Table S1: List of the 66 sequences containing a stop codon, with basal readthrough (B), gentamicin induced readthrough (G), increase factor between basal and induced readthrough (I) and the classified group in response-type.

Stop codon and its nucleotide context ${ }^{\text {a }}$																									
						-5	-4	3	-2 -1		Stop	+	+5	+6	+7	+8	+				$\text { Name }{ }^{\text {b }}$	B	$\mathrm{G}^{ \pm}$	1	ResponseType
A	G	A A	A	C	A	C	T	T	T T	T	G A	C	A	T	A	G	T	G	T	G	p53 213	0.47\%	2.79\%	6,0	1
C	G	C T	C	T	A	T	C	G	C G	T	A A	C	T	A	G	G	C	A	T	A	CF 122	0.52\%	1.71\%	3.3	1
C	T	C A	T	C	C	A	G	C	T T	T	G A	C	A	T	G	G	C	A	A	T	APC 360	0.20\%	1.58\%	7.8	1
G	C	C A	C A	A	C	T	G	A	G T	T	A G	C	T	G	C	A	C	T	G	T	beta 90	0.18\%	1.43\%	7.9	1
G	C	C A	G	A	G	A	G	A	A A	T	A G	C	T	A	C	A	G	A	C	A	DMD 931	0.36\%	0.94\%	2.6	1
A	A	A A	A	C	A	A	A	T	T T	T	G A	A	C	C	A	A	A	A	G	G	DMD 3381	0.11\%	0.93\%	8.3	1
T	T	C T	G	C	A	C	G	T	G C	T	G A	C	C	T	G	G	A	G	C	C	CMD 1549	0.11\%	0.82\%	7.5	1
T	C	A G	A	A	A	C	A	A	A T	T	G A	G	T	G	G	G	T	T	C	T	APC 1114	0.07\%	0.73\%	10.8	2
C	T	G G	C	C	C	C	T	C	C T	T	A G	C	A	T	C	T	T	A	T	C	p53 192	0.05\%	0.66\%	12.9	2
G	A	C C	G	A	C	A	A	G	G G	T	G A	T	T	T	G	A	C	A	G	A	DMD 2098	0.27\%	0.65\%	2.4	1
G	T	C A	C	C	A	C	C	A	C T	T	A G	C	C	A	T	C	A	C	T	A	DMD 673	0.11\%	0.57\%	5.2	1
T	A	T G	A	T	A	C	G	G	G A	T	G A	A	C	A	G	G	G	A	G	G	DMD 3190	0.18\%	0.57\%	3.2	1
G	A	G C	C	T	C	A	C	C	A C	T	A G	C	T	G	C	C	C	C	C	A	p53 298	0.07\%	0.52\%	7.6	2
A	G	C C	C A	A	T	T	T	C	C T	T	G A	C	A	G	C	A	T	T	T	G	DMD 319	0.06\%	0.53\%	8.8	2
T	T	T G	C	T	C	A	G	T	T T	T	G A	A	G	A	C	T	A	A	A	C	DMD 1967	0.07\%	0.40\%	5.8	3
A	C	C T	G	C	C	C	T	G	T G	T	A G	C	T	G	T	G	G	G	T	T	p53 144	0.09\%	0.39\%	4.9	3
A	G	C T	C	C	T	C	T	C	C C	T	A G	C	C	A	A	A	G	A	A	G	p53 317	0.04\%	0.37\%	9.5	2
A	C	T T	T	G	C	A	A	C	A G	T	G A	A	G	G	A	A	A	G	C	C	CF 282	0.12\%	0.35\%	3.0	3
G	T	T A	C	T	G	C	C	C	T G	T	G A	G	G	C	A	A	G	G	T	G	beta 15 TGA	0.09\%	0.34\%	3.8	3
G	A	T G	A	T	A	A	T	A	G G	T	G A	G	A	C	A	A	T	T	T	T	APC 811	0.04\%	0.34\%	8.9	2
