
Text S1 

Cell culture and dexamethasone treatment  

All cellular experiments described were conducted in lymphoblastoid cell lines (LCLs), B 

lymphocytes immortalized with Epstein-Barr virus, that were collected as a part of the 

International HapMap project. LCLs from 58 YRI and 58 TSI individuals were obtained from 

Coriell. Two individuals (one YRI and one TSI) were not included in mapping experiments as 

genotype data was not available from HapMap. LCLs were thawed and passed once in RPMI 

media supplemented with 15% fetal bovine serum. LCLs were then washed twice with 

phosphate-buffered saline and moved to RPMI media supplemented with 15% charcoal-stripped 

fetal bovine serum. Charcoal stripping dramatically reduces the concentration of hormones, 

including glucocorticoids. All LCLs were processed with the same lot of charcoal-stripped fetal 

bovine serum to avoid variation between samples in residual glucocorticoid levels. After one 

passage in media with charcoal-stripped fetal bovine serum (corresponding to a minimum 

culturing time of 5 days), four separate aliquots of each LCL were seeded in the evening at a 

density of 5x10
5
 cells/ml in 10ml of media with 15% charcoal-stripped fetal bovine serum. The 

following morning, 10
-4

M dexamethasone (dissolved in 1% ethanol and 99% cell culture media) 

was added to two aliquots to a final concentration of 10
-6

M, and an equal amount of vehicle 

solution (solution composed of 1% ethanol and 99% cell culture media) was added to the other 

samples as a negative control for treatment.  For each LCL, one set of dex and control aliquots 

was treated for 8 hours (to quantify mRNA abundance) and the other for 24 hours (to assay 

inflammatory protein secretion). The study design is depicted in Supplementary Fig. 6.       

 

Practical considerations made it infeasible to process large numbers of samples (all time points 

and treatments) in parallel for each experiment. Therefore, we processed the samples in multiple 

successive batches. Batch effects (i.e. technical effects that differ between batches) that are 

confounded with covariates of interest can lead to spurious results 
1
. Consequently, LCLs were 

thawed, cultured and treated in batches completely balanced by treatment, population, technician 

and time of day. Batch number was recorded for use as a covariate in downstream analyses. 

Batches were performed in continuous succession over a total time span of no more than six 

months. If any cell line in a batch failed to grow, collection of the entire batch was repeated. 

Time of day for RNA extraction, lot of culture medium, and cell culturing protocols were kept 

constant between samples to minimize technical effects. RNA extraction, processing, and 

microarray hybridization were also performed in batches completely balanced by treatment, 

population, technician and time of day.  

 

For quality control purposes, biological replicates were performed for one batch of four cell 

lines. Specifically, for each of the four LCLs (2 YRI and 2 TSI, 2 males and 2 females), two 

separate aliquots of frozen cells were thawed, cultured, and treated. In an effort to capture any 

effects of time on the response, one replicate was performed early in the collection process (1 

month after collection began) and the other was collected later (3 months after collection began). 

Collection of all samples took 4 months.  
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Measurement of RNA and protein secretion levels 

Expression microarrays. For each expression study described in the preliminary data, total RNA 

was extracted from each cell culture sample using the QIAgen RNeasy Plus mini kit, and was 

found to be of high quality. RNA was extracted from all 240 samples over the course of 5 days. 

Total RNA was then reverse transcribed into cDNA, labeled, hybridized to Illumina HumanHT-

12 v3 Expression BeadChips and scanned at the Southern California Genotyping Consortium 

(SCGC: http://scgc.genetics.ucla.edu/) at the University of California at Los Angeles. Each RNA 

sample was hybridized to two separate arrays (i.e. in two technical replicates). To avoid batch 

effects on RNA measurements, all 480 microarrays were hybridized within 7 days. Summary 

data (e.g. mean intensity of each probe across within-array replicates) were obtained using the 

BeadStudio software (Illumina) at the SCGC. 

