred mixing

coefficient, or p) for their own group, and unreserved
contacts are random (and may include additional intra-group
contacts).
We expect the final size of the epidemic to be nearly

independent of model details [13–15]. Epidemic size can be
estimated by simulating differential equations or by numeri-
cally solving the final-size equations, which are straightfor-
ward, but which cannot be solved analytically [13]. Scripts to
perform both sets of calculations using the free programming
language R are available at http://algonquin.princeton.edu/
vaccinealloc. Here we present results obtained by simulating
each set of parameters for 30 disease generations using the
simplest possible SIR model, starting from a prevalence of
10�5 per capita; results obtained by numerically solving the
final-size equations are similar. The equations used for the
SIR model are:

dSi=dt ¼ KiRiSi ð1Þ

dIi=dt ¼ KiRiSi � Ii ð2Þ

Here Si and Ii are the proportion of the population
represented by susceptible and infectious individuals in
group i, and t is time rescaled in disease generations. Ki is
the proportion of group i’s contacts who are infectious, given
by

Ki ¼ p Ii=Ni þ ð1� pÞ
X

j

RjIj=
X

j

RjNj ð3Þ

where Ni is the proportion of the population in group i, Ri is
the subgroup reproductive number of group i [16] and p is
the coefficient of preferred mixing.

Results

Figure 1 shows an illustrative example in a population with
strongly assortative mixing (i.e., most mixing occurs within
the groups). Inspired by recent evidence about influenza
vaccines [17–22], we allowed the protective effect of the
vaccine to be higher in the core than in the vulnerable group.
Due to uncertainty about the effective size of both the
vulnerable and core groups, we here set them equal: a more
realistic model could explicitly include a third group
representing healthy adults.
We find that the effects of vaccine allocation in our

example are complicated and sensitive to parameter values.
When transmission is low, switching vaccine from the
vulnerable group to the core group first increases incidence
in the vulnerable group, since fewer individuals are directly
protected. As more vaccine is allocated to the core group,
however, a turning point is reached after which fewer
vulnerable individuals are infected because the overall size
of the epidemic is sharply reduced. This result is not
surprising: in this case, vaccinating the vulnerable group
provides substantial direct protection, while vaccinating a
sufficient number in the core group achieves substantial (or
even complete) indirect protection. In the high-transmission
scenario, transmission within the vulnerable group is suffi-
ciently important that it is always better to vaccinate this
group (under the assumption that cases in the vulnerable
group have much more severe consequences than those in the
core group). This is true even though transmission rates in
the core group are higher than in the vulnerable group,
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because mixing in this model is strongly assortative: individ-
uals are most likely to infect others in the same group
(compare to Figure 2).

With moderate transmission, the situation is more compli-
cated: shifting vaccine from the vulnerable to the core group
makes things first worse, then better, then worse again. The
first transition is similar to the one seen in the low-
transmission case: if a sufficient proportion of the core
group is vaccinated the indirect protection gained outweighs
the direct protection lost. The second transition also has an
intuitive explanation: if too much vaccine is transferred away
from the vulnerable group then a new kind of epidemic
emerges in which the vulnerable group becomes ‘‘self-

sufficient’’ in disease transmission [16] and can sustain its
own epidemic.
We emphasize that these complexities are largely a result of

our assumption of strong assortative mixing. Figure 2 shows
results analogous to those of Figure 1, but in a population
with weak assortative mixing (i.e., mixing is largely random
across the population). We still see a tradeoff between direct
and indirect protection, with the result that the worst
allocation of vaccine, from the point of view of protecting
the vulnerable group, is often intermediate between the two
pure strategies of vaccinating in only one group, but we do
not see the emergence of self-sufficient epidemics driven by
transmission within the vulnerable group.

