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Description of the exome sequencing data for simulation studies 

We downloaded exome sequencing data of eight HapMap individuals that represented 

three populations (Europe, Asia and Africa) and derived a set of nonsynonymous SNVs for 

each individual (Supplementary Table 1). We checked overlaps of these sets of SNVs 

(Supplementary Table 2). Briefly, there are a total of 23,811 SNVs existing in at least one 

exome, and 21,947 of them can be mapped to either dbNSFP or the genomic data sources. 

Among the 21,947 SNVs, 10,739 (48.93%) are uniquely mapped to only one exome, 3,266 

(14.88%) mapped to two exomes, and only a small number of 1,563 (7.12%) SNVs shared by 

all the eight exomes. We then calculated their pairwise Jaccard coefficients (Supplementary 

Table 3) and found that small Jaccard coefficients (< 0.5) were achieved between every two 

sets of SNVs, indicating that the SNVs derived from the eight exomes were significantly 

different from each other. 

Statistical significance of candidate SNVs in validation experiments 

We analyzed the statistical significance of candidate SNVs in validation experiments for 

diseases with partly known genetic bases (Supplementary Figure 1, A and B). When 

compared with the neutral control set, the median q-values of the test and control SNVs are 

6.70×10-7 and 0.8921, respectively. When compared with the disease control set, the median 

q-values of the test and control SNVs are 3.00×10-8 and 1.50×10-3, respectively. When 

compared with the combined control set, the median q-values of the test and control SNVs are 

6.00×10-8 and 0.0291, respectively. These results indicate that the q-values of test SNVs are 

typically much smaller than those of control ones. Hence, when ranking a test SNV against 

control ones according to their q-values, the test SNV is likely to be ranked among top 

positions. 

We also analyzed the statistical significance of candidate SNVs in validation 

experiments for diseases of unknown genetic bases (Supplementary Figure 1, C and D). When 

compared with the neutral control set, the median q-values of the test and control SNVs are 

2.51×10-3 and 0.9998, respectively. When compared with the disease control set, the median 

q-values of the test and control SNVs are 1.06×10-4 and 0.0295, respectively. When compared 

with the combined control set, the median q-values of the test and control SNVs are 1.93×10-4 

and 0.2515, respectively. These results also indicate that the q-values of test SNVs are 

typically much smaller than those of control ones. 

We notice that median q-values of test SNVs for diseases with partly known genetic 

bases are typically smaller than those for diseases with unknown genetic bases 
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(Supplementary Figure 1, A versus C). This is understandable since seed genes selected for 

the later, as a collection of genes known as associated with 10 diseases of the highest 

phenotype similarities to the query disease, might not be as reliable as those for the former. 

Effects of the number of seed genes and the number of neighbouring 

diseases 

The number of known disease-causing genes is quite different for different diseases 

whose genetic bases are partly known. On this scenario, we assessed whether the number of 

seed genes affect the prediction power of SPRING in detecting causative SNVs. We divided 

the 113 diseases annotated as associated with at least two genes into four groups: the first 

group contained 71 diseases with 2 seed genes; the second group contained 20 diseases with 3 

seed genes; the third group contained 11 diseases with 4 seed genes; the fourth group included 

11 diseases with the number of seed genes ranging from 5 to 12. We then repeated the 

validation experiment for each group. Results, as summarized in Supplementary Figure 2, 

demonstrate that the number of known disease-causing genes has little influence on the 

effectiveness of SPRING for partly known disease detection, since both the MRRs and the 

AUCs only show reasonable fluctuation among these groups. 

In the detection of causative SNVs for query diseases whose genetic bases were 

unknown, we selected seed genes for a query disease as genes annotated as associated with 10 

diseases of the highest phenotype similarities with the query disease. We then assessed how 

the number of such neighboring diseases affected the prediction power of our method by 

evaluating the performance of SPRING for all the 1,436 diseases with seed genes selected as 

those associated with 2, 4, 6, 8, 10, 12, and 15 diseases of the highest phenotype similarities 

with the query disease. Results, as shown in Supplementary Figure 3, illustrate the robustness 

of our method to the number of neighboring diseases. Briefly, when the number of 

neighboring diseases is smaller than or equal to 6, the performance of our method exhibits 

improvement with the increase of the neighbouring diseases. When the number of 

neighboring diseases is greater than or equal to 8, the performance of our method is quite 

stable, only showing slight fluctuations with different numbers of neighbouring diseases. 