 

Quantification of inflammatory markers in the cell culture medium and identification of secretion 

QTLs that interact with GC treatment. A multianalyte ELISA assay (Millipore) was performed 

on the culture medium of the cell aliquots treated for 24 hours. The assay was performed at the 

Flow Cytometry Facility at the University of Chicago, according to the manufacturer 

instructions. Two technical replicates were run for each sample. Samples were assayed in 

batches balanced by treatment and population. For each analyte, the average quantity across 

technical replicates was calculated and used for all subsequent analyses. The correlation structure 

between paired aliquots for each sample (GC and control) was visually inspected 

(Supplementary Fig. 8). A small subset of samples with low quantity detected showed no 

correlation between GC and control aliquots because of noise in the measurement at low 

concentrations. Consequently, these samples were excluded from downstream analyses. 

Secretion levels were highly correlated across proteins, likely representing a latent factor that 

generally affects secretion levels. We sought to map cis-regulatory polymorphisms, which are 

not expected to affect multiple secreted proteins. To remove the effect of this latent factor, we 

used linear regression to correct secretion levels at each protein by secretion levels at all other 

measured proteins. To identify interactions between secretion QTLs and GC treatment, we used 

the same statistical framework described for mapping eQTL interactions with GC treatment.   
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Low-level analysis and quality control for microarray data  

Low-level microarray analysis was performed using the Bioconductor software package LUMI 
2
 in R (http://www.r-project.org). Microarray intensity data are often mathematically transformed 

for the sake of downstream statistical analysis. For example, many statistical tests require that the 

mean intensity of genes be independent of the variance. It is often the case, however, that the 

variance increases with the mean in microarray experiments. Log transformation of intensities 

has traditionally been applied to eliminate this undesirable relationship. We used a similar 

transformation method, variance stabilizing transformation, which was developed specifically for 

Illumina BeadChips
3
 and has been suggested as the optimal transformation approach for this 

platform through spike-in experiments conducted by an independent group 
4
.  

    

Even if a gene is not expressed in a sample, some level of fluorescence will be visible on the 

array due to non-specific binding. We removed probes with intensities indistinguishable, in all 

samples, from background fluorescence levels based on control probes that do not map to any 

known portion of the human genome (at a p-value threshold of 0.01), leaving 23,700 expressed 

probes for further analyses.  

 

To remove large-scale differences in intensity distributions between arrays, which likely reflect 

technical effects, we performed quantile normalization across all arrays. This gave all arrays, 

including arrays from both GC-treated and control-treated samples, the same distribution of 

intensities while maintaining probe ranks within each array. Array-wise quantile normalization, 

by definition, removes gross effects of confounders on the mean or variance of arrays’ intensity 

distributions. Additionally, intensities across samples for each probe were quantile normalized to 

a have a N(0,1) distribution to remove the impact of outliers.  

 

Probes were annotated by mapping to the RNA sequences from RefSeq using BLAT.  To avoid 

ambiguity in the source of a signal due to cross-hybridization of similar RNA species, probes 

that map to multiple Ensembl genes were excluded from further analyses. Probes that contain 

one or more HapMap SNPs were also removed from further analyses to avoid spurious 

associations between expression measurements and SNPs in linkage disequilibrium. 

 

Measurement and correction for covariates. Although arrays were quantile normalized to 

remove the effects of technical factors on the distribution of expression measurements, this 

approach may fail to remove the effects of confounders if they do not act in a systematic manner 

across all of the probes on the array. It is, therefore, essential to identify potentially relevant 

covariates and correct for their effects. Factors such as copies of Epstein Barr virus genome, 

cellular growth rate and number of mitochondria per cell can affect cellular response to some 

treatment conditions 
5,6

. To avoid spurious results and reduce noise due to these potential 

confounders, we measured several covariates relevant to LCL biology including: EBV genome 

copy number, growth rate and mitochondrial genome copy number. Unlike other studies that 

compared YRI and CEU LCLs 
6
, we did not observe a significant difference in EBV copy 

number (p = 0.824 - Supplementary Fig. 5a) or growth rate (p = 0.477 - Supplementary Fig. 5b) 

between our YRI and TSI LCLs. This validates our choice of the more recently established TSI 

LCLs as a sample of European ancestry compared to the CEU LCLs. We did, however, find that 
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mitochondrial genome copy number is significantly higher among YRI LCLs (p = 0.0463 – 

Supplementary Fig. 5c).  

