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A B S T R A C T

Background

Diabetic nephropathy (DNP) is a common complication of type 1 and type 2 diabetes
mellitus and the most common cause of kidney failure. While DNP manifests with albuminuria
and diabetic glomerulopathy, its progression correlates best with tubular epithelial
degeneration (TED) and interstitial fibrosis. However, mechanisms leading to TED in DNP
remain poorly understood.

Methods and Findings

We found that expression of scavenger receptor CD36 coincided with proximal tubular
epithelial cell (PTEC) apoptosis and TED specifically in human DNP. High glucose stimulated cell
surface expression of CD36 in PTECs. CD36 expression was necessary and sufficient to mediate
PTEC apoptosis induced by glycated albumins (AGE-BSA and CML-BSA) and free fatty acid
palmitate through sequential activation of src kinase, and proapoptotic p38 MAPK and caspase
3. In contrast, paucity of expression of CD36 in PTECs in diabetic mice with diabetic
glomerulopathy was associated with normal tubular epithelium and the absence of tubular
apoptosis. Mouse PTECs lacked CD36 and were resistant to AGE-BSA-induced apoptosis.
Recombinant expression of CD36 in mouse PTECs conferred susceptibility to AGE-BSA-induced
apoptosis.

Conclusion

Our findings suggest a novel role for CD36 as an essential mediator of proximal tubular
apoptosis in human DNP. Because CD36 expression was induced by glucose in PTECs, and
because increased CD36 mediated AGE-BSA-, CML-BSA-, and palmitate-induced PTEC
apoptosis, we propose a two-step metabolic hit model for TED, a hallmark of progression in
DNP.
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Introduction

Diabetic nephropathy (DNP) is a serious and common
complication of type 1 and type 2 diabetes mellitus, leading to
end-stage renal failure in up to 30% of individuals with
diabetes. Early abnormalities of DNP affect glomeruli and
include an increase in glomerular filtration rate, micro-
albuminuria, glomerular hypertrophy, and thickening of the
glomerular basement membrane, followed by expansion of
mesangial extracellular matrix and glomerulosclerosis [1,2].
As with most chronic degenerative kidney diseases, the
gradual decline of renal function at later stages of DNP is
invariably associated with tubular epithelial degeneration
(TED), also called tubular atrophy, and interstitial fibrosis
(IF), hallmarks of degeneration to end-stage renal failure [3].
Pathomechanisms that may initiate and/or mediate TED in
DNP remain poorly understood. While glomerular lesions
consistent with human DNP have been described in various
mouse models of diabetes, TED and IF have not been
described in diabetic mice [4].

Combining detailed renal phenotype analysis with gene
expression profiling of hyperglycemic mouse models of type 1
(streptozotocin [STZ]) and type 2 (db/db) diabetes, we recently
reported that decreased mRNA levels of CD36 in kidneys
were strongly correlated with albuminuria [5]. CD36 is a
transmembrane protein of the class B scavenger receptor
family and is involved in multiple biological processes [6].
CD36 is widely expressed and may interact with multiple
extracellular ligands, including thrombospondin-1 (TSP-1),
long-chain free fatty acids (FFAs), modified (oxidized) low-
density lipoprotein (ox-LDL), advanced glycation end (AGE)
products, and collagens I and IV [6]. CD36 mediates
phagocytosis of apoptotic cells and malaria-parasitized
erythrocytes [7]. Furthermore, CD36 mediates antiangiogenic
activity associated with endothelial cell apoptosis induced by
TSP-1 through p38 MAP kinase (MAPK) and caspase 3 [8].
Hyperglycemia-induced synthesis of CD36 protein in macro-
phages has been associated with increased uptake of ox-LDL
by macrophages and foam cell formation in atherosclerotic
lesions in people with diabetes [6,9,10]. While diabetic
cardiovascular complications are closely linked epidemiolog-
ically with albuminuria and DNP, a role for CD36 in DNP and
renal pathophysiology has not to our knowledge been
described to date.

Here we report a novel functional role for CD36 scavenger
receptor and AGE and FFA palmitate (PA) in tubular
epithelial apoptosis associated with TED and progression of
DNP. Specifically, we show that glucose stimulates CD36 cell
surface expression in proximal tubular epithelial cells
(PTECs), and increased CD36 renders PTECs susceptible to
both AGE- and PA-induced PTEC apoptosis by mediating
sequential activation of src kinase, proapoptotic p38 MAPK,
and caspase 3. Based on these findings, we propose a new two-
step metabolic hit model for TED in the progression of DNP.

Methods

Animals
Kidneys were obtained from 28-wk-old C57BLKS/J-leprdb/db,

STZ-treated C57BL/6J, or STZ-treated 129SvJ mice and from
age-matched control C57BLKS/J-leprdb/m, C57BL/6J, and
129SvJ mice as described [5].

Cell Culture
Human proximal tubular cell line HK-2 and murine

collecting duct cell line M1 were purchased from American
Type Culture Collection (Manassas, Virginia, United States)
and cultured according to the vendor’s instructions. Mouse
proximal tubular cell line MCT was provided by Fuad Ziyadeh
(University of Pennsylvania, Philadelphia, Pennsylvania,
United States). Transfections were performed with Fugene 6
(Roche Diagnostics, Indianapolis, Indiana, United States)
according to manufacturer’s protocol. CD36-containing
plasmid was a kind gift of Nada Abumhrad (SUNY at Stony
Brook, New York, United States). Cells were also co-trans-
fected with EGFP (Clontech, Franklin Lakes, New Jersey,
United States) to assess transfection efficiency. Cells were
serum starved in 0.2% serum containing DMEM (1 g/l glucose)
for at least 24 h prior to stimulation with AGE–bovine serum
albumin (BSA), glucose, or FFA.