We further explored the reason behind the above observations. Typically, diseases share 

common causative genes have high phenotype similarity (Wu et al. 2009). Therefore, as the 

number of neighboring diseases increases, genes causative for a query disease will likely be 

included in the seed genes for the disease, and hence the performance of our method show 

improvements. On the opposite side, when the number of neighboring disease is too large, 
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some redundant, useless or even wrong information about seed genes may be included, and 

thus the performance of our method on some diseases decreases, preventing further 

improvement of the overall performance. Moreover, it is obvious that the computational 

burden will increase as the number of neighboring disease increases. Therefore, to achieve a 

reasonable balance between the effectiveness and efficiency of our method, we select 10 

neighboring diseases by default. 

Functional effect scores of rare SNVs 

We compared distributions of functional effect scores for these rare SNVs against those 

for the same number of SNVs selected at random from one of the eight HapMap individuals. 

Results show that the rare SNVs are typically assigned more extreme functional effect scores 

than SNVs occurring in a normal individual (Supplementary Figure 4). Since the sequence 

conservation property has been used in the derivation of the functional effect scores, we 

conjecture that the effectiveness of our method in this validation experiment can be partly 

attributed to the rarity of such rare mutations in a random human. 

Distributions of association scores for neutral and disease controls 

For each of the 1,436 diseases in the validation experiments for diseases of unknown 

genetic bases, we calculated association scores for neutral and disease controls for each of the 

five genomic data sources. We then selected for each data source 100,000 scores at random 

from the resulting scores to draw distributions of association scores for neutral and disease 

controls. Results show that the distributions for these two groups of variants are not 

significantly different (Supplementary Figure 5). This observation helps to explain the reason 

why an association data source exhibits comparable effectiveness in distinguishing 

disease-causing SNVs from neutral, disease, and combined controls. 

Selection of data sources for individual diseases 

We calculated the pairwise Pearson’s correlation coefficient of the data sources. Results 

show that the data sources are correlated (Supplementary Figure 6). We further adopted a 

sequential backward selection (SBS) strategy, a greedy algorithm, to select a subset of data 

sources for each of the 1,436 diseases. Briefly, for a certain disease, we started from a set 

including all data sources, repeatedly removed the data source of the least importance with 

respect to the remaining data sources until the smallest MRR was achieved, and obtained a 

subset of selected data sources as the retained ones. The results are summarized in 

Supplementary Table 4. 
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First, we observe that the coverage of functional effect data sources for different diseases 

is almost the same. For association data sources, the coverage of pathway and domain data is 

lower than that of PPI, whose coverage is in turn lower than that of GO and sequence data. 

Moreover, two-sided Fisher’s exact tests with multiple testing corrections do not support the 

existence of biases on the presences of individual data sources in Mendelian and complex 

diseases. A similar statistical comparison also suggests that the presences of individual data 

sources in immune and neurological disorders are not significantly different. 

Second, we notice that GO, PPI, and pathway data are selected by more than 70% 

diseases (with the consideration of the presence of a data source before the selection 

procedure), while all the other data sources are selected by about half of the diseases, 

suggesting all data sources are important to our method. For Mendelian diseases, the pattern 

of selection is similar to those for all diseases. For complex diseases, PPI and pathway data 

are selected by a larger proportion of diseases, suggesting these data may play more important 

roles for these diseases. However, two-sided Fisher’s exact tests with multiple testing 

corrections do not support the existence of significant difference between Mendelian and 

complex diseases in the selection of individual data sources. A similar statistical comparison 

also suggests that the selection of individual data sources is not significantly different 

between immune diseases and neurological disorders. 