 

We used Bayesian linear regression to identify genes where these factors were associated with 

the transcriptional response (as described for mapping eQTL interactions with GC treatment 

below). We used linear regression to remove the effects of these potential confounders at each 

gene, applied separately in each treatment, and confounder-corrected data were used in all 

subsequent analyses.  We also applied principal component analysis (PCA) to the covariate-

corrected data to identify the effects of potentially unmeasured covariates contributing to 

heterogeneity in the data. As we found that controlling for these principal components had 

virtually no effect on Bayes factors from our eQTL mapping experiment, we did not regress out 

the effect of any principal components. 

 

Quality control of expression data. We found that expression levels were highly reproducible 

across technical and biological replicates. Expression levels between replicate hybridizations 

were highly correlated (Pearson’s r > 0.95 between all pairs of replicates – Supplementary Fig. 

7a). One array was found to be an outlier, based on all between-array correlations, and was 

removed from downstream analyses. We found that expression measurements were extremely 

reproducible for the four LCLs with biological replicates (Pearson’s r > 0.99 between all pairs of 

replicates – Supplementary Fig. 7b and 7c). Additionally, we found that the transcriptional 

response to GC treatment, represented by the log-fold change in expression in GC- over control-

treated samples at the 4,568 most responsive genes, was highly replicable across biological 

replicates, despite replicates being thawed, grown and treated two months apart (Pearson’s r > 

0.77 between all pairs of replicates – Supplementary Fig. 7d).   
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Identification of differentially expressed genes 

Testing for differential expression. In order to identify genes that, on average across individuals, 

changed expression levels upon treatment with GCs, we performed multiple linear regression at 

each gene with treatment as the covariate of interest while taking other measured covariates into 

account. To reduce the effects of outliers, microarray intensity values were quantile normalized 

to a N(0,1) distribution across all samples (treated and untreated). We used the distribution of p-

values observed when sample labels are permuted (ten permutations were used), an empirical 

estimate of the p-value distribution under the null, to estimate the false discovery rate (FDR). 

Using this approach we found 4,568 differentially expressed genes at an FDR<0.01, including 

up- and down-regulated genes (Supplementary Fig. 1a). We used the online tool DAVID 
7,8

 to 

identify biological categories enriched among up and down-regulated genes, using all genes 

expressed in LCLs (based on microarray data) as a background. 

 

Traditional tests for differential expression (e.g. a t-test) look for changes in expression that are 

consistent across individuals, biasing against genes where the response to GCs varies across 

individuals (e.g. due to genetic variation). Consequently, we did not restrict the analyses of 

expression variation to the 4,568 differentially expressed genes above.  

 

Sub-sampling experiments to assess relationship between samples size and differential 

expression results. The larger number of differentially expressed genes we find relative to 

previous studies may be explained by increased power from our larger sample size. To test this 

hypothesis, we generated random sub-samples of varying sizes and repeated tests for differential 

expression. We found a clear relationship between sample size and the number of differentially 

expressed genes identified (Supplementary Fig. 1b). We found that increasing sample size 

allowed genes with more variable responses between individuals to be detected more readily 

(Supplementary Fig. 1c). We also found that increases in sample size allow us to more readily 

identify target genes with small but consistent changes in expression (Supplementary Fig. 1d). A 

similar pattern was observed in a survey of gene expression response in soy with a large sample 

size 
9
; thus, it is possible that the number of genes involved in many cellular responses to stimuli 

is generally underestimated. 

 

Comparison with differential expression in osteoblasts. We compared differential expression 

results in LCLs to published results from a similar study in osteoblasts
10

. We limited our 

comparison to the 8,646 genes identified as “expressed” in both tissues. For each of the 3,018 

genes we identified as differentially expressed (p < 0.003 and FDR < 0.01) and that were 

expressed in osteoblasts, we tested for marginal evidence of differential expression in the 

osteoblast data (p < 0.05). We then applied a one-tailed Fisher’s exact test to test the statistical 

significance of this overlap.      
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Genetic association mapping 

SNP imputation. We used all HapMap SNPs for all mapping experiments described. As TSI 

LCLs were only typed for phase III SNPs, we used the CEU population sample to impute 

genotypes at all HapMap phase I and II SNPs. Similarly, we imputed SNPs for phase III YRI 

LCLs based on the YRI LCLs included in phase I and II. Imputation was performed using 

BIMBAM 
11

, which infers missing genotypes based on correlations between missing and typed 

genotypes observed in samples where all genotypes are typed. QTL mapping results were not 

qualitatively different if using imputed or genotyped SNPs.  