Quantitative Real-Time PCR
Quantitative real-time PCR analysis of mouse and human

CD36, HPRT1, and beta actin was performed as described
previously [5]. The following primers were used: mouse CD36
59 TGCTGGAGCTGTTATTGGTG and 39 CATGAGAATG-
CCTCCAAACA, mouse beta actin 59 ACCGTGAAAAGAT-
GATGACCCAG and 39 AGCCTGGATGGCTACGTACA,
mouse HPRT1 59 TGTTGTTGGATATGCCCTTG and 39 TT-
GCGCTCATCTTAGGCTTT, human CD36 59 GCTCTGGG-
GCTACAAAGATG and 39 TAGGGAGAGATATCGGGCCT,
human beta actin 59 GATGAGATTGGCATGGCTTT and 39
CACCTTCACCGTTCCAGTTT, and human HPRT1 59
AAAGGACCCCACGAAGTGTT and 39 TCAAGGGCA-
TATCCTACAACAA.

Immunostaining and Immunoblotting
Primary antibodies specific for the following proteins were

used: monoclonal mouse anti-CD36 antibody, clone FA 6–
152 (IgG) (Immunotech, Fullerton, California, United States),
clone SMO (IgM) (Santa Cruz Biotechnology, Santa Cruz,
California, United States), rabbit polyclonal anti-CD36
(Santa Cruz Biotechnology), rabbit polyclonal anti-aquapor-
in1, anti-aquaporin2, anti-Na/K/2Cl (Chemicon, Temecula,
California, United States), rabbit polyclonal phospho38/
MAPK and mouse monoclonal p38 (Cell Signaling Technol-
ogy, Beverly, Massachusetts, United States), rabbit polyclonal
p-src (Y418) (Biosource, Camarillo, California, United States),
and mouse monoclonal anti-tubulin (Sigma, St. Louis,
Missouri, United States). Immunostaining was performed
on frozen sections with FITC- and Cy3-labeled secondary
antibodies (Jackson Laboratories, USA), or on paraffin-
embedded sections with immunoperoxidase, as described
earlier [5]. Immunoblotting was performed with 30 lg of
protein isolated from cultured cells. Protein samples were
resolved on a 10% SDS-PAGE and immunoblotted with
primary antibody and revealed with horse radish peroxidase
(HRP)-conjugated anti-mouse IgM, or anti-rabbit IgG (Jack-
son Laboratory, Bar Harbor, Maine, United States). Immun-
complexes were detected by enhanced chemiluminescence
(Pierce, Rockford, Illinois, United States). The proximal
tubular immunostaining was evaluated semi-quantitatively by
two independent pathologists who were unaware of the
diagnosis; distribution and intensity of staining was scored
on a ten-point scale.
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Fluorescence Flow Cytometric Analysis
Cells were incubated in 0.5 mM EDTA in PBS at 37 8C for

20 min, scraped, and then washed with 1% fetal bovine
serum. Cells were then exposed to monoclonal anti-CD36 IgG
FA6 (5 lg/ml), or control mouse IgG1 (5 lg/ml) (Sigma), for 45
min on ice in the presence of 10% fetal bovine serum then
washed with PBS. This was followed by an incubation with
phycoerythrin-conjugated goat anti-murine secondary anti-
body (Southern Biotechnology, Birmingham, Alabama,
United States) 1:50 for 45 min on ice. Cells (1 3 104) were
analyzed by using a SCAN flow cytometer (BD, Franklin
Lakes, New Jersey, United States), with appropriate gating.
Flow cytometry data were analyzed using Cellquest (BD).

Preparation of Glycated Albumin and Carboxymethyl-
Lysine Albumin

Briefly, to prepare AGE-BSA, essentially fatty-acid-free and
endotoxin-free BSA (250 mg/ml) was incubated at 37 8C for 2,
5, and 10 wk with D-glucose (500 mM) in a 0.4-M phosphate
buffer containing EDTA, ampicillin, Fungazone, polymixin B,
and protease inhibitors. Control preparations were treated
identically except that glucose was omitted. Carboxymethyl-
lysine (CML)–BSA was prepared as described earlier [11].
Briefly, BSA with minimal CML content (CMLmin-BSA) was
prepared by incubation of BSA (0.66 mM) with glyoxylic acid
(2.15 mM) in the presence of sodium cyanoboronydrate (56
mM) in 200 mM sodium phosphate buffer (pH 7.8) at 37 8C
under aseptic conditions. Finally, preparations were exten-
sively dialyzed against phosphate buffer to remove free
glucose. Preparations were then tested for the presence of
LPS with a Quantitative Chromogenic LAL kit (Cambrex,
East Rutherford, New Jersey, United States). The concen-
tration of LPS was lower than 0.07 IU/mg protein in all
preparations.

Preparation of FFA
Palmitic acid (P5585), oleic acid, and FFA-free low-endotox-

in BSA (A8806) were purchased from Sigma. Palmitic acid was
dissolved at 12mM in PBS containing 11% fatty-acid-free BSA,
sonicated for 5 min, shaken overnight at 37 8C, and sonicated
for 5 min again [12]. For control experiments, BSA in the
absence of fatty acids was prepared, as described above. The
effective concentration of PA was determined using a
commercially available kit (Wako Chemicals, Neuss, Germany).