Third, we notice that the selection procedure is helpful in improving the performance of 

our method. For example, using only selected data sources, the average MRR for all the 1,436 

diseases improves from 0.1265 to 0.0791, and the average AUC increases from 0.8735 to 

0.9209 (Table S2). 

Finally, we notice that the selected subsets of data sources are preferred by quite 

different numbers of diseases (Table S2). There are a total of 308 distinct subsets of data 

sources selected by the 1,436 diseases. Among these subsets, 273 diseases favor the use of all 

the 11 data sources, 175 diseases preferring all but the pathway information, and 82 diseases 

preferring all but the domain information. The total number of diseases preferring the most 

selected 21 subsets is 911, while the rest 287 subsets are only selected by 525 diseases. When 

looking deeply at the improvement in the performance of our method with respect to the 

number of selected data sources (Supplementary Figure 7), we notice that our method is more 

effective for diseases preferring more data sources, since the performance of our method for a 

total of 627 (43.66%) diseases that prefer 6 or more data sources is typically higher than that 

of 809 (56.34%) diseases that prefer 5 or less data sources. For diseases preferring more data 
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sources, the improvement after selection is marginal. For diseases favoring less data sources, 

the performance does exhibit significant improvement with the selection procedure. 

Nevertheless, such diseases exhibit quite different preferences. For example, there are a total 

of 275 distinct subsets of data sources selected by diseases that prefer 5 or less data sources, 

and on average each subset is only selected by 809/275  2.94 diseases (Table S2).  

From these results, we make the following conclusions. First, the procedure of selecting 

of a subset of data sources can improve the performance of our approach, especially for more 

than half diseases that prefer less data sources. Second, the selection procedure should be 

done for individual diseases, since different diseases show different preferences on the 

selected data sources and such preferences are diverse. Third, considering that the selection 

procedure has marginal effects on about 43.66% diseases in our experiment, and for the rest 

of 56.34% diseases the preference is diverse, we suggest either seeking for the simplicity to 

use all data sources without selection or resorting to a cross-validation experiment to select a 

subset of data sources for a query disease when there is no strong prior knowledge indicating 

the preference of the disease to the data sources. In this paper, we use all data sources without 

selection by default unless otherwise stated. 

Estimation of the false positive rate and true positive rate 

To estimate the false positive rate (FPR) and the true positive rate (TPR) at a given 

q-value cut-off, we generated at random 12 sets of SNVs, each composed of 10,000 SNVs. In 

each set, the proportion of disease SNVs ranges from 0% to 100% separately. We then 

calculated q-values for SNVs in every set, estimated the false positive rate as the proportion 

of neutral SNVs whose q-values are less than or equal to the threshold and the true positive 

rate at a certain q-value threshold as the proportion of disease SNVs whose q-values are less 

than or equal to the threshold. The results of the false positive rates and the true positive rates 

at different q-value cut-offs are summarized in Supplementary Figure 8.  

When the SNV set contains equal number of neutral SNVs and disease SNVs, the 

estimated false positive rates at the q-value threshold 0.1, 0.05, 0.01 and 0.005 are 12.93%, 

9.37%, 4.23% and 3.08% respectively, and the estimated true positive rates are 93.56%, 

90.62%, 82.84% and 79.32% respectively. Compared with SIFT (Kumar et al. 2009) 

(FPR=20.0%, TPR=69.0%), PolyPhen2 (Adzhubei et al. 2010) (FPR=21.1%, TPR=77.3%), 

and MutationTaster (Schwarz et al. 2010) (FPR=14.5%, TPR=85.9%), our method clearly 

achieves significantly lower false positive rate and higher true positive rate than these 
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methods in the prediction of causative SNVs. When the SNV set contains a small fraction of 

disease SNVs, say 5%, the estimated false positive rates at the q-value threshold 0.1, 0.05, 

0.01 and 0.005 are 6.38%, 4.08%, 1.69% and 0.56% respectively, and the estimated true 

positive rates are 86.28%, 82.08%, 72.42% and 68.46% respectively. When the SNV set 

contains no disease SNVs, the estimated false positive rates at the q-value threshold 0.1, 0.05, 

0.01 and 0.005 are 4.18%, 2.43%, 0.71% and 0.48% respectively. 

