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1. REGULATION BY ACTIVATORY TRANSCRIPTION FACTORS

Let us consider the Transcription Factor (TF) A, which regulates the two copies of gene G, G1 and G2, one on each
chromosome. Regulation proceeds by binding of A to the appropriate regulatory elements upstream of G1 and/or G2.
General TF kinetics, transcription itself , mRNA export and translation are not explicitly modelled in this approach.

Upon binding of A, the regulatory element makes a transition from the “empty” state into the “occupied” (or
“regulated”) state, that is

A+ eAi
α0

GGGGGGBFGGGGGG

α1
rAi i = 1, 2 (1)

Let [A] be the concentration of A, defined as the average copy number of A per cell. Similarly we define as [eAi]
and [rAi] the average number of empty and occupied regulatory elements respectively. Averages are taken over a
population of identical cells. The constants α0 and α1 are the rate constants respectively for binding and unbinding
of the regulatory TF. The index i refers to the two copies of regulatory elements, one for each chromosome.

Also, we define as [Gi] the average number of inactive genes per cell, and as [G∗
i ] the average number of active genes

per cell, i indicating again the two copies of the same gene, one for each chromosome. Hence [rAi] is also equal to the
average number of active genes [G∗

i ]. Similarly [eAi] equals the average number of inactive genes [Gi].
Notice that because of the adopted definition of concentrations the probability p(G∗

i ) that gene Gi is in the active
state equals the concentration [G∗

i ]. Similarly p(Ai) = [rAi] and p(∼ Ai) = [eAi], where p(Ai) (respectively p(∼ Ai))
is the probability that A is bound (respectively unbound) to its binding site.

When the gene Gi gets into the active state, it synthesizes the protein P with a rate g. When mRNA levels are not
explicitly modelled, the rate g can be thought of as an effective rate which corresponds to the maximal expression
level of each of the genes Gi, and incorporates binding of general TFs, as well as mRNA dynamics [1–3]:

G∗
1

g
GGGGGA P ; G∗

2

g
GGGGGA P. (2)

Degradation of proteins

P
dP

GGGGGGA φ (3)

is also implemented, dP being the degradation rate.
The equations representing processes (1), (2), and (3) read as follows:

d[rAi]
dt

= α0[A](1− [rAi])− α1[rAi] i = 1, 2 (4)

d[Pi]
dt

= g[rAi]− dP [Pi] i = 1, 2 (5)

where we used [eAi] + [rAi] = 1 and [G∗
i ] = [rAi], for i = 1, 2. Here [Pi] is the contribution to the total concentration

of protein P from the activation of gene Gi, with [P ] = [P1] + [P2].
Let us assume that binding and unbinding of A to the regulatory element is a much faster process than protein

production and degradation:

α0, α1 � g, dP . (6)
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Then the equilibration of rAi will be faster than the equilibration of P , and we can solve equations (4) and (5) with
the quasi steady state assumption d[rAi]/dt = 0:

α0[A](1− [rAi])− α1[rAi] ⇒ [rAi] =
α0[A]

α1 + α0[A]
, (7)

whence:

d[Pi]
dt

= g
α0[A]

α1 + α0[A]
− dP [Pi] i = 1, 2. (8)

Summing over i we finally obtain:

d[P ]
dt

= gP
α0[A]

α1 + α0[A]
− dP [P ]. (9)

where we set gP = 2g.
The dynamics is driven by a function of Michaelis-Menten type, or more generally a Hill function with Hill coefficient

equal to 1. This is appropriate if the TF binds to DNA as a monomer. Notice the two limits for A very small and very
large: A small implies that the production rate goes to zero (no TF activating the gene), while A large reproduces
the maximal expression level of the gene. Since we do not model polymerase dynamics, in particular translocation,
the present approach is valid in the case of weak activators, or otherwise A small [3].