Figure 1. Complex Tradeoffs in Vaccine Allocation in a Population with Strong Assortative Mixing

The proportion of ‘‘vulnerable’’ (solid lines), and ‘‘core’’ (dashed lines) individuals infected as a function of the proportion of vaccine given to core
individuals, for three different transmission scenarios. In low transmission, the value of R for core and vulnerable individuals is 2.0 and 1.2, respectively;
in medium transmission R is 2.4 and 1.6; in high transmission R is 2.8 and 2.0. The overall proportion of the population vaccinated is 0.5. The vaccine is
assumed to have an efficacy of 80% in protecting core individuals and 50% in protecting vulnerable individuals. The two subpopulations are assumed
to be of equal size. The coefficient of preferred mixing used is 0.7 (see Methods).
doi:10.1371/journal.pmed.0040174.g001

Figure 2. Vaccine Allocation Tradeoffs in a Population with Weak Assortative Mixing

The proportion of ‘‘vulnerable’’ (solid lines), and ‘‘core’’ (dashed lines) individuals infected as a function of the proportion of vaccine given to core
individuals, for three different transmission scenarios. Parameters are the same as in Figure 1, except that the coefficient of preferred mixing used is 0.1
(rather than 0.7).
doi:10.1371/journal.pmed.0040174.g002
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We can assess a broader range of parameters by analyzing
qualitative patterns shown in Figure 1 across a range of
reproductive numbers. Figure 3 shows parameter domains in
which we see six different shapes of the allocation response
curve. These domains are divided by changes in whether the
two pure strategies (vaccinate children first, or vaccinate
elderly first) are best, worst, or intermediate in terms of the
number of cases seen in the vulnerable group. This figure
underscores the complexity of finding the right vaccination
strategy in a structured population. The two large domains in
the upper left and center right both have internal maxima
and minima. In particular, this means that continuing to
change in a direction that has made things better could make
things worse, and conversely. It is also important to note that
there is a wide range of parameters (the two upper regions) in
which giving all the vaccine to the core group is the worst
strategy for protecting the vulnerable group, despite the fact
that there is higher vaccine efficacy in the core group, and the
core group is also typically more active at transmitting the
disease.

For the purposes of illustrating strategy tradeoffs in Figure
3, we have fixed the population-level vaccine coverage at

50%, and also fixed vaccine efficacy. It is worth noting,
though, that the results are driven by the post-vaccination
‘‘effective’’ reproductive numbers in our two subgroups.
Thus, we expect to see qualitatively similar results if we
considered higher (or lower) levels of effective coverage,
combined with higher (lower) reproductive numbers.
Two alternative versions of Figure 3 are shown in Figures

S1 and S2. Because of concerns about vaccine efficacy in
elderly people, for Figure S1 we repeated our analysis with all
parameters the same, but using a vaccine efficacy of 30%
instead of 50% for the vulnerable group. The results are
largely similar. In particular, we still have large regions in
which shifting some vaccine from vulnerable to core
individuals improves protection of vulnerable individuals,
while shifting all the vaccine makes things worse.
Because of the striking importance of assumptions about

assortative mixing, we also repeated our analysis with all
parameters the same, but the coefficient of preferred mixing
set to 0.4, instead of 0.7 (see Figure S2). This change greatly
reduces the size of the parameter regions in which shifting
vaccine from the vulnerable to the core group has unwanted
negative effects.

Figure 3. Parameter Regions with Different Qualitative Responses to Changes in Vaccine Allocation

Insets show vaccine allocation tradeoffs at different points in parameter space, in the style of Figures 1 and 2. Contour lines (solid) separate regions in
which the strategy that vaccinates only vulnerable individuals (v) or the one that vaccinates only core individuals (c) is or is not the best (b) or worst (w)
on the curve describing changes in incidence in the vulnerable population. Two strategies on a given curve are deemed equivalent if they differ by less
than 0.1% of the curve’s maximum value. The large region in the middle right shows the case in which neither extreme strategy is best or worst; the
extreme properties of any other region are described by the names of the line or lines separating the region from the middle right region. Asterisks
correspond to the parameters shown in Figure 1. The dotted line shows values for which R is the same for both groups: our assumption that the core
group transmits the disease more effectively than the vulnerable group does not hold in the region above this line.
doi:10.1371/journal.pmed.0040174.g003
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Discussion

Influenza viruses are transmitted throughout communities,
and some authors have suggested that vaccinating school-
children, who transmit influenza actively and respond well to
vaccine, could be an important part of a strategy to protect
more vulnerable groups [3–8]. There is evidence that
vaccinating schoolchildren can protect other groups: from
national-level patterns in Japan, which instituted and later
repealed a policy of mandatory influenza vaccines for
schoolchildren [4], and from two community-level field trials
in the United States [23,24].