Detection of causative nonsynonymous de novo mutations for autism, 

epileptic encephalopathies and intellectual disability 

Recent studies based on whole-exome sequencing have shown that highly disruptive 

nonsense and splice site de novo mutations in brain-expressed genes exhibit strong 

associations with autism, revealing potential large impacts of de novo mutations on the 

pathogenesis of this disease (Iossifov et al. 2012; Neale et al. 2012; O'Roak et al. 2012; 

Sanders et al. 2012). Besides the application of our method to PMID 22495306 (Sanders et al. 

2012) as described in the main text, we further applied SPRING to three independent exome 

sequencing data sets for autism, including PMID 22495309 (O'Roak et al. 2012), PMID 

22495311 (Neale et al. 2012), and PMID 22542183 (Iossifov et al. 2012). 

PMID 22495309 

From the literature (O'Roak et al. 2012), we collected 160 unique candidate 

nonsynonymous de novo mutations from the exome sequencing data of 189 probands, and 

154 of these mutations can be mapped to the dbNSFP database. With the criterion that a seed 

gene should have been reported as associated with autism by independent studies before the 

publication of this data set, we selected from the OMIM database 34 seed genes and then 

applied SPRING to prioritize the candidate mutations (Table S3).  

In the literature (O'Roak et al. 2012), 41 mutations were reported as contributing to the 

risk of autism, based on functional damaging scores, functional evidence, or previous studies. 

SPRING successfully ranked 8 of these mutations among top 10 and 14 among top 20. At the 

q-value cut-off 0.01, 26 mutations were reported by SPRING, and 17 of them were claimed as 

risk contributing according to the literature (O'Roak et al. 2012). Using Fisher’s exact test, we 

estimated that the probability of ranking 8 or more mutations among top 10 by change was 

4.21×10-4, and that of ranking 14 or more mutations among top 20 by change was 1.55×10-5, 

both supporting the effectiveness of our method. We also adopted the one-sided Wilcoxon 
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rank sum test to check whether the q-values of the reported 41 disease-associated mutations 

were significantly less than those of the other candidate mutations (suppose irrelevant to 

autism) and obtained a p-value of 8.03×10-9.  

We noticed that CHD8 (Neale et al. 2012), NTNG1 (O'Roak et al. 2011), PTEN (Butler 

et al. 2005) and TBL1XR1 (Chung et al. 2011) had been previously annotated as causative for 

autism by independent studies and thus was included in seed genes in the above analysis. To 

simulate the scenario of identifying causative variants occurring in genes not yet studied, we 

removed CHD8, NTNG1, PTEN and TBL1XR1 from the seed genes and prioritized the 

candidate mutations again. We found that SPRING ranked 7 of the reported causative 

mutations among top 10 and 13 among top 20. Using Fisher’s exact test, we estimated that the 

probability of ranking 7 or more mutations among top 10 by change was 3.85×10-3, and that 

of ranking 13 or more mutations among top 20 by change was 1.22×10-4. The one-sided 

Wilcoxon rank sum test yielded a p-value of 1.10×10-7, suggesting the q-values of the 

reported 41 disease-associated mutations were significantly less than those of the other 

candidate mutations.  

PMID 22495311 

From the literature (Neale et al. 2012), we collected 111 unique candidate 

nonsynonymous de novo mutations from the exome sequencing data of 175 probands, and 

107 of these mutations can be mapped to the dbNSFP database. With the criterion that a seed 

gene should have been reported as associated with autism by independent studies before the 

publication of this data set, we selected the 34 seed genes identified previously and then 

applied SPRING to prioritize the candidate mutations (Table S3). 

In the literature (Neale et al. 2012), 5 mutations were reported as causative for autism, 

and none of them occurred in genes previously annotated as causative for this disease. 