A	T	C C	A	A	T	C	T	G	A T	T	A G	A	C	A	A	G	T	C	A	T	DMD 1417	0.05\%	0.33\%	7.0	3
T	T	C G	A	G	A	T	G	T	T C	T	G A	G	A	G	C	T	G	A	A	T	p53 342	0.06\%	0.32\%	5.5	3
G	C	T C	A	A	A	C	C	A	A G	T	G A	G	A	A	G	T	A	C	C	T	APC 1450	0.04\%	0.31\%	8.0	2
	A	G C	A	T	C	T	T	A	T C	T	G A	G	T	G	G	A	A	G	G	A	p53 196	0.04\%	0.31\%	6.9	3
C	C	T G	T	G	C	A	G	C	T G	T	G A	G	T	T	G	A	T	T	C	C	p53 146	0.06\%	0.30\%	4.8	3
G	T	G G	T	C	T	A	C	C	C T	T	G A	A	C	C	C	A	G	A	G	G	beta 37TGA	0.03\%	0.30\%	10.2	2
G	A	T A	T	G	G	A	A	A	A A	T	G A	G	C	A	C	A	G	C	G	A	APC 213	0.05\%	0.28\%	6.0	3
G	T	T A	C	T	G	C	C	C	T G	T	A G	G	G	C	A	A	G	G	T	G	beta 15 TAG	0.08\%	0.27\%	3.5	3
A	A	T A	T	A	G	T	T	C	T T	T	G A	G	A	A	G	G	T	G	G	A	CF 542	0.02\%	0.26\%	13.0	2
A	G	T A	T	T	C	C	G	T	T C	T	G A	G	G	T	T	G	C	A	T	C	CMD 3085	0.05\%	0.25\%	5.0	3
G	A	A G	T	T	G	G	T	G	G T	T	A G	G	C	C	C	T	G	G	G	C	beta 26	0.05\%	0.24\%	4.9	3
G	G	G A	G	C	A	C	T	A	A G	T	G A	G	C	A	C	T	G	C	C	C	p53 306	0.05\%	0.24\%	5.2	3
G	A	T A	G	C	C	C	T	G	G A	T	A A	A	C	C	A	T	G	C	C	A	APC 1429	0.08\%	0.23\%	2.8	3
A	G	G C	C	C	T	G	G	A	A C	T	G A	G	G	G	G	C	G	T	T	C	STOP LAM	0.05\%	0.23\%	5.0	3
G	A	T A	T	T	G	A	A	C	A A	T	A G	T	T	C	A	C	T	G	A	A	p53 53	0.04\%	0.23\%	5.3	3
C	G	A T	C	T	G	T	G	A	G C	T	G A	G	T	C	T	T	T	A	A	G	CF 1162	0.02\%	0.22\%	10.0	2
G	G	C T	G	T	G	T	T	C	C C	T	G A	A	A	C	T	G	C	A	A	T	CMD 967	0.04\%	0.22\%	5.8	3
T	T	G C	C	C	C	T	G	C	G C	T	A G	G	G	A	A	T	T	C	T	C	DMD 2264	0.05\%	0.21\%	4.3	3
C	C	T A	G	G	C	A	C	A	G G	T	G A	G	T	T	A	A	C	G	G	C	CMD 744	0.04\%	0.20\%	5.0	3
A	A	C G	T	G	C	T	G	G	T C	T	G A	G	T	G	C	T	G	G	C	C	beta 112	0.06\%	0.20\%	3.0	3
A	G	A A	C	T	G	T	G	A	C C	T	G A	G	A	A	G	A	C	T	T	C	CMD 1326	0.02\%	0.18\%	9.1	2
C	A	G T	C	T	T	T	G	T	G T	T	A A	G	A	A	G	A	T	G	A	C	APC 1131	0.01\%	0.18\%	16.3	2
C	T	G G	A	T	G	G	A	G	A A	T	A A	T	T	C	A	C	C	C	T	T	p53 327	0.03\%	0.15\%	5.9	3
G	T	G A	A	C	G	T	G	G	A T	T	A A	G	T	T	G	G	T	G	G	T	beta E22	0.03\%	0.14\%	4.6	3
	A	G A	G	G	T	T	C	T	T T	T	A G	T	C	C	T	T	T	G	G	G	beta 43	0.01\%	0.14\%	10.9	2
	A	A A	G	T	G	G	T	G	C T	T	A G	A	C	A	C	C	C	A	A	A	APC 1367	0.02\%	0.13\%	6.7	3