Apoptosis Detection
In situ detection of DNA fragmentation was performed

using the ApoTag TUNEL assay following the manufacturer’s
protocol (Intergen, Purchase, New York, United States) [13].
Apoptotic nuclei were detected using DAPI staining (1 lg/ml;
10 min) in cell cultures fixed with 4% paraformaldehyde, and
analyzed via fluorescence microscopy to assess chromatin
condensation and segregation. Caspase3 activity was detected
by using the ApoAlert Caspase3 Fluorescent Detection system
(BD) according to the manufacturer’s protocol. Activity was
normalized to total protein content. Z-DEVD-fmk, z-VAD-
fmk, z-FA-fmk, and z-LEHD-fmk were purchased from BD.

Human Kidney Biopsy Sample and Patient Characteristics
Human kidney tissues (ten controls, ten with diabetic

nephropathy, and ten with focal segmental glomeruloscle-
rosis [FSGS]) were obtained from archived kidney biopsy

samples or from discarded nephrectomy specimens. All
diabetic samples were from patients with biopsy-proven
advanced DNP with serum creatinine ranging from 1.7 to
5.6 mg/dl (151 to 444 lM/l), heavy proteinuria (3þ by dipstick
or 3–6 gr/d), and hypertension. All patients with FSGS were
from patients with creatinine levels of 1.7 to 4.9 mg/dl (151 to
435 lM/l), heavy proteinuria (3þ by dipstick), and hyper-
tension. The diagnosis of FSGS was made on Periodic acid–
Schiff staining in the absence of immunodeposits on electron
microscopy. The diagnosis of diabetic nephropathy was based
on the presence of diabetes, proteinuria, and the character-
istic light microscopy findings. Institutional Review Board
approval was obtained for procurement of kidney specimens
at the Thomas Jefferson University Hospital.

Statistical Methods
Data are reported as mean and standard error of the mean

(SEM) for continuous variables. All cell culture experiments
were performed at least three times and summarized. Stand-
ard software packages (SPSS and Excel for Windows) were
used to provide descriptive statistical plots (unpaired t-tests).
The Bonferroni correction was used for multiple compar-
isons. Significance for the quantification of the CD36 staining
in human biopsy samples was calculated via the Wilcoxon
Rank Sum Test.

Results

Increased Expression of CD36 Specifically in Proximal
Tubules of Human Diabetic Kidneys Is Associated with TED
Using microarray-based gene expression profiling on whole

kidney RNA together with supervised clustering methods, we
previously identified and validated gene expression patterns
for molecular classification of diabetic mice with albuminuria
and mesangial expansion [5]. Reduced renal mRNA levels of
the class B scavenger receptor CD36 were characteristic for
diabetic mice with albuminuria [5]. Here we examined
patterns of CD36 protein expression in kidneys of non-
diabetic and diabetic mice and humans. CD36 protein was
detectable in the thick ascending limb of loop of Henle and in
the collecting duct, and absent in proximal tubules in both
control and diabetic mouse kidneys (Figure 1A–1D). In
contrast, CD36 was detectable only rarely in individual
proximal tubular cells in sections from non-diabetic human
kidneys (controls) (Figure 1E and 1H), but was markedly
increased specifically in PTECs in human diabetic kidneys
(Figure 1F and 1I). In addition, we did not observe increased
proximal tubular CD36 expression in kidney biopsy samples
from patients with FSGS (Figure 1J), that were matched with
DNP samples for the severity of proteinuria (all in the
nephrotic range) and renal insufficiency (all with elevated
serum creatinine; 1.7–5.0 mg/dl). Semi-quantitative analysis of
the distribution and intensity of CD36-positive PTECs (CD36
PTEC score), which was performed by two independent
pathologists in a blinded manner, demonstrated that mean
CD36 PTEC scores were not different between FSGS kidneys
and normal human kidneys, but were significantly increased
in DNP kidneys (Figure 1K).
Periodic acid–Schiff–stained sections of kidneys from mice

exposed to type 2 diabetes (db/db mice) for 20 wk (Figure 2A),
or type 1 diabetes (STZ-treated C57BL/6J mice) for 20 wk
(data not shown) demonstrated moderate to advanced
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mesangial expansion and glomerulosclerosis (Figure 2A).
Tubular abnormalities were not detectable in either model
(Figure 2A). In contrast, TED and IF were associated with
moderate to advanced mesangial expansion and glomerulo-
sclerosis on kidney sections of human DNP (Figure 2B). These
findings indicate that in humans with DNP, diabetes-induced
upregulation of CD36 expression in proximal tubules was
associated with moderate to advanced stages of TED and IF.
In contrast, in diabetic mice with albuminuria, mesangial
expansion, and glomerulosclerosis, absence of CD36 expres-
sion was associated with normal appearance of the tubular
epithelium and interstitial space. These findings suggest an
association between diabetes-induced proximal tubular CD36
expression and TED.