Here we asked what factors determine how best to allocate
vaccination resources in a population that has distinct
subgroups with different levels of transmission potential
and vulnerability to serious morbidity from the disease. Our
findings underscore the need for caution: because relevant
parameters may be poorly known (e.g., details of how
population mixing is structured) or may change from year
to year (e.g., population immunity to the current dominant
strain) it will be hard to predict in advance even the relevant
qualitative regime for framing allocation questions. In
particular, it is possible that a vulnerable group initially
protected through population immunity of the core group
may gradually accumulate susceptibility, increasing its effec-
tive reproductive number, Ri. Thus a population could move,
through time, from the parameter regime shown in the left
graph of Figure 1 to the one shown in the center—and an
initially effective control strategy (in this case, vaccinating the
core group first) could become a disastrous one.

Despite the complexity of the question of optimal vaccine
allocation, some general patterns can be seen in Figure 3. In
particular, if transmission rates in both groups increase
together, the relative value of giving vaccine to the elderly
also increases. This is also true when we increase the
transmission rate of the elderly alone. This simple pattern
does not hold for the core group, however. In some cases,
increasing the transmission rate of the core group results in a
decrease in the amount of vaccine optimally given to this
group, because indirect protection is relatively less effective
than direct protection when transmission is high.

As we have shown, infectious disease dynamics are sensitive
to the strength of assortative mixing in the population. We
have illustrated possible scenarios using a model with only
two groups, but real populations are far more complex in
structure and behavior. Elderly individuals who live with
extended families may show little or no mixing with other
elderly individuals, while those who live in retirement
communities or institutions may have very strong assortative
mixing. These patterns may differ substantially across
cultures: for example, grandparents may cohabit with
children more frequently in Japan than in the United States.
Such differences across populations are a further reason for
approaching vaccine allocation decisions cautiously.

Vaccination policy is also sensitive to the relative efficacy
of the vaccine in different groups. Recent work has raised
important questions about the effectiveness of vaccine in very
elderly people [21,22,25]. To the extent that vaccinating
elderly persons is less efficacious at the individual level, it will
also have less effect at the population level.

Influenza epidemics of a given subtype generally recur
within a few years. Thus, the effective values of R for

influenza are likely quite low, due to accumulation of cross-
immunity in the population [26]. In other words, influenza
disease parameters are likely similar to those shown in the
lower left corner of Figure 3. Our analysis of disease
dynamics in this parameter regime supports the argument
that vaccination of children may be a good way to protect the
elderly [3–5,7,8]. Nevertheless, our analysis also shows that the
outcome of a vaccination policy is very sensitive to the details
of disease transmissibility and to the structure of mixing
within a population. Given the level of uncertainty about
population structure—as well as the risk of an elderly-driven
epidemic—prudent policy for influenza should focus on
supplementing rather than replacing the vaccination of the
elderly [5,8,25]. In contrast to annual epidemics, the value of
R during an influenza pandemic—caused by the appearance
of a novel subtype—could be higher than during an
epidemic, although there is evidence that pandemic trans-
mission has been low in the past [27–29]. For a pandemic, it
will be hard to predict how the disease will be transmitted or
who will be most vulnerable. Our results on the sensitivity of
outcomes to basic disease parameters show that taking a
dynamical approach could provide important insight in the
debate over vaccination policy during an influenza pandemic
[30,31].

Supporting Information

Figure S1. Parameter Regions with Different Qualitative Responses to
Changes in Vaccine Allocation, with Vaccine Efficacy in the
Vulnerable Group Set to 30%

Other parameters as in Figure 3. Contour lines (solid) separate
regions in which the strategy that vaccinates only vulnerable
individuals (v) or the one that vaccinates only core individuals (c) is
or is not the best (b) or worst (w) on the curve describing changes in
incidence in the vulnerable population. Two strategies on a given
curve are deemed equivalent if they differ by less than 0.1% of the
curve’s maximum value.

Found at doi:10.1371/journal.pmed.0040174.sg001 (10 KB PDF).

Figure S2. Parameter Regions with Different Qualitative Responses to
Changes in Vaccine Allocation, with the Preferred Mixing Parameter
Set to 0.4

Other parameters as in Figure 3. Contour lines (solid) separate
regions in which the strategy that vaccinates only vulnerable
individuals (v) or the one that vaccinates only core individuals (c) is
or is not the best (b) or worst (w) on the curve describing changes in
incidence in the vulnerable population. Two strategies on a given
curve are deemed equivalent if they differ by less than 0.1% of the
curve’s maximum value.