2. COOPERATIVE ACTIVATION

Complex formation

Let us assume that the efficiency of the regulatory TF is enhanced by complex formation. In other words, let us
assume that one or more molecules of A first bind together to form a regulatory complex, and then this complex binds
to DNA onto a single binding site. Process (1) is then modified as follows

An + eAn

α0
GGGGGGBFGGGGGG

α1
rAn

i.e.
d[rAn

]
dt

= α0[An](1− [rAn
])− α1[rAn

] (10)

The symbol An represents the complex of n monomers of A. The corresponding reaction reads:

nA
k1

GGGGGGBFGGGGGG

k2

An (11)

and accordingly

d[An]
dt

= k1[A]n − k2[An] (12)

We assume again time scale separation among the different processes involved, namely:

k1, k2 � α0, α1 � gP , dP . (13)

In this way, the association reaction equilibrates first, and we can safely replace [An] = (k1/k2)[A]n in equation (10).
The same procedure used in the previous section then gives:

d[P ]
dt

= gP

α0k1
k2

[A]n

α1 + α0k1
k2

[A]n
− dP [P ]. (14)

The production rate results in the well-known Hill function. The larger n, the more sigmoidal the shape of the Hill
function.
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Two binding sites: The AND gate

Let us consider now the case when two different activators A and B bind independently to two different regulatory
elements. By AND gate, we mean the situation when binding of both A and B is needed in order for gene G to be
activated.

The processes involved are:

A+ eA
α0

GGGGGGBFGGGGGG

α1
rA i.e.

d[rA]
dt

= α0[A](1− [rA])− α1[rA], (15)

B + eB
β0

GGGGGGBFGGGGGG

β1

rB i.e.
d[rB ]
dt

= β0[B](1− [rB ])− β1[rB ], (16)

which at steady state give

[rA] =
α0[A]

α1 + α0[A]
and [rB ] =

β0[B]
β1 + β0[B]

. (17)

The average number of activated genes is

[G∗] = p(G∗) = p(A,B) = p(A)p(B) = [rA][rB ]. (18)

where p(A,B) is the joint probability that both A and B are bound. Therefore:

d[P ]
dt

= gP
α0[A]

α1 + α0[A]
· β0[B]
β1 + β0[B]

− dP [P ]. (19)

The generalization of more than two TF’s binding each to its specific binding site is straightforward.

Two binding sites: The OR gate

In this case gene G is activated by the binding of at least one of either A or B. Activation of G implies

[G∗] = p(G∗) = p(A,∼ B) + p(∼ A,B) + p(A,B) = [rA](1− [rB ]) + (1− [rA])[rB ] + [rA][rB ], (20)

where [rA] and [rB ] are as given by equations (17). This leads to the following equation for protein production:

d[P ]
dt

= gP
α0β1[A] + β0α1[B] + α0β0[A][B]

(α1 + α0[A])(β1 + β0[B])
− dP [P ]. (21)

Notice that the maximal expression rate gP is reached in the limit [A] → ∞, or [B] → ∞, or both. Only for both
[A]→ 0 and [B]→ 0, expression drops to 0.

3. COMPETITIVE ACTIVATION

Consider now two activators A and B competing for binding to the same binding site. In order to calculate the
concentration of active genes, we proceed as follows:

[G∗] = p(G∗) = p(A,∼ B) + p(∼ A,B) (22)

with

p(A,∼ B) = p(A) = p(A| ∼ B)p(∼ B) = p(A| ∼ B)(1− p(B)), (23)
p(∼ A,B) = p(∼ A, |B)p(B) = p(B) (24)

where we used Bayes’ Theorem, and the fact that binding of A and binding of B are mutually exclusive events. Notice
that the conditional probabilities p(A| ∼ B) and p(B| ∼ A) correspond to [rA] and [rB ] respectively:

p(A| ∼ B) = [rA] =
α0[A]

α1 + α0[A]
(25)

p(B| ∼ A) = [rB ] =
β0[B]

β1 + β0[B]
(26)
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Also:

p(B) = p(B,∼ A) = p(B| ∼ A)p(∼ A) = p(B| ∼ A)(1− p(A)) (27)

Combining (23) and (27), we obtain:

p(A) =
[rA]− [rA][rB ]

1− [rA][rB ]
and p(B) =

[rB ]− [rA][rB ]
1− [rA][rB ]

(28)

and finally

d[P ]
dt

= gP
α0β1[A] + β0α1[B]

α1β1 + α1β0[B] + α0β1[A]
− dP [P ]. (29)

4. REGULATION BY REPRESSIVE TRANSCRIPTION FACTORS

Let us consider gene G in the active state G∗. When a repressor R binds to the proper binding site it downregulates
expression of G. The dynamics is the same as the dynamics for activation with the only difference that the active
state G∗ is the one with the repressor unbound.

