Table S6: Selection models used in forward simulations.

Model	Type of selection	In Figure 2 ?	Neg. noncoding s^{a}	\% intronic sites selected	Stength of positive selection $(s)^{b}$	\% coding sites positively selected	\% windows positively selected $\left(p^{+}\right)^{\text {c }}$	$\begin{gathered} \% \text { windows with } \\ \text { negatively } \\ \text { selected introns } \\ \left(p^{-}\right)^{\mathrm{d}} \\ \hline \end{gathered}$
1	Neutral	Neutral	0	0\%	0	0\%	0\%	0\%
2	Neg. coding only	Neg. coding only	0	0\%	0	0\%	0\%	0\%
3	Pos. coding only ${ }^{\text {e }}$	No	0	0\%	3.00×10^{-3}	0.50\%	100\%	0\%
4	Pos. coding only ${ }^{\text {e }}$	No	0	0\%	6.25×10^{-3}	0.50\%	100\%	0\%
5	Neg \& pos. coding	No	0	0\%	3.00×10^{-3}	0.50\%	100\%	0\%
6	Neg \& pos. coding	First Orange	0	0\%	6.25×10^{-3}	0.10\%	100\%	0\%
7	Neg \& pos. coding	Second Orange	0	0\%	6.25×10^{-3}	0.50\%	100\%	0\%
8	Neg. \& pos. coding $\&$ neg. noncoding	No	7.5×10^{-5}	25\%	6.25×10^{-3}	0.10\%	100\%	100\%
9	Neg \& pos. coding \& neg. noncoding	First Green	7.5×10^{-5}	25\%	6.25×10^{-3}	0.50\%	100\%	100\%

Model	Type of selection	In Figure 2 ?	Neg. noncoding s^{a}	$\begin{aligned} & \% \text { intronic } \\ & \text { sites } \\ & \text { selected } \end{aligned}$	Stength of positive selection $(s)^{\mathrm{b}}$	\% coding sites positively selected	\% windows positively selected $\left(p^{+}\right)^{\text {c }}$	\% windows with negatively selected introns $\left(p^{-}\right)^{\mathrm{d}}$
10	Neg \& pos. coding $\&$ neg. noncoding ${ }^{f}$	Second Green	7.5×10^{-5}	25\%	3.00×10^{-3}	0.50\%	10\%	90\%
11	Neg \& pos. coding \& neg. noncoding ${ }^{\text {g }}$	No	0	0\%	3.00×10^{-3}	0.50\%	10\%	0\%
12	Neg \& pos. coding $\&$ neg. noncoding ${ }^{\mathrm{h}}$	No	7.5×10^{-5}	50\%	3.00×10^{-3}	0.50\%	10\%	90\%
13	Neg \& pos. coding \& neg. noncoding ${ }^{i}$	No	0	0\%	6.25×10^{-3}	0.50\%	5\%	0\%
14	Neg \& pos. coding \& neg. noncoding ${ }^{j}$	No	7.5×10^{-5}	50\%	6.25×10^{-3}	0.50\%	5\% ${ }^{\text {f }}$	95\%
15	Neg. coding \& noncoding	First blue	7.5×10^{-5}	25\%	0	0\%	0\%	100\%
16	Neg. coding \& noncoding	No	1.5×10^{-4}	25\%	0	0\%	0\%	100\%
17	Neg. coding \& noncoding	No	2.5×10^{-4}	25\%	0	0\%	0\%	100\%
18	Neg. coding \& noncoding	No	3.75×10^{-4}	25\%	0	0\%	0\%	100\%

Model	Type of selection	In Figure 2 ?	Neg. noncoding s^{a}	\% intronic sites selected	Stength of positive selection $(s)^{\mathrm{b}}$	\% coding sites positively selected	\% windows positively selected $\left(p^{+}\right)^{\text {c }}$	\% windows with negatively selected introns $\left(p^{-}\right)^{\mathrm{d}}$
19	Neg. coding \& noncoding	No	1.00×10^{-3}	25\%	0	0\%	0\%	100\%
20	Neg. coding \& noncoding	No	5.00×10^{-3}	25\%	0	0\%	0\%	100\%
21	Neg. coding \& noncoding	No	7.5×10^{-5}	40\%	0	0\%	0\%	100\%
22	Neg. coding \& noncoding	Second blue	7.5×10^{-5}	50\%	0	0\%	0\%	100\%
23	Neg. coding \& noncoding	No	7.5×10^{-5}	75\%	0	0\%	0\%	100\%
24	Neg. coding \& noncoding ${ }^{\mathrm{k}}$	No	7.5×10^{-5}	5\%	0	0\%	0\%	100\%
25	Neutral with biased gene conversion ${ }^{1}$	No	0	0\%	0	0\%	0\%	0\%
26	Neg. coding \& noncoding with biased gene conversion ${ }^{1}$	No	7.5×10^{-5}	25\%	0	0\%	0\%	100\%

[^0] coefficients for each positively selected nonsynonymous mutations were drawn from a gamma (shape=(mean*rate), rate=400000) distribution.
c. The fraction of the simulated windows where positively selected mutations were allowed to occur on the specified proportion of nonsynonymous mutations. Remaining windows did not include any positive selection.
d. The fraction of the windows where negative selection occurred on the specified proportion intronic mutations. Introns evolved neutrally in the remaining windows.
e. 0.5% of nonsynonymous mutations were positively selected and the remainder were neutral.
${ }^{\text {f. }}$ In 10% of the windows, 0.5% of nonsynonymous mutations were positively selected, and the remainder were negatively selected. In these windows, intronic mutations were neutral. In the remaining 90% of the windows, there was no positive selection, but 25% of intronic mutations were negatively selected.
g. In 10% of the windows, 0.5% of nonsynonymous mutations were positively selected, and the remainder were neutral. In these windows, intronic mutations were neutral. In the remaining 90% of the windows, all mutations were neutral.
${ }^{\text {h. }}$ In 10% of the windows, 0.5% of nonsynonymous mutations were positively selected, and the remainder were neutral. In these windows, intronic mutations were neutral. In the remaining 90% of the windows, there was no positive selection, but 50% of intronic mutations and all nonsynonymous mutations were negatively selected (where the selection coefficients for the nonsynonymous mutations were drawn from a gamma distribution).
i. In 5% of the windows, 0.5% of nonsynonymous mutations were positively selected, and the remainder were neutral. In these windows, intronic mutations were neutral. In the remaining 95% of the windows, all mutations were neutral.
${ }^{\text {j. }}$ In 5% of the windows, 0.5% of nonsynonymous mutations were positively selected, and the remainder were neutral. In these windows, intronic mutations were neutral. In the remaining 95% of the windows, there was no positive selection, but 50% of intronic mutations and all nonsynonymous mutations were negatively selected (where the selection coefficients for the nonsynonymous mutations were drawn from a gamma distribution).
${ }^{\text {k. }}$ In this model we simulated a 348 kb window (instead of a 100 kb window) with 40 exons (each of size 250 bp) and 38 introns (each of size 7500 bp) with a 53 kb neutral fragment in the center. These simulations show the effect of window size on the correlations between genetic variation and recombination rates.

1. This model included biased gene conversion. Here, $1 / 8$ of double-strand breaks resulted in recombination events, while $7 / 8$ were gene conversion events. 51% of the heterozygous AT/GC sites were converted to GC homozygotes. Note, the overall recombination rate for each sequence was increased 8 -fold to keep the total number of recombination events the same as in previous simulations. The gene conversion tract length was 500 bp .

[^0]: a. Strength of negative selection (e.g. selection coefficient) for intronic sites.