 

Frequentist association mapping of log-fold change in expression. We tested for association 

between all HapMap SNPs and transcriptional response at each gene, using log fold change in 

expression (GC-treated over control-treated expression) as a measure of response. For our 

candidate gene-based scan for trans-acting eQTLs that influenced response, we tested all 

HapMap SNPs within 500kb and 100kb (in two separate sets of analyses) of genes encoding the 

GR and transcription factors that interact with the GR. Interacting transcription factors include 

the genes that encode the components of the NFkB complex, AP1, Oct1, Oct2, CREB, ETS1, 

STAT3, STAT5,STAT6, C/EBP, TFIID, T-bet, PU.1/Spi-1, Smad3, Smad4, Smad6, COUP-

TFII, IRF3, STIP1, Hic5/Ara55, and nTrip6 (PMID: 17689856). P-values calculated with 

permutated genotype labels were used as an empirical null distribution. In roder to maintain the 

correlation structure across genes, the same permutation seed was used for all genes in both 

candidate gene tests and the genome-wide scan. Ten permutations were performed for the test of 

variation within 500kb, 100 permutations were used for the test of variation within 100kb and 3 

permutations were used for the genome-wide scan. For mapping log fold change at SNPs within 

500kb or 100kb of each gene, permutation seeds were set separately at each gene. Association 

tests were performed using a combination of Python, the R statistical package and the genetic 

association mapping program PLINK.     
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Bayesian regression for identifying genetic associations and interaction with treatment  

Bayes Factors calculation. We developed a novel Bayesian statistical framework for genetic 

association analysis in settings where measurements are available on the same individuals in two 

different conditions (in our case, GC-treated and control-treated). Our methods extend and 

improve the methods from Barber et al. (2009) to explicitly consider “qualitative interaction” 

models where genetic variants are associated with measurements in only one of the two 

conditions. Our method takes into account both sample pairing and the intra-individual 

correlation of measurements under the two conditions. Software implementing the methods will 

be made available at http:/stephenslab.uchicago.edu/software.html. 

 

Consider a phenotype measured under two conditions (e.g. gene expression in the presence and 

absence of GCs) in a sample of size n. We use Y to denote the collection of phenotypic 

measures, where )...( 1111 nyyY   represents the phenotypic measurements for n individuals under 

condition 1 and )...( 2122 nyyY   are the phenotypic measurements for n individuals under 

condition 2. In practice we quantile normalize our phenotypic measurements, so 
1Y  and 

2Y  each 

follow a standard normal distribution. The relationship between genotype at a given 

polymorphism )...( 1 nggG  , coded as 0, 1, or 2 copies of the minor allele, and Y  is modeled as 

a mixture of the mean expression in each condition ),( 21   , the genotypic effects 

),( 21   , and the error term ),( 21   , which is ),0(2 VN  with V  representing the 2x2 

covariance matrix (thereby capturing correlation between phenotypic measurements in the two 

conditions): 
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We consider the following five different models relating genotype to phenotype across 

conditions: 

0) Null model: 021    

1) No-interaction eQTL model: 021    

2) GC-only eQTL model: 01   and 02   

3) Control-only eQTL model: 01   and 02   

4) General interaction eQTL model: 01  and 02  but 21    

 

Note that we are defining an interaction between genotype and treatment to be where the 

genotypic effect is different in the two treatments. Thus models 2-4 involve an interaction, 

whereas 0 and 1 do not. Models 2 and 3 are sometimes referred to as “qualitative” interactions, 

whereas model 4 is referred to as a “quantitative” interaction. One important feature of 

qualitative interactions is that, unlike quantitative interactions, their definition does not depend 

on the scale of measurement of each phenotype. 
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The Bayes factor for model C is defined as the ratio of the marginal likelihood under model C 

versus the null model. We use  Cp  to denote probability distributions under model C, and as 

shorthand for the marginal distribution under model C, so )(YpP C

c  .  