Coincidence of Increased CD36 Expression and Increased

Tubular Epithelial Cell Apoptosis in Human DNP
CD36 has been shown to mediate apoptosis signaling

induced by TSP-1 in endothelial cells [8] and by ox-LDL in

Figure 1. Differential Localization and Expression of CD36 Protein in
Kidneys of Diabetic Mice with Glomerulopathy and of Humans with DNP

(A and B) Indirect double-immunofluorescence labeling of kidney
sections from non-diabetic control (A) and diabetic (B) mice with anti-
CD36 (green) and proximal tubular marker anti-aquaporin1 (red).
(C and D) Double labeling of non-diabetic control mice with anti-
CD36 (green) and loop-of-Henle marker sodium potassium chloride
cotransporter anti-NKCC (red) (C) and collecting duct marker
aquaporin2 (red) (D) (arrow depicts colocalization of anti-CD36 and
anti-aquaporin2 staining).
(E and F) Double labeling of human kidney sections from control
individuals (E) and individuals with diabetes with DNP (F) using anti-
CD36 (green) and anti-aquaporin1 (red).
(G) Higher-magnification image of (F) with arrows depicting colocal-
ization of anti-CD36 and anti-aquaporin1. (Note that anti-CD36
labeling is heterogeneous: staining is isolated proximal tubular cells.)
(H–J) Representative images of anti-CD36 immunoperoxidase stain-
ing of sections of normal human kidney (H), human kidney with DNP
(I), and human kidney with FSGS (J). Arrow in (I) depicts proximal
tubular epithelial staining.
(K) CD36 PTEC expression score derived from blinded, semi-
quantitative analysis of distribution and intensity of proximal tubular
CD36 staining of human biopsy samples from ten normal control, ten
DNP, and ten FSGS kidneys and the result shown on a dot plot.
Significance was calculated by Wilcoxon Rank Sum Test, and PTEC
scores for DNP kidneys were significantly different from those of
FSGS kidneys and normal human kidneys.
DOI: 10.1371/journal.pmed.0020045.g001

Figure 2. TED and IF Coincide with Proximal Tubular Apoptosis and

CD36 Expression in Human DNP

(A and B) Periodic Acid–Schiff staining of diabetic mouse kidney (28-
wk-old C57BLKS/J-leprdb/db) (A) and human DNP kidney (B). Arrow-
heads denote glomeruli with advanced mesangial expansion and
glomerulosclerosis; arrows depict normal proximal tubule in diabetic
mouse (A) and TED in human with DNP (B).
(C) TUNEL assay (green) and anti-CD36 (red) double labeling of human
DNP.Arrows indicate apoptotic, CD36-positive tubular epithelial cells.
(D) TUNEL assay (green) and anti-aquaporin1 (red) double labeling of
human DNP. Arrows depict TUNEL-positive and aquaporin1-positive
PTECs.
(E) Dot plot indicates the number of TUNEL-positive tubular cells
per 100 total tubular cells in kidneys of control (CTL) and diabetic
(DM) mice and humans, as indicated.
DOI: 10.1371/journal.pmed.0020045.g002
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macrophages [14]. We examined whether the strong upregu-
lation of CD36 protein in PTECs, observed specifically in
human DNP, was associated with tubular epithelial cell
apoptosis in vivo. TUNEL-positive tubular epithelial cells
also stained positive for CD36 protein (Figure 2D) and
aquaporin1 (Figure 2C), indicating that apoptosis and CD36
expression coincided in PTECs in human DNP. In contrast,
CD36 was not detectable in TUNEL-positive PTECs in non-
diabetic FSGS kidneys and in normal human kidney (data not
shown). Statistical analysis showed that the rate of TUNEL-
positive tubular cells was significantly increased in kidneys of
human DNP compared with normal control human kidney
(Figure 2E). In addition, tubular epithelial apoptosis was
increased, but highly variable, in FSGS kidneys (data not
shown). In contrast, tubular epithelial apoptosis rates were
comparable between non-diabetic control and all diabetic
mouse kidneys (Figure 2E). The diabetic mouse group
included 24-wk-old STZ-treated diabetic C57BL/6J or 129SvJ
mice (0.23 6 0.1 TUNEL-positive cells per 100 tubular cells)
and 24-wk-old leprdb/db mice (0.2 6 0.1 TUNEL-positive cells
per 100 tubular cells). Together, these findings indicate that
CD36 expression in PTECs is associated with apoptotic events
of proximal tubular cells and TED specifically in human DNP,
but not in FSGS with matched functional and clinical
abnormalities. These in vivo findings demonstrate a strong
association of diabetes-induced CD36 expression and apop-
tosis in PTECs in human DNP, suggesting that CD36 may play
a critical role in TED by mediating PTEC apoptosis in
progressive human DNP.

High Ambient Glucose Induces CD36 Expression in
Human PTECs

High ambient glucose has been shown to induce CD36
protein synthesis in macrophages [9]. Because CD36 protein
was markedly increased in proximal tubules in human DNP,
we examined the effects of high ambient glucose on CD36

mRNA and protein expression in the human PTEC line HK-2
(Figure 3). Exposure of cells to 30 mM D-glucose for 24 h, but
not to control L-glucose, significantly increased levels of
CD36 mRNA (Figure 3A), CD36 cell surface protein (Figure
3C), and CD36 protein expression in cell lysates (Figure 3D).
In contrast, CD36 mRNA and protein were not detectable in
the murine PTEC line MCT at either normal or high ambient
glucose concentrations (data not shown). Interestingly,
glucose stimulation decreased CD36 mRNA levels (Figure
3B) and CD36 cell surface protein (Figure 3C) in the murine
collecting duct cell line M1, consistent with our previously
reported findings in diabetic mouse kidney [5]. Exposure of
human HK-2 and murine M1 cell lines to defined prepara-
tions of FFA PA or AGE-BSA had no effect on CD36 mRNA
and protein expression levels (data not shown). These
findings demonstrate that high ambient glucose causes
upregulation of CD36 mRNA and protein specifically in
human, but not in mouse, PTECs. Together with our in vivo
observations, these results suggest that hyperglycemia may
induce upregulation of CD36 mRNA and protein selectively
in proximal tubules in kidneys of human DNP, but not
diabetic mice with albuminuria.