SPRING ranked these mutations at 2, 3, 7, 10 (tie with 3 other mutations), and 52. At the 

q-value cut-off 0.01, SPRING reported 13 mutations, among which 4 were reported in the 

literature (Neale et al. 2012). Using Fisher’s exact test, we estimated that the probability of 

ranking 3 or more mutations among top 10 by change was 5.45×10-3, and that of ranking 4 or 

more mutations among top 20 by change was 4.11×10-3, both supporting the effectiveness of 

our method. We also adopted the one-sided Wilcoxon rank sum test to check whether the 

q-values of the reported 5 disease-associated mutations were significantly less than those of 

the other candidate mutations and obtained a p-value of 2.19×10-3.  
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PMID 22542183 

From the literature (Iossifov et al. 2012), we collected 1,528 unique candidate 

nonsynonymous de novo mutations from the exome sequencing data of 343 families, and all 

these mutations can be mapped to the dbNSFP database. With the criterion that a seed gene 

should have been reported as associated with autism by independent studies before the 

publication of this data set, we selected the 34 seed genes identified previously and then 

applied SPRING to prioritize the candidate mutations (Table S3). 

In the literature (Iossifov et al. 2012), 18 mutations were reported “likely gene 

disrupting” (LGD) in affected children and 116 were reported belonging to FMR1 targets. 

SPRING reported 4 such mutations among top 10 and 6 among top 20. At the q-value cut-off 

0.01, SPRING reported 43 mutations, among which 13 were reported either LGD or 

belonging to the FMR1 targets according to the literature (Iossifov et al. 2012). Using Fisher’s 

exact test, we estimated that the probability of ranking 4 or more mutations among top 10 by 

change was only 7.82×10-3, and that of ranking 6 or more mutations among top 20 by change 

was only 5.62×10-3, both supporting the effectiveness of our method. We also adopted the 

one-sided Wilcoxon rank sum test to check whether the q-values of the reported 134 

disease-associated mutations were significantly less than those of the other candidate 

mutations and obtained a p-value smaller than 2.2×10-16.  

We noticed that SCN2A (Weiss et al. 2003) had been previously annotated as causative 

for autism by an independent study and thus was included in seed genes in the above analysis. 

To simulate the scenario of identifying causative variants occurring in genes not yet studied, 

we removed SCN2A from the seed genes and prioritized the candidate mutations again. We 

found that SPRING ranked 4 of these mutations among top 10 and 8 among top 20. Using 

Fisher’s exact test, we estimated that the probability of ranking 4 or more mutations among 

top 10 by change was 7.82×10-3, and that of ranking 8 or more mutations among top 20 by 

change was 1.45×10-4. The one-sided Wilcoxon rank sum test yielded a p-value smaller than 

2.2×10-16, suggesting the q-values of the reported 134 disease-associated mutations were 

significantly less than those of the other candidate mutations. 

 

In a recent study (Allen et al. 2013), exome sequencing was successfully applied to the 

detection of causal genetic variants for epileptic encephalopathies, showing strong statistical 

evidence on the association of several de novo mutations with this group of complex diseases. 

We therefore applied SPRING to the analysis of exome sequencing data in this study (PMID 

23934111 (Allen et al. 2013)).  
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PMID 23934111 

From the literature (Allen et al. 2013), we collected 192 unique candidate 

nonsynonymous de novo mutations from the exome sequencing data of 264 probands and 

their parents, and all these mutations can be mapped to the dbNSFP database. With the 

criterion that a seed gene should have been reported as associated with epileptic 

encephalopathies by independent studies before the publication of this data set, we selected 

from the OMIM database a total of 15 seed genes and then applied SPRING to prioritize the 

candidate mutations (Table S3). 

In the literature (Allen et al. 2013), the authors discovered 30 likely functional de novo 

mutations. SPRING successfully ranked 10 of these mutations among top 10 and 17 among 

top 20. At the q-value cut-off 0.01, SPRING reported 18 mutations, among which 17 had been 

reported as likely functional (Allen et al. 2013). Using Fisher’s exact test, we estimated that 

the probability of ranking 10 or more mutations among top 10 by change was only 2.03×10-9, 

and that of ranking 17 or more mutations among top 20 by change was only 1.24×10-13, both 

strongly supporting the effectiveness of our method. We also adopted the one-sided Wilcoxon 

rank sum test to check whether the q-values of the reported 30 disease-associated mutations 

were significantly less than those of the other candidate mutations (suppose irrelevant to 

epileptic encephalopathies) and obtained a p-value of 1.19×10-11.  