Found at doi:10.1371/journal.pmed.0040174.sg002 (10 KB PDF).
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Editors’ Summary

Background. Every winter, millions of people take to their beds with
influenza—a viral infection of the nose, throat, and airways that is
transmitted in airborne droplets released by coughing and sneezing.
Most people who catch flu recover within a few days, but some develop
serious complications such as pneumonia, and in the US alone, about
36,000 people—mainly infants, elderly, and chronically ill individuals—
die every year. To minimize the morbidity (illness) and mortality (death)
associated with seasonal (epidemic) influenza, the World Health
Organization recommends that these vulnerable people be vaccinated
against influenza every autumn. Annual vaccination is necessary because
flu viruses continually make small changes to the viral proteins that the
immune system recognizes.

Why Was This Study Done? Although infants and the elderly are
particularly vulnerable to influenza, schoolchildren are more likely to
spread the flu virus. Also, vaccination is more effective in schoolchildren
than in elderly people. So could vaccination of schoolchildren be the
best way to reduce influenza morbidity and mortality? Some Japanese
and US data suggest that it might be, but policymakers need to know
more about the likely effects of changing the current influenza
vaccination strategy. They need to know in what circumstances the
direct effects of vaccination (protection of vaccinated individuals from
disease) outweigh its indirect effects (reduced infection in vulnerable
individuals caused by the reduced spread of disease in the whole
population) and when the opposite is true. In this study, the researchers
have used mathematical modeling to investigate how vaccination affects
the spread of diseases such as influenza for which a ‘‘core’’ group in the
population spreads the disease and a distinct ‘‘vulnerable’’ group is
sensitive to its effects.

What Did the Researchers Do and Find? The researchers developed a
mathematical model in which members of each group mixed mainly
with their own group (assortative mixing) and used it to predict how
changing the proportion of a limited amount of vaccine given to each
group might affect disease spread under different conditions. For
example, they report that in a population in which the two groups were
very unlikely to mix and viral transmission was low, switching vaccine
from the vulnerable group to the core group initially increased infections
in the vulnerable group because fewer individuals were directly
protected but, as more vaccine was allocated to the core group, fewer
vulnerable people became infected because the size of the epidemic
decreased. When viral transmission was high, vaccination of the
vulnerable group was always best. However, when viral transmission

was moderate, shifting vaccine from the vulnerable group first increased,
then decreased infections in this group before increasing them again.
This last change occurred when vaccination in the vulnerable group was
so low that viral transmission was sufficient to maintain the epidemic
within this group.

What Do These Findings Mean? As with all mathematical modeling, the
researchers’ findings depend on the assumptions included in the model,
many of which are based on limited information. The model also
considers a population that contains only two groups, an unlikely
situation in real life. Nevertheless, these findings indicate that in a
population in which one group of people is mainly responsible for the
spread of a disease and another is most vulnerable to its effects, the best
vaccination strategy is very sensitive to how the groups mix and how
well the disease spreads in each group. Small changes in these poorly
understood parameters can change the optimal vaccination strategy
from one that vaccinates vulnerable individuals to one that mainly
vaccinates the people who spread the disease. Importantly, a beneficial
change in strategy can become deleterious if taken too far, so policy
makers need to approach potentially promising changes in vaccination
policy cautiously. Finally, for influenza, the model supports the idea that
using some vaccine stocks in schoolchildren might decrease morbidity
and mortality among elderly people but suggests that—even if this turns
out to be correct—if all the vaccine were given to schoolchildren, more
old people might die. Thus, the most prudent policy would be to
supplement rather than replace vaccination of the elderly with
vaccination of children.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0040174.

� US Centers for Disease Control and Prevention provide information
about influenza for patients and professionals, including key facts
about the flu vaccine (in English and Spanish)
� World Health Organization, fact sheet on influenza and information on

vaccination (in English, Spanish, French, Arabic, Chinese and Russian)
� UK Health Protection Agency, information on seasonal influenza
� MedlinePlus encyclopedia entries on influenza and the influenza

vaccine (in English and Spanish)
� Public disease mortality and morbidity data at the International

Infectious Disease Data Archive (IIDDA)
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