AGE-BSA, CML-BSA, and FFA PA Induce Apoptosis in
Human PTECs via CD36
AGE albumin [15] and FFAs [16] have been implicated in

the pathogenesis of diabetic complications, including tubular
degeneration [17] and tubular epithelial-to-mesenchymal
transition [18]. In addition, AGE albumin and FFA are known
to interact with CD36 [19,20]. However, it is not known
whether AGE and/or FFA can activate CD36 signaling and
apoptosis in tubular epithelial cells. Treatment with AGE-
BSA for 2, 5, or 10 wk or with CML-BSA induced a significant
increase in the number of apoptotic nuclei in CD36-positive
HK-2 cells compared with control BSA-treated or untreated
HK-2 cells (Figure 4A). In contrast, AGE-BSA and CML-BSA

Figure 3. CD36 mRNA and Protein Synthesis Is Stimulated in Human, but Not in Murine, PTECs, and Is Suppressed in Murine Collecting Duct Cells by

High Ambient Glucose

(A) Relative CD36 mRNA abundance determined by quantitative real-time PCR in human PTEC line HK-2 treated with 30 mM D-glucose (open
bars) or control L-glucose (black bars) for 4 and 24 h following maintenance of cells in 5 mM D-glucose medium. Bars represent mean 6 SEM of
three to five repeat experiments. Numbers on top of bars indicate significant p-values of experimental groups relative to 0 h.
(B) Bar graphs show experiment as described under (A), using mouse collecting duct cell line M1 instead of human HK-2 PTECs. The relative
expression of CD36 was normalized to internal control housekeeping genes HPRT and beta actin, and to baseline controls (untreated cells).
(C) Relative cell surface expression of CD36 protein determined by FACS in M1 cells (open bars) and HK-2 cells (black bars) maintained in 5 mM
D-glucose medium (CTL), or in medium containing 30 mM D-glucose (D-gluc) or L-glucose (L-gluc) for 72 h. (Original FACS histograms are
provided in Figure S1.) Bars represent mean 6 SEM of three to five repeat experiments. Numbers indicate significant p-values of experimental
groups relative to control.
(D) Immunoblot showing CD36 protein levels in human HK-2 PTECs maintained in control 5 mM D-glucose (CTL), or after stimulation for 72 h
with 30 mM L-glucose (L-gluc) or D-glucose (D-gluc), as indicated. Tubulin is shown for loading control. All data represent at least four
independent repeat experiments.
DOI: 10.1371/journal.pmed.0020045.g003
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had no effect on the rate of apoptotic nuclei in CD36-
negative murine MCT PTECs (data not shown). Because AGE-
BSA glycated for 5 wk (AGE-BSA5) induced robust apoptosis
at concentrations between 20 and 40 lM (Figure 4A), we
chose this preparation and concentration for further analysis
in all subsequent experiments. AGE-BSA5-induced apoptosis
was blocked when cells were preincubated with neutralizing
anti-CD36 antibody, while preincubation with control IgG
antibody had no effect (Figure 4A). These results were
confirmed by DNA laddering assay (data not shown).
Among the most abundant glucose-modified proteins

detectable in the plasma of diabetic individuals are CML
proteins [21], which are typically present at 1.6 to 2.3 lM
concentrations in the plasma and urine of diabetic individ-
uals [22,23]. To use physiologically relevant CML proteins in
our in vitro experiments, we prepared CMLmin-BSA,
characterized by glycation of approximately 30% of lysine
residues [21]. When applied to HK-2 PTECs at concentrations
ranging from 0.5 to 10 lM, CMLmin-BSA increased apoptosis
rates significantly (Figure 4B). The proapoptotic effect of
CMLmin-BSA was blocked by CD36 neutralizing antibody,
but not by control IgG (Figure 4B).
CD36 has been shown to transport fatty acids in adipocytes

[24] and in muscle cells [25]. Concentrations of FFAs may be
substantially elevated, to levels of up to 700 lM, in individuals
with type 2 diabetes or obesity [26]. Thus, we examined the
effects of saturated FFA PA and monounsaturated FFA oleate
on apoptosis of HK-2 PTECs in the absence or presence of
anti-CD36 neutralizing antibody. PA significantly increased
rates of apoptotic nuclei in a concentration-dependent
manner in HK-2 PTECs (Figure 4C). Anti-CD36 neutralizing
antibody, but not control IgG, blocked PA-induced apoptosis
(Figure 4C). In contrast, oleate did not induce apoptosis, even
at concentrations as high as 300 lM (Figure 4C), neither did it
prevent PA-induced apoptosis (data not shown). Of note,
these experiments were performed using a total fatty acid:-
BSA ratio of 6.6:1, in order to closely model pathophysiologic
states in which unbound FFA concentration is high [27].
Taken together, our findings demonstrate that pathophysio-
logically relevant species of AGE-BSA and CML-BSA, as well
as saturated FFA PA, induce apoptosis in human PTECs at
concentrations previously observed in plasma and/or urine in
humans with diabetes.