We noticed that CDKL5 (Rosas-Vargas et al. 2008), KCNQ2 (Borgatti et al. 2004), 

SCN1A (Ohmori et al. 2002), SCN2A (Meisler and Kearney 2005), SCN8A (Veeramah et al. 

2012) and STXBP1 (Saitsu et al. 2011) had been previously annotated as causative for 

epileptic encephalopathies by an independent study and thus was included in seed genes in 

the above analysis. To simulate the scenario of identifying causative variants occurring in 

genes not yet studied, we removed CDKL5, KCNQ2, SCN1A, SCN2A, SCN8A and STXBP1 

from the seed genes and prioritized the candidate mutations again. We found that SPRING 

ranked 4 of these mutations among top 10 and 9 among top 20. Using Fisher’s exact test, we 

estimated that the probability of ranking 4 or more likely functional mutations among top 10 

by change was 5.20×10-2, and that of ranking 9 or more mutations among top 20 by change 

was 8.76×10-4. The one-sided Wilcoxon rank sum test yielded a p-value of 4.89×10-8, 

suggesting the q-values of the reported 30 disease-associated mutations were significantly less 

than those of the other candidate mutations. 



- 10 - 

We further extended the application of SPRING to the analysis of two independent data 

sets of intellectual disability (PMID 23033978 (Neale et al. 2012) and PMID 23020937 

(Iossifov et al. 2012)).  

PMID 23033978 

From the literature (Neale et al. 2012), we collected 78 unique candidate 

nonsynonymous de novo mutations from the exome sequencing data of 53 patients, and 77 of 

these mutations can be mapped to the dbNSFP database. Since there is no exact entry for 

intellectual disability in the OMIM database, we selected the 15 genes associated with 

epileptic encephalopathies as seeds (Table S3). 

In the literature (Neale et al. 2012), the authors discovered 16 risk contributing de novo 

mutations for intellectual disability. When looking at the ranking list produced by SPRING, 

we found that 3 mutations ranked among top 10 and 8 among top 20 were reported as 

associated with intellectual disability. At the q-value cut-off 0.1, SPRING reported 30 

mutations, among which 10 had been reported as associated with intellectual disability 

according to the literature (Neale et al. 2012). Using Fisher’s exact test, we estimated that the 

probability of ranking 3 or more mutations among top 10 by change was 0.34, and that of 

ranking 8 or more mutations among top 20 by change was 1.90×10-2. We also adopted the 

one-sided Wilcoxon rank sum test to check whether the q-values of the reported 16 risk 

contributing mutations were significantly less than those of the other candidate mutations and 

obtained a p-value of 3.02×10-2.  

We noticed that SCN2A (Meisler and Kearney 2005) had been previously annotated as 

causative for intellectual disability by an independent study and thus was included in seed 

genes in the above analysis. To simulate the scenario of identifying causative variants 

occurring in genes not yet studied, we removed SCN2A from the seed genes and prioritized 

the candidate mutations again. We found that SPRING ranked 4 of these mutations among top 

10 and 8 among top 20. Using Fisher’s exact test, we estimated that the probability of ranking 

4 or more mutations among top 10 by change was 0.12, and that of ranking 8 or more 

mutations among top 20 by change was 1.90×10-2. The one-sided Wilcoxon rank sum test 

yielded a p-value of 3.57×10-2, suggesting the q-values of the reported 16 disease-associated 

mutations were significantly less than those of the other candidate mutations.  
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PMID 23020937 

From the literature (Iossifov et al. 2012), we collected 131 unique candidate 

nonsynonymous de novo mutations from the exome sequencing data of 51 patients, and 126 

of these mutations can be mapped to the dbNSFP database. We also selected the 15 genes 

associated with epileptic encephalopathies as seeds (Table S3). 