Therefore

d[rR]
dt

= α0[R](1− [rR])− α1[rR] (30)

d[P ]
dt

= gP (1− [rR])− dP [P ], (31)

where we used [G∗] = p(G∗) = p(∼ R) = 1− p(R) = 1− [rR]. The quasi steady state solution reads:

d[P ]
dt

= gP
α1

α1 + α0[R]
− dP [P ]. (32)

where again we assumed α0, α1 � gP , dP . The expression level of the gene is now maximal when the concentration
of repressor is zero. On the other hand, for large repressor concentrations the protein production drops to zero.

5. NON-COMPETITIVE REPRESSION

Let us consider now a regulatory process that involves an activator and a repressor acting on two different binding
sites. This case is formally very similar to activation through two activatory proteins as discussed in section 3, the
only difference being the computation of the number of active genes.

The relevant processes read:

A+ eA
α0

GGGGGGBFGGGGGG

α1
rA and R+ eR

β0
GGGGGGBFGGGGGG

β1

rR (33)

with the concentrations [rA] and [rR] at steady state given by:

[rA] =
α0[A]

α1 + α0[A]
and [rR] =

β0[R]
β1 + β0[R]

. (34)

Since now activation depends upon the regulatory element for the repressor to stay unbound, we have now [G∗] =
p(G∗) = p(A,∼ R) = p(A)(1− p(R)) = [rA](1− [rB ]), and therefore:

d[P ]
dt

= gP
α0[A]

α1 + α0[A]
· β1

β1 + β0[R]
− dP [P ]. (35)
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6. REGULATION BY COMPETITIVE ACTIVATION AND REPRESSION

Consider now an activator A and a repressor R competing for binding to the same binding site. The concentration
of active genes reads:

[G∗] = p(G∗) = p(A,∼ R) = p(A| ∼ R)p(∼ R) = p(A| ∼ R)(1− p(R)). (36)

By using (28) this turns out to be

[G∗] =
[rA]− [rA][rR]

1− [rA][rR]
, (37)

and finally

d[P ]
dt

= gP
α0β1[A]

α1β1 + α0β1[A] + α1β0[R]
− dP [P ]. (38)

7. MELANOCYTE DIFFERENTIATION IN ZEBRAFISH – MODEL A

Let us consider the gene regulatory network depicted in Fig. 9, Model A. The transcription factor A is provided
externally so as to activate Sox10. The gene X is an unknown putative gene, which plays the same role as Phox2A
in the GRN for sympathetic neurons [4]. For simplicity of notation, we define S to be the concentration of Sox10 and
M the concentration of Mitfa. We make the following assumptions:

• Sox10 is activated by a complex regulatory process which involves a number of transcription factors. We model
this as an effective TF, which binds as a monomer to the appropriate binding site, and for which we assume the
following step-like time dependency:

A(t) =
A0

1 + exp (β(tA − t))
. (39)

Parameter A0 fixes the maximum value of A, β fixes the rising time of the A signal, and tA defines the position
in time of the step.

• Binding of Sox10 occurs in both monomer and dimer forms [5]. For simplicity we assume that only one binding
site is present, and Sox10 monomers and dimers can bind in a competitive fashion.

• All other proteins produced in the circuit, acting as regulatory TF’s, bind as monomers to the respective
regulatory elements.

• Activators and repressors of the same gene bind non-competitively at different binding sites.

• Binding and unbinding of TFs is fast, so that a quasi steady state approximation is valid.

The regulatory processes and respective equations read:

S :


A+ e

(S)
A

α0
GGGGGGBFGGGGGG

α1
r
(S)
A i.e.

dr
(S)
A

dt
= α0A(1− r(S)

A )− α1r
(S)
A

M + e
(S)
M

β0
GGGGGGBFGGGGGG

β1

r
(S)
M i.e.

dr
(S)
M

dt
= β0M(1− r(S)

M )− β1r
(S)
M

(40)

M :



S + e
(M)
S

γ
(1)
0

GGGGGGGBFGGGGGGG

γ
(1)
1

r
(M)
S i.e.