	A	A C	T	T	C	C	A	G	A A	T	A A	T	T	T	G	A	A	G	G	A	CMD 1240	0.02\%	0.12\%	6.6	3
C	A	G G	A	T	T	T	G	G	A A	T	A G	A	G	G	C	G	T	C	C	C	DMD 2522	0.02\%	0.12\%	6.7	3
A	T	G G	A	T	A	T	C	C	T G	T	A G	A	T	T	A	T	T	A	A	T	DMD 3149	0.04\%	0.12\%	3.0	3
A	A	C C	C	T	A	A	G	G	T G	T	A G	G	C	T	C	A	T	G	G	C	beta 61	0.03\%	0.12\%	4.4	3
G	A	T A	G	A	A	G	T	T	T G	T	A G	A	G	A	G	A	A	C	G	C	APC 853	0.02\%	0.12\%	5.4	3
T	A	C C	C	T	T	G	G	A	C C	T	A G	A	G	G	T	T	C	T	T	T	beta 39	0.03\%	0.11\%	4.2	3
C	A	A T	G	T	T	G	G	T	G C	T	A A	C	C	T	G	G	A	G	T	C	CMD 988	0.02\%	0.11\%	6.6	3
A	A	G A	A	G	A	A	G	A	A G	T	A G	A	A	G	C	A	A	C	C	C	STOP PLATI	0.03\%	0.10\%	3.0	3
G	C	A G	A	A	A	T	A	A	A A	T	A A	A	A	G	A	T	T	G	G	A	APC 1309	0.02\%	0.10\%	5.2	3
G	C	T A	C	A	G	A	T	A	T G	T	A A	T	T	G	A	C	A	A	A	G	DMD 1593	0.03\%	0.09\%	3.2	3
G	C	C C	T	G	T	G	G	G	G C	T	A G	G	T	G	A	A	C	G	T	G	beta 17	0.03\%	0.09\%	2.9	3
C	A	T C	G	T	A	G	T	A	A G	T	A G	A	G	A	C	A	C	A	A	G	APC 789	0.03\%	0.09\%	3.4	3
C	A	C T	T	T	G	G	C	A	A A	T	A A	T	T	C	A	C	C	C	C	A	beta 121	0.03\%	0.09\%	3.4	3
G	T	G G	T	C	T	A	C	C	C T	T	A G	A	C	C	C	A	G	A	G	G	beta 37 TAG	0.02\%	0.09\%	5.6	3
C	T	G C	T	G	C	T	G	C	T C	T	A A	C	C	T	T	G	G	A	C	C	beta 35	0.02\%	0.08\%	5.5	3
G	A	T C	A	C	A	T	G	T	G C	T	A A	C	A	G	G	T	C	T	A	T	DMD 1143	0.01\%	0.08\%	10.7	2
T	T	G A	A	A	G	A	G	C	A A	T	A A	A	A	T	G	G	C	T	T	C	MDX	0.02\%	0.06\%	3.6	3
A	C	A G	A	A	G	C	T	G	A A	T	A G	T	T	T	C	T	C	A	G	A	DMD 2125	0.04\%	0.06\%	1.6	3
A	C	C C	C	A	C	C	A	G	T G	T	A G	G	C	T	G	C	C	T	A	T	beta 127	0.02\%	0.05\%	3.1	3
G	A	A A	G	G	C	T	C	C	T A	T	A A	G	A	C	T	C	C	A	A	G	DMD 2726	0.01\%	0.04\%	5.9	3

${ }^{\mathrm{b}}$ Nonsense mutations are named by the gene or the disease related to and by their position (amino-acid). p53 mutations are involved in cancers; DMD and CMD mutations are involved in muscular dystrophies; CF mutations are involved in cystic fibrosis and beta mutations are involved in beta-thalassemia disease (see Materials et Methods for references).
${ }^{ \pm}$Nonsense mutations are classified according to their gentamicin induced readthrough level.