In the literature (Iossifov et al. 2012), the authors discovered 17 possibly disease-causing 

mutations. When looking at the ranking list produced by SPRING, we found that 6 mutations 

ranked among top 10 and 7 among top 20 were reported as associated with intellectual 

disability. At the q-value cut-off 0.01, SPRING reported 5 mutations, and all of them were 

reported as disease-causing in the literature (Iossifov et al. 2012). Using Fisher’s exact test, 

we estimated that the probability of ranking 6 or more mutations among top 10 by change was 

3.79×10-4, and that of ranking 7 or more mutations among top 20 by change was 6.36×10-3, 

both supporting the effectiveness of our method. We also adopted the one-sided Wilcoxon 

rank sum test to check whether the q-values of the reported 17 disease-associated mutations 

were significantly less than those of the other candidate mutations and obtained a p-value of 

2.63×10-5.  

    We noticed that SCN2A (Meisler and Kearney 2005), SCN8A (Veeramah et al. 2012) 

and STXBP1 (Saitsu et al. 2011) had been previously annotated as causative for intellectual 

disability by an independent study and thus was included in seed genes in the above analysis. 

To simulate the scenario of identifying causative variants occurring in genes not yet studied, 

we removed SCN2A, SCN8A and STXBP1 from the seed genes and prioritized the candidate 

mutations again. We found that SPRING ranked 4 of these mutations among top 10 and 6 

among top 20. Using Fisher’s exact test, we estimated that the probability of ranking 4 or 

more mutations among top 10 by change was 2.92×10-2, and that of ranking 6 or more 

mutations among top 20 by change was 2.97×10-2. The one-sided Wilcoxon rank sum test 

yielded a p-value of 6.02×10-5, suggesting the q-values of the reported 17 disease-associated 

mutations were significantly less than those of the other candidate mutations. 

 

These results confirm the capability of SPRING in identifying causative nonsynonymous 

de novo mutations for complex diseases, not only in the case of finding novel causative 

variants occurring in known causative genes, but also in the situation of detecting causative 

variants occurring in genes not yet studied. 
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Supplementary Figures 

 

 

 

Supplementary Figure 1. Boxplots of q-values for (A) test SNVs for diseases with partly known 

genetic bases, (B) control SNVs for diseases with partly known genetic bases, (C) test SNVs for 

diseases of unknown genetic bases, and (D) control SNVs for diseases of unknown genetic bases. 
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Supplementary Figure 2. Effects of the number of seed genes. (A) MRRs when validating against the neutral control set. (B) MRRs when validating against 

the disease control set. (C) MRRs when validating against the combined control set. (D) AUCs when validating against the neutral control set. (E) AUCs 

when validating against the disease control set. (F) AUCs when validating against the combined control set. 
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Supplementary Figure 3. Effects of the number of neighbouring diseases. (A) MRRs when validating against the neutral control set. (B) MRRs when 

validating against the disease control set. (C) MRRs when validating against the combined control set. (D) AUCs when validating against the neutral control 

set. (E) AUCs when validating against the disease control set. (F) AUCs when validating against the combined control set. 
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Supplementary Figure 4. Boxplots of functional effect scores for the rare SNVs. GERP and PhyloP scores have been normalized to the interval of [0,1] by 

a linear transformation. 

 



- 17 - 

 
 

Supplementary Figure 5. Distributions of association scores of the neutral control set (blue) and the disease control set (red). (A) Association scores 

derived from GO. (B) Association scores derived from PPI. (C) Association scores derived from protein sequence. (D) Association scores derived from 

protein domain. (E) Association scores derived from pathway. 
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Supplementary Figure 6. Estimated correlations between the 11 data sources used in our studies. 
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Supplementary Figure 7. Boxplots of MRRs and AUCs before and after the selection of data 

sources. 
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Supplementary Figure 8. Estimated false positive rate (A) and true positive rate (B) under different q-value cut-offs. 
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Supplementary Tables 

 

Supplementary Table 1. Information of the eight HapMap individuals. 