dr
(M)
S

dt
= γ

(1)
0 S(1− r(M)

S − r(M)
S2

)− γ(1)
1 r

(M)
S

S + S
k1

GGGGGGBFGGGGGG

k2

S2 i.e.
dS2

dt
= k1S

2 − k2S2

S2 + e
(M)
S

γ
(2)
0

GGGGGGGBFGGGGGGG

γ
(2)
1

r
(M)
S2

i.e.
dr

(M)
S2

dt
= γ

(2)
0 S2(1− r(M)

S − r(M)
S2

)− γ(2)
1 r

(M)
S2

(41)
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X :


M + e

(X)
M

η0
GGGGGGBFGGGGGG

η1
r
(X)
M i.e.

dr
(X)
M

dt
= η0M(1− r(X)

M )− η1r(X)
M

S + e
(X)
S

ζ0
GGGGGBFGGGGG

ζ1
r
(X)
S i.e.

dr
(X)
S

dt
= ζ0S(1− r(X)

S )− ζ1r(X)
S

, (42)

where by e
(G)
F and r

(G)
F we indicate the average number of empty (respectively occupied) binding sites for TF F in

the promoter region of gene G.
Let us consider now the rate equation for S:

dS

dt
= gSr

(S)
A (1− r(S)

M )− dSS

−γ(1)
0 S(1− r(M)

S − r(M)
S2

) + γ
(1)
1 r

(M)
S − k1S

2 + k2S2 − ζ0S(1− r(X)
S ) + ζ1r

(X)
S (43)

The quasi steady state approximation means to set to zero the derivatives in equations (40), (41), and (42), but to
keep the derivative in (43), and accordingly to get rid of the terms in the second line of eq. (43). Therefore (43)
becomes:

dS

dt
= gSr

(S)
A (1− r(S)

M )− dSS = gS
α0A

α1 + α0A
· β1

β1 + β0M
− dSS. (44)

Similarly, equations for M and X read:

dM

dt
= gM

γ
(1)
0 γ

(2)
1 S + (γ(2)

0 γ
(1)
1 k1/k2)S2

γ
(1)
1 γ

(2)
1 + γ

(2)
1 γ

(1)
0 S + (γ(1)

1 γ
(2)
0 k1/k2)S2

− dMM, (45)

dX

dt
= gX

η0M

η1 + η0M
· ζ1
ζ1 + ζ0S

− dXX, (46)

The set of equations (44), (45), and (46) represent the full dynamics of the network depicted in Fig. 9 (Model A).

8. MELANOCYTE DIFFERENTIATION IN ZEBRAFISH – MODEL B

Let us consider the gene regulatory network depicted in Fig. 9 (Model B). Activation of Sox10 is followed by
activation of Mitfa and Factor Y, which define a positive feedback loop. Also, repression of Mitfa upon Sox10 is now
further detailed by introducing Mitfa activation of Sox10 inhibited by Hdac1, and this is effectively modelled as a
competitive activation/repression process (as from section 6). On top of the assumptions made already for Model A,
we also assume the OR gate (see section 2) for the activation of Mitfa by Sox10 and Factor Y.

Again for simplicity of notation, we define H as the concentration of Hdac1, T as the concentration of Tyrp1, and
D as the concentration of Dct. Because of the topology of the network, we report equations and numerical data only
for Tyrp1 and Dct. The regulatory processes and respective equations then read:

S :



A+ e
(S)
A

α0
GGGGGGBFGGGGGG

α1
r
(S)
A i.e.

dr
(S)
A

dt
= α0A(1− r(S)

A )− α1r
(S)
A

M + e
(S)
M

β0
GGGGGGBFGGGGGG

β1

r
(S)
M i.e.

dr
(S)
M

dt
= β0M(1− r(S)

M − r(S)
H )− β1r

(S)
M

H + e
(S)
M

ξ0
GGGGGBFGGGGG

ξ1
r
(S)
H i.e.

dr
(S)
H

dt
= ξ0H(1− r(S)

M − r(S)
H )− ξ1r(S)

H

(47)
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M :



S + e
(M)
S

γ
(1)
0

GGGGGGGBFGGGGGGG

γ
(1)
1

r
(M)
S i.e.

dr
(M)
S

dt
= γ

(1)
0 S(1− r(M)