AGE-BSA and PA Sequentially Activate src kinase, Proa-
poptotic p38 MAPK, and Caspase 3 through CD36
Receptor
CD36 has previously been shown to trigger the activation of

p59fyn, p38 MAPK, and caspase 3 (GeneID: 836) in response
to thrombospondin in endothelial cells [8]. Therefore we
examined phospho-src, phospho-p38 levels and caspase 3
activation in HK-2 PTECs treated with AGE-BSA and PA in
the absence or presence of anti-CD36 neutralizing antibody.
Both AGE-BSA5 and PA increased phospho-src levels rapidly

Figure 4. AGE-BSA, CML-BSA, and FFA PA Induce Apoptosis in Human

PTECs through CD36 Signaling

Bar graphs show mean6 SEM of apoptotic nuclei, visualized by DAPI
staining and normalized to 100 total cells, in human HK-2 PTECs.
Data are derived from three independent repeat experiments.
Numbers on top of bars indicate significant p-values of experimental
groups relative to control, or as indicated by bracket.
(A) Cells were treated for 48 h with control BSA (40 lM), TSP-1 (1 lg/
ml), and AGE-BSA modified for 2, 5, or 10 weeks (AGE-BSA2, AGE-
BSA5, and AGE-BSA10, respectively) in the absence or presence of
control IgG (10 lg/ml) or anti-CD36 neutralizing antibody (10 lg/ml),
as indicated.

(B) Cells were treated with control BSA (40 lM), or CMLmin-BSA at
0.5, 1, 2, 5, and 10 lM, in the absence or presence of anti-CD36
neutralizing antibody, as indicated.
(C) Cells were treated with monounsaturated FFA oleic acid (OA) or
PA at increasing concentrations, in the absence or presence of
control IgG (10 lg/ml) or anti-CD36 neutralizing antibody (10 lg/ml),
as indicated.
DOI: 10.1371/journal.pmed.0020045.g004
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(after as little as 5 min), and over a prolonged time interval
(up to 3 h) (Figure 5A and 5B). Phosphorylation of src kinase
was blocked by anti-CD36 neutralizing antibody (Figure 5A
and 5B). This observation is consistent with previous findings
demonstrating direct interaction between CD36 and p59fyn
[8]; however, the involvement of other src kinases cannot be
excluded. We also observed increased levels of phosphor-
ylation of p38 MAPK beginning 1 to 2 h after treatment, and
p38 activation was also completely blocked by anti-CD36
neutralizing antibody (Figure 5C and 5D). These findings
indicate that CD36 activates proapoptotic p38 MAPK
possibly via src kinase activation in human PTECs when
stimulated with AGE-BSA5 and PA. Chemical inhibition of
p38 MAPK prevented the increase in the rate of apoptotic
nuclei induced by both AGE-BSA5 and PA in HK-2 PTECs

(Figure 5G), indicating that p38 MAPK function is required
for apoptosis induced by AGE-BSA and PA through CD36
receptor. AGE-BSA and PA significantly increased activity of
effector caspase 3 in human PTECs (Figure 5E and 5F).
Caspase 3 activation was blocked by anti-CD36 neutralizing
antibody, but not by control IgG (Figure 5E and 5F). Pan-
caspase inhibitor z-VAD-fmk and the specific caspase 3
inhibitor z-DEVD-fmk prevented apoptosis induced by PA
and AGE-BSA, while the specific caspase 9 inhibitor z-LEHD-
fmk had no significant inhibitor effect (Figure 5G). Together
these findings indicate that CD36 receptor mediates sequen-
tial phosphorylation of src kinases and p38 MAPK, leading to
activation of caspase 3 and apoptosis in human PTECs
exposed to AGE-BSA and PA ligands. Interestingly, we did
not observe phosphorylation of Smad2 and p42/44 ERK

Figure 5. Activation of Intracellular Pathways following AGE-BSA and PA Treatment of Human HK-2 PTECs

(A and C) Immunoblots show levels of (A) phosphorylated (Y418) src kinase and tubulin or (C) phosphorylated p38 MAPK (pp38) and total p38
MAPK (p38) in HK-2 cells treated with AGE-BSA5 (40 lM) in the absence or presence of control IgG or anti-CD36 neutralizing antibody (10 lg/
ml) for different time periods, as indicated.
(B and D) As shown in (A) and (C), except HK-2 cells were treated with PA (150 lM) instead of AGE-BSA5.
(E and F) Bar graphs demonstrate mean 6 SEM of caspase 3 activity in three independent repeat experiments. Caspase 3 activity was measured
by quantitative ELISA in HK-2 cells after 18 h of stimulation with AGE-BSA5 and PA, as per manufacturer’s protocol. Numbers on top of bars
indicate significant p-values of experimental groups relative to control, or as indicated by brackets.
(G) Bar graphs demonstrate number of apoptotic nuclei of HK-2 cells, normalized to 100 total cells, treated with AGE-BSA5 (40 lM) or PA (150
lM) in the absence (black bars) or presence of pan-caspase inhibitor (z-VAD-fmk [100 lM]; open bars), caspase 3 inhibitor (z-DEVD-fmk [20 lM];
first striped bars), caspase 9 inhibitor (z-LEHD-fmk (20 lM); gray bars), or chemical inhibitors of p38 MAPK (SB203580 [10 lM]; second striped
bars). Mean 6 SEM of three independent repeat experiments is presented. Numbers on top of bars indicate the significant p-values for
comparison relative to control (no inhibitor).
DOI: 10.1371/journal.pmed.0020045.g005
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MAPK under these conditions, as previously reported for
AGE binding to the RAGE receptor [28].