 

Individual Population Mapped SNVs Mapped genes 

NA12156 Europe 6766 4145 

NA12878 Europe 6711 4160 

NA18555 Chinese 6691 4199 

NA18956 Japanese 6715 4212 

NA18507 Yoruba 8208 4838 

NA18517 Yoruba 8180 4831 

NA19129 Yoruba 8093 4833 

NA19240 Yoruba 8068 4876 

 

 

 



- 22 - 

Supplementary Table 2. Frequency of occurrence of SNVs in the eight exomes. Group: an SNV is 

classified into one of the 8 groups according to the number of individuals having the SNV. Number 

of SNVs in a group: The number of SNVs belonging to a group. Percentage: The number of SNVs 

in a group divided by 21,947. 

 

Group 1 2 3 4 5 6 7 8 Total 

Number of SNVs 10,739 3,266 1,874 1,436 1,074 1,044 951 1,563 21,947 

Percentage (%) 48.93 14.88 8.54 6.54 4.89 4.76 4.33 7.12 100 
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Supplementary Table 3. Jaccard coefficients of SNV sets derived from the eight HapMap 

individuals. 

 

 NA12156 NA12878 NA18555 NA18956 NA18507 NA18517 NA19129 NA19240 

NA12156 1 0.4333 0.386 0.3869 0.3147 0.3195 0.3197 0.3165 

NA12878 0.4333 1 0.3952 0.3972 0.3111 0.3121 0.3212 0.3174 

NA18555 0.386 0.3952 1 0.4671 0.3177 0.3188 0.3172 0.3198 

NA18956 0.3869 0.3972 0.4671 1 0.3231 0.3202 0.325 0.3223 

NA18507 0.3147 0.3111 0.3177 0.3231 1 0.3741 0.3776 0.3759 

NA18517 0.3195 0.3121 0.3188 0.3202 0.3741 1 0.3757 0.3791 

NA19129 0.3197 0.3212 0.3172 0.325 0.3776 0.3757 1 0.3814 

NA19240 0.3165 0.3174 0.3198 0.3223 0.3759 0.3791 0.3814 1 
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Supplementary Table 4. Data sources selected by the sequential backward selection (SBS) strategy. Original: the data source is present in how many diseases 

before the selection procedure. Selected: the data source is selected by how many diseases by the SBS strategy. Ratio: Selected / Original × 100%. 

 

Data source 
All diseases Mendelian diseases Complex diseases Immune diseases Neurological disorders 

Original Selected Ratio(%) Original Selected Ratio(%) Original Selected Ratio(%) Original Selected Ratio(%) Original Selected Ratio(%) 

SIFT 1434 828 57.74  1376 800 58.14  58 28 48.28  48 31 64.58  263 151 57.41  

PolyPhen2 1436 725 50.49  1378 703 51.02  58 22 37.93  48 28 58.33  263 130 49.43  

LRT 1429 850 59.48  1371 824 60.10  58 26 44.83  47 30 63.83  262 158 60.31  

MutationTaster 1431 723 50.52  1373 701 51.06  58 22 37.93  48 24 50.00  263 138 52.47  

GERP 1436 713 49.65  1378 691 50.15  58 22 37.93  48 24 50.00  263 133 50.57  

PhyloP 1436 710 49.44  1378 689 50.00  58 21 36.21  48 29 60.42  263 132 50.19  

GO 1417 1017 71.77  1360 975 71.69  57 42 73.68  48 30 62.50  260 189 72.69  

PPI 1274 933 73.23  1223 893 73.02  51 40 78.43  43 33 76.74  241 178 73.86  

Sequence 1432 709 49.51  1375 689 50.11  57 20 35.09  48 26 54.17  263 130 49.43  

Domains 1103 596 54.03  1067 580 54.36  36 16 44.44  36 21 58.33  191 109 57.07  

Pathways 865 619 71.56  824 587 71.24  41 32 78.05  36 28 77.78  170 124 72.94  

 