S − r(M)
S2

)− γ(1)
1 r

(M)
S

S + S
k1

GGGGGGBFGGGGGG

k2

S2 i.e.
dS2

dt
= k1S

2 − k2S2

S2 + e
(M)
S

γ
(2)
0

GGGGGGGBFGGGGGGG

γ
(2)
1

r
(M)
S2

i.e.
dr

(M)
S2

dt
= γ

(2)
0 S2(1− r(M)

S − r(M)
S2

)− γ(2)
1 r

(M)
S2

Y + e
(M)
Y

σ0
GGGGGGBFGGGGGG

σ1
r
(M)
Y i.e.

dr
(M)
Y

dt
= σ0Y (1− r(M)

Y )− σ1r
(M)
Y

(48)

Y :

{
M + e

(Y )
M

δ0
GGGGGBFGGGGG

δ1
r
(Y )
M i.e.

dr
(Y )
M

dt
= δ0M(1− r(Y )

M )− δ1r(Y )
M (49)

H :

{
M + e

(H)
M

ϑ0
GGGGGGBFGGGGGG

ϑ1

r
(H)
M i.e.

dr
(H)
M

dt
= ϑ0M(1− r(H)

M )− ϑ1r
(H)
M (50)

T :

{
M + e

(T )
M

µ0
GGGGGGBFGGGGGG

µ1
r
(T )
M i.e.

dr
(T )
M

dt
= µ0M(1− r(T )

M )− µ1r
(T )
M

(51)

D :


M + e

(D)
M

λ0
GGGGGGBFGGGGGG

λ1

r
(D)
M i.e.

dr
(D)
M

dt
= λ0M(1− r(D)

M )− λ1r
(D)
M

S + e
(D)
S

ν0
GGGGGGBFGGGGGG

ν1
r
(D)
S i.e.

dr
(D)
S

dt
= ν0S(1− r(D)

S )− ν1r(D)
S

(52)

Under the quasi steady state approximation, the relative equations read:

dS

dt
= gS [rA(1− rMH) + (1− rA)rMH + rArMH ]− dSS, (53)

with rA =
α0A

α1 + α0A
and rMH =

β0ξ1M

β1ξ1 + β0ξ1M + β1ξ0H
,

dM

dt
= gM

[
γ

(1)
0 γ

(2)
1 S + (γ(2)

0 γ
(1)
1 k1/k2)S2

]
(σ1 + σ0Y ) + γ

(1)
1 γ

(2)
1 σ0Y[

γ
(1)
1 γ

(2)
1 + γ

(1)
0 γ

(2)
1 S + (γ(2)

0 γ
(1)
1 k1/k2)S2

]
(σ1 + σ0Y )

− dMM, (54)

dY

dt
= gY

δ0M

δ1 + δ0M
− dY Y, (55)

dH

dt
= gH

ϑ0M

ϑ1 + ϑ0M
− dHH, (56)

dT

dt
= gT

µ0M

µ1 + µ0M
− dTT. (57)

dD

dt
= gD

λ0M

λ1 + λ0M
· ν1
ν1 + ν0S

− dDD. (58)

The set of equations (53), (54), (55), (56), (57), and (58) represents the full dynamics of the network depicted in
Fig. 9 (Model B). At steady state the dynamics is determined by S, M , and Y only, and can be determined by setting
all derivatives to zero. In particular it is interesting to consider the Sox10 mutant, which can be selected by imposing
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γ
(1)
0 = γ

(2)
0 = ν0 = 0. In this case the set of equations (53)-(58) becomes

S = DS [rA(1− rMH) + (1− rA)rMH + rArMH ] (59)

M = DM
σ0Y

σ1 + σ0Y
, (60)

Y = DY
δ0M

δ1 + δ0M
, (61)

H = DH
ϑ0M

ϑ1 + ϑ0M
(62)

T = DT
µ0M

µ1 + µ0M
, (63)

D = DD
λ0M

λ1 + λ0M
, (64)

where DS = gS/dS , DM = gM/dM , DY = gY /dY , DH = gH/dH , DT = gT /dT , DD = gD/dD, and rA and rMH are as
from (53). It is clear that in this case M and Y alone determine the full dynamics, their equations being coupled as a
manifestation of the M − Y feedback loop. For M and Y two steady states are present, the null one, (M,Y ) = (0, 0),
and

M =
DMDY δ0σ0 − δ1σ1

δ0(DY σ0 + σ1)
, (65)

Y =
DMDKδ0σ0 − δ1σ1

σ0(DMδ0 + δ1)
. (66)

For DMDY δ0σ0 − δ1σ1 > 0 the non zero steady state is stable and the null steady state is unstable. In contrast, for
DMDY δ0σ0 − δ1σ1 < 0 the null steady state is stable, while the non zero one is unstable.

