
S1 Appendix. Path Model
As shown below, a path model enables the relationship between cell production rate

and genome size to be inferred by fitting regressions for log CS on log GS, and log LER
on log GS. The general approach is described as a model with two “mediators” in
Mackinnon [84]. We took a computational Bayesian approach to fitting the path model
after early experiments with likelihood-based methods indicated numerical instabilities.

In detail, the first of the regression models is, for cell c of seedling s:

log(CS)s,c = MCS,s + ZCS,s + �GS ⇤ log(GSs) + ECS,s,c (6)

where MCS,s is a random intercept for the maternal parent of seedling s, ZCS,s is a
random intercept for seedling s, and ECS,s,c is a cell-level error term. Inclusion of an
overall mean, µ, in the regression equation along with the random intercepts led to
numerical instabilities apparently related to poor model identification. In effect, the
random intercepts– when properly parameterized– take the place of an overall mean.
We found that informative priors for MCS,s and ZCS,s were necessary: for the final
model we used Gaussian priors with mean log(0.003) and standard deviations �MCS and
�ZCS , respectively. This prior mean is the natural logarithm of a typical stomatal cell
size, 0.003cm. We expect one of the two random intercepts to assume a greater role in
capturing the overall mean. Centering both priors at log(0.003) reflects our indifference
to the outcome of this contest. The prior for ECS,s,c is Gaussian with mean zero and
standard deviation �ECS . The coefficient �GS has a Gaussian prior with mean zero and
standard deviation 5.0. We used half-Cauchy priors for the standard deviations �ECS ,
�MCS and �ZCS .

The second of two regression models– for log LER on log GS– is derived from a
model reflecting primary observations of leaf length (LL) on successive days of seedling
growth. The observation-level model for seedling s at time t is:

log(LL)s,t = MLL,s+ZLL,s+ ⌧GS ⇤ log(GSs)+(MLER,s+ZLER,s)⇤ log t+ELL,s,t (7)

where MLL,s and ZLL,s are respectively maternal and seedling random intercepts,
MLER,s and ZLER,s are maternal and seedling random slopes and ELL,s,t is an error
term. The random slopes MLER,s and ZLER,s allow for idiosyncratic growth rates.
Natural logarithms on the right- and left-hand sides imply power-law relationships
between leaf length, time and genome size in their original units of measurement. As in
model 6, informative priors were necessary for model identification. The final model has
Gaussian priors with mean log(4.8) and standard deviations �MLL and �ZLL for MLL,s

and ZLL,s, respectively. This prior mean is the natural logarithm of a typical leaf
elongation rate, 4.8cm– the increment of leaf length that could be expected after a day’s
growth (t = 1). The priors for MLER,s and ZLER,s are Gamma with shape and rate
both equal to 1.0 (i.e. with mean 1.0, reflecting linear growth). As for model 6, the
prior for ELL,s,t is Gaussian with mean zero and standard deviation �ELL , the
coefficient ⌧GS has a Gaussian prior with mean zero and standard deviation 5.0, and
�MLL , �ZLL and �ELL have half-Cauchy priors.

The model for leaf elongation rate is subsequently obtained by differentiation of
LLs,t with respect to time:

log(LER)s,t = log(
d

dt

LLs,t) = MLL,s + ZLL,s + ⌧GS ⇤ log(GSs)

+ (MLER,s + ZLER,s � 1) ⇤ log t+ log(MLER,s + ZLER,s) + ELL,s,t. (8)

Equations 6 and 8 are placed in context by use of the path diagrams in S2 Fig.
Equation 6 is the sub-model connecting log CS to log GS in the left-hand diagram,
while equation 8 is a marginal model connecting log LER to log GS, illustrated by the
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right-hand diagram. The two path diagrams imply two expressions for the same
quantity, log LER, which can be equated to produce an estimate of �GS . The derivation
is simplified by taking expected values of the random effects in 6 and 8, and fixing the
time horizon at a single day, though the numerical estimates we report come from 6 and
8 in full detail, as displayed above. Subsequently we define

E[MCS,s + ZCS,s + ECS,s,c] = �0,

E[MLL,s + ZLL,s + log(MLER,s + ZLER,s) + ELL,s,t] = ⌧0,

and set t = 1 in equation 8. Equations 6 and 8 then simplify as

log(CS) = �0 + �GS ⇤ log(GS) (9)

log(LER) = ⌧0 + ⌧GS ⇤ log(GS) (10)

respectively. These are joined by a similar equation for the unobserved variable:

log(CP ) = �0 + �GS ⇤ log(GS). (11)

Working from the relationship LER = CS ⇤ CP , or alternatively from log LER
backward to its precedents in the left-hand path diagram, we find:

log(LER) = log(CS) + log(CP ) (12)

= �0 + �GS ⇤ log(GS) + �0 + �GS ⇤ log(GS), (13)

substituting right-hand sides of 9 and 11. Equating expressions 13 and 10 and collecting
terms, the coefficient �GS is recovered as �GS = ⌧GS � �GS .

PLOS 21/35