CD36 Is Sufficient to Mediate Apoptosis Induced by AGE-
BSA and FFA

In contrast with CD36-positive human HK-2 PTECs, we
found that treatment of CD36-negative mouse MCT PTECs
with AGE-BSA had no effect on rates of apoptotic nuclei
(data not shown). To test whether CD36 was sufficient to
mediate AGE-BSA-induced apoptosis, we transfected CD36-
negative mouse MCT PTECs with a plasmid expressing
human CD36 or empty control vector, followed by treatment
with control BSA or AGE-BSA5. AGE-BSA5 treatment had no
significant effect on rates of apoptotic nuclei in MCT PTECs
transfected with control vector (Figure 6). In contrast, AGE-
BSA significantly increased apoptotic nuclei compared with
unglycated BSA in MCT PTECs transiently transfected with
CD36 expression vector (Figure 6). Nonglycated control
albumin did not cause apoptosis. Thus, transgenic de novo
expression of human CD36 in CD36-negative mouse PTECs
was sufficient to mediate apoptosis induced by AGE-BSA.

Discussion

Advanced diabetic nephropathies in humans with type 1 or
type 2 diabetes are uniformly characterized by TED, or
tubular atrophy, and IF leading to renal failure [29,30].
Although TED and IF are the strongest predictors for
progression of DNP [31], mechanisms that underlie TED in
DNP remain poorly understood. Based on our in vitro and in
vivo findings we propose a two-step metabolic hit model for
TED in DNP. High ambient glucose, but not AGE or FFA,
cause stimulation of CD36 expression in PTECs specifically in
diabetic kidneys. Increased CD36 expression mediates
sequential activation of src kinase, proapoptotic p38 MAPK,
and caspase 3 in PTECs in the presence of AGE and FFA PA,
resulting in PTEC apoptosis. Proximal tubular epithelial
apoptosis may be an initial mechanism for TED in DNP.

Our conclusions are supported by several key observations.
First, we identify a new functional role for CD36 as an
essential mediator of proximal tubular epithelial apoptosis,

inducible by AGE-BSA, CMLmin-BSA, and FFA PA. Previous
reports demonstrated a role for CD36 in mediating apoptosis
induced by TSP-1 in endothelial cells and ox-LDL in
macrophages [8,14]. In the present study, we show for the
first time, to our knowledge, that CD36 mediates apoptosis in
differentiated epithelial cells that are exposed to AGE-BSA-,
CMLmin-BSA-, and FFA-induced metabolic injury character-
istic of the diabetic milieu. Interestingly, AGE albumins and
CML are present in the urine of individuals with diabetes
with albuminuria due to DNP and have been shown to bind
proximal tubular epithelium [22,32]. While the presence or
absence of FFAs in the urine of diabetics with DNP has not
been determined to date, FFAs may cause tubular apoptosis
[33]. It remains to be determined whether FFA interacts with
CD36 to activate CD36 receptor signaling, or whether CD36
mediates FFA uptake to activate src kinase and p38 MAPK
signaling. Irrespective of the upstream mechanism of FFA
and CD36 interaction, our results demonstrate very rapid
activation of a well-characterized intracellular kinase cascade
of proapoptotic signaling. Our finding that AGE-BSA and PA
induce apoptosis through a CD36-mediated and p38- and
caspase-dependent mechanism in tubular epithelial cells,
similar to TSP-1 and ox-LDL in endothelial cells and
macrophages, respectively, suggests that multiple, context-
dependent extracellular stimuli of apoptosis may converge on
CD36 scavenger receptor to activate src kinase and proa-
poptotic p38 MAPK pathway. In the context of the diabetic
milieu and diabetic complications, our findings provide new
molecular insights into diabetes-induced AGE- and FFA-
dependent injury of renal epithelial cells.
Almost all TUNEL-positive apoptotic tubular epithelial

cells showed increased expression of CD36, suggesting a
strong correlation between upregulation of CD36 expression
and increased apoptosis in PTECs specifically in human
diabetic kidney in vivo. Importantly, biopsy samples from
cases of FSGS that were matched for degree of proteinuria,
renal function, and hypertension were characterized by TED,
IF, and increased tubular epithelial apoptosis; however,
proximal tubular CD36 expression was similar to that in
normal human control kidney. Therefore, CD36 expression

Figure 6. Expression of CD36 Transgene Confers Susceptibility to AGE-BSA-Induced Apoptosis

(A–D) Representative images show DAPI (A and C) and FITC (B and D) labeling of CD36-negative MCT cells treated with 40 lMAGE-BSA5 for 24
h after co-transfection with green fluorescent protein plasmid pEGFP and pcDNA3.1 empty control vector (A and B), or pEGFP and CD36
expression plasmid pcDNA3.1/CD36 (C and D).
(E) The dot plot shows results of four independent experiments where apoptotic nuclei per 100 total cells were quantitated in transfected cell
cultures with or without treatments as indicated.
DOI: 10.1371/journal.pmed.0020045.g006
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in PTECs is specifically associated with the diabetic condition
and appears to be independent of degree of proteinuria and
renal failure. Indeed, increased CD36 expression in PTECs in
human DNP in vivo may be caused by hyperglycemia, as we
show that high glucose concentration stimulates CD36
expression in vitro. It is intriguing that CD36 expression
was not detected in PTECs in diabetic mice with longstanding
hyperglycemia in vivo, although underlying mechanisms for
the species-dependent differential regulation of CD36 in
PTECs in vivo and in vitro between mouse and human remain
unclear at this time. Comparisons of human CD36 and mouse
Cd36 genes indicate a high degree of sequence and structural
similarity in both coding and regulatory regions, suggesting
that the mechanism or mechanisms that underlie our findings
are likely determined by sequence-independent, epigeneti-
cally distinct response patterns to the diabetic milieu that
differ between these species. It is also possible that dietary or
metabolic factors account for the differences in CD36
expression, as mice were maintained on standard mouse
chow characterized by significantly lower fat and cholesterol
contents than typical western diets consumed by humans.
However, dietary or other unknown environmental factors
cannot explain the differential CD36 regulation by glucose in
human and mouse PTECs. Thus, we are exploring whether
biochemical or functional differences between mouse and
human PTECs in glucose metabolism or glucose-induced
signaling can be identified. However, current lack of under-
standing of the observed differential regulation between
human and mouse does not diminish the translational
research significance of our findings, with their clear
therapeutic implications. Thus, the present study identifies
a new CD36-dependent molecular signaling pathway that
mediates tubular epithelial apoptosis, and may underlie TED
and IF, hallmarks of disease progression, specifically in
human diabetic nephropathy.