9. MELANOCYTE DIFFERENTIATION IN ZEBRAFISH – MODEL C

Model B shows three drawbacks. The first one relates to the fact that Mitfa repression of Sox10 mediated by Hdac1
does not appear sufficient to drive Sox10 expression below a detection threshold after its initial high expression phase.
We cure this by imposing Hdac1 inhibition onto Factor A as well, as shown in Fig. 9 (Model C).

The second drawback relates to the unstable features of the null (M,Y ) steady state as from (65), (66) for
DMDY δ0σ0 − δ1σ1 > 0 in the Sox10 mutant. In this case the basal expression of either Mitfa or Factor Y would be
sufficient to start the feedback loop, and get all target genes normally expressed. This is at odds with experimental
observation. To avoid this circumstance we insert a threshold mechanism based on Mitfa and Factor Y concentration,
which effectively mimicks a regulatory dynamics not characterized in the present model.

The third drawback is related to the behaviour of both Mitfa and Sox10 mutants. The experimentally observed
existence of a transient Dct signal in both mutants implies the existence of a parallel pathway that provides only weak
activation and is overwhelmed in the wild type situation, but becomes the predominant one in mutants. We assume
this pathway to be mediated by Factor Z, and driven by a transient activator, Factor B.

We then consider the gene regulatory network depicted in Fig. 9 (Model C). With the same conventions and
assumptions of the previous section, the corresponding set of equations reads:

dZ

dt
= gZ

ρ0B

ρ1 + ρ0B
− dZZ, (67)

dS

dt
= gS [rAH(1− rMH) + (1− rAH)rMH + rAHrMH ]− dSS, (68)

with rAH =
α0ϕ1A

α1ϕ1 + α0ϕ1A+ α1ϕ0H
and rMH =

β0ξ1M

β1ξ1 + β0ξ1M + β1ξ0H
,

dM

dt
= gM

[
γ

(1)
0 γ

(2)
1 S + (γ(2)

0 γ
(1)
1 k1/k2)S2

]
(σ1 + σ0Θ(Y − Y ∗)Y ) + γ

(1)
1 γ

(2)
1 σ0Θ(Y − Y ∗)Y[

γ
(1)
1 γ

(2)
1 + γ

(1)
0 γ

(2)
1 S + (γ(2)

0 γ
(1)
1 k1/k2)S2

]
(σ1 + σ0Θ(Y − Y ∗)Y )

− dMM, (69)

dY

dt
= gY

δ0Θ(M −M∗)M
δ1 + δ0Θ(M −M∗)M

− dY Y, (70)
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dH

dt
= gH

ϑ0M

ϑ1 + ϑ0M
− dHH, (71)

dT

dt
= gT

µ0M

µ1 + µ0M
− dTT. (72)

dD

dt
= gD

λ0ε1M + λ1ε0Z + λ0ε0MZ

(λ1 + λ0M)(ε1 + ε0Z)
· ν1
ν1 + ν0S

− dDD. (73)

Here B is given by the equation

B(t) =
B0

1 + exp (β(t− t2))
− B0

1 + exp (β(t− t1))
, (74)

Θ(x) is the Heaviside function, defined as Θ(x) = 1 for x > 0, and Θ(x) = 0 otherwise, and M∗ and Y ∗ are threshold
parameters. Also, ϕ0 and ϕ1 are binding and unbinding rates of Hdac1 to the promoter of Sox10 (competitive binding
to the same binding site of Factor A). Finally, Z refers to the concentration of Factor Z, ρ0 and ρ1 correspond to
binding/unbinding rates of B to the Factor Z promoter, while ε0 and ε1 are the binding/unbinding rates of Factor Z
to the promoter of Dct.
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