Third, to our knowledge, our report provides the first
controlled study demonstrating increased apoptosis specifi-
cally in PTECs in DNP with TED and IF. These findings are
consistent with a recent uncontrolled case series of five
patients with DNP [34], and with previous reports demon-
strating tubular apoptosis in kidneys of STZ-treated diabetic
rats [35,36]. Interestingly, our study shows that tubular
epithelial apoptosis was associated with TED and IF in
human DNP, while normal appearance of tubular epithelium
and interstitium was associated with baseline apoptosis rates
in diabetic mouse models. Together, published observations
from experimental diabetes models in mouse and rat, and
human DNP, and our own findings in diabetic mouse models
and human DNP, suggest a striking association of TED and
tubular epithelial apoptosis. However, whether tubular
epithelial apoptosis causes TED in DNP will require further
investigation. Interestingly, acute and chronic chemical
inhibition of caspase activity in a nephrotoxic serum
nephritis model of chronic progressive glomerulonephritis
with TED and IF reduced tubular apoptosis and TED [37].
Decreased tubular apoptosis and TED were associated with
significantly reduced IF and decreased collagen synthesis in
this model. This finding suggests that tubular epithelial
apoptosis may trigger TED and IF in this model of chronic
glomerulonephritis in rat, and supports our conclusions that
diabetes-induced tubular epithelial apoptosis may underlie
TED associated with IF in human DNP.

In conclusion, we report a new functional role for CD36
scavenger receptor in tubular epithelial apoptosis associated
with tubular degeneration and progression of DNP. Specif-
ically, we show for the first time that both AGE and FFA PA
induce PTEC apoptosis through CD36-mediated activation of
src kinase, p38 MAPK, and caspase 3. Because high glucose
stimulates CD36 expression in human PTECs and because
CD36 expression is increased in apoptotic tubular epithelial
cells in human DNP, we propose a two-step metabolic hit
model relevant for TED, a hallmark of progression of human
DNP.

Supporting Information

Figure S1. Glucose Regulates CD36 Expression in Tubular Cells

Flow cytometric analysis of (A) human (HK-2) and (B) murine (M1)
tubular epithelial cells incubated with control IgG (green curve) or
with anti-CD36 antibody (FA6) (black curve) in medium containing 5
mM glucose (empty curve) or in medium containing 30 mM glucose
(red curve) for 3 d.

Found at DOI: 10.1371/journal.pmed.0020045.sg001 (45 KB PPT).
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ERK MAPK (GeneID: 50689), p59fyn (GeneID: 2534), and Smad2
(GeneID: 4087).
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Patient Summary

Background The kidneys are often affected in people with diabetes.
Around one in three people with type 1 (juvenile, or insulin-dependent)
and one in ten people with type 2 (late onset, or non-insulin-dependent)
diabetes will develop kidney disease (called diabetic nephropathy).
Diabetic nephropathy is one of the leading complications of diabetes
and is the leading cause of kidney failure worldwide. Some risk factors
make it more likely that certain people with diabetes will develop kidney
disease—for example, kidney disease occurs more often in patients from
South Asian or African backgrounds, in men, in patients with poor
control of their blood sugar levels, and in those with high blood pressure
or who smoke. However, the details of how, exactly, diabetes damages
the kidneys are not clear.

What Did the Investigators Do? They studied samples taken from the
kidneys of humans and mice with and without diabetes and looked at
the effects of high glucose concentrations on the cells in the kidneys.
They found that in one part of the human kidneys high glucose caused a
change in the cell surface causing an increase in a protein called CD36.
This change occurred in the samples from people with diabetes, but did
not occur in the samples from mice with diabetes. The investigators also
found that some substances that are often found in the blood of people
with diabetes could join to CD36; in doing so, these substances triggered
the death of these cells, which is one of the first steps that occurs in
diabetic nephropathy.

What Do These Findings Mean? This particular protein (CD36) could
have a central role in triggering diabetic nephropathy. Although there
are no immediate clinical implications of this research for the treatment
of people with kidney problems, this research helps in understanding
how high glucose damages the kidney. In particular, it highlights how
important it is to keep blood glucose levels as normal as possible.

Where Can I Get More Information?
Medline Plus’s article on diabetic nephropathy: http://www.nlm.nih.gov/
medlineplus/ency/article/000494.htm
Diabetes UK’s online information centre: http://www.diabetes.org.uk/
infocentre/index.html
National Diabetes Information Clearinghouse: http://diabetes.niddk.
nih.gov/
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Animal Models of Diabetic Complications Consortium (AMDCC): http://
www.amdcc.org/
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