 

The BFs for models 1-4 all have a similar analytic form, and before describing the assumptions 

that lead to these BFs we first state this form. Specifically, they have the form: 
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where Y is an dn matrix, 0X  is an pn  matrix, 1X  is an )1(  pn  matrix, and a  is a 

scalar hyper-parameter, all of which will be defined below. In Equation (1), 0K  denotes the 

pp  matrix of all 0s; 1K  denotes the 11  pp  matrix with 2

a at position )1,1(  pp  and 

zeros elsewhere, and: 

 

YXKXXXYYYKXYRSS  1)(:),(  

 

is a Bayesian analogue of the standard residual sums of squares matrix from regressing Y  on X . 

(Note that A  denotes the transpose of a matrix A .) A brief note on the intuition behind this 

expression: effectively (1) compares the fit of a regression of Y  on 0X  with the regression of Y  

on 1X  (e.g. look at the ratio of the sums of squares terms). In particular, the BF will be big if the 

residuals sums of squares matrix from regressing Y  on 1X  is much smaller (as measured by its 

determinant) than obtained from regressing Y on 0X . 

 

Under the assumptions we make (see below), the BFs for models 1-4 have the form given by (1), 

but with different values forY , 0X , and 1X . We now turn to describing the assumptions that lead 

to this form, and the specific values ofY , 0X , and 1X for each model. 

 

First we describe the prior distributions, and the resulting BF, for model 4 vs. the null (i.e. BF
4
). 

Under the null we assume standard conjugate priors for   andV : 

 

),(~ mWishartInverseV  

 

),0(~ 2 VNV   

 

where 2N denotes the bivariate normal distribution. Under model 4 we must also specify a prior 

distribution for  , and again we use the standard conjugate prior: 
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),0(~ 2 VNV a  

 

These priors are computationally convenient because they lead to BFs that are analytically 

tractable. To deal with the hyperparameters m ,  , and  , we take the limits 1m , 0 , 

 . We choose these limits because the resulting BF
4
 has a number of attractive 

properties: for example, it is invariant to changes in the mean and variance of the phenotypes Y , 

and, under further conditions on a , is monotonically increasing with the standard likelihood 

ratio test of model 4 vs. the null (M Stephens, unpublished data). The hyperparameter a  

controls the typical size of the effects (  ); since this is unknown in practice. Under these priors, 

the marginal likelihoods, 4P and 0P , can be computed analytically and (in the limits described 

above), 044 / PPBF  , has the form (1), with  21,YYY   (so d = 2); 10 X  (where 1 is a 

column vector of all 1s); 1X = [1; g] (where g is a column vector of the genotypes at a SNP of 

interest, coded as 0, 1 or 2 copies of a reference allele). Note that, following the intuitive 

interpretation of the BF (1) noted above, this BF will be large if the regression of Y  on an 

intercept and genotype ( 1X ) is much better than the regression of Y  on an intercept alone ( 0X ). 

 

Next we describe the Bayes factor for model 2, BF
2
. Under model 2, 1Y  is independent of 

genotype, so the model can be written      gYYpYpgYYp ,, 12212212  . We make the additional 

assumptions that i)  12 Yp , which does not depend on genotype, is the same as  10 Yp ; ii) 

 gYYp ,122  is the same as  gYYp ,124 . Under these assumptions, the BF for model 

2, 022 / PPBF  , is given by (1) with  2YY   (so d = 1),  10 ,1 YX  ; and  .,,1 11 gYX  Here 

the intuition is that this BF will be large if the regression of 
2Y  on an intercept and 

1Y  and a 

genotype ( 1X ) is much better than the regression of 
2Y  on an intercept and 

1Y  alone ( 0X ). That 

is, it will be large if 
2Y  is associated with genotype controlling for 

1Y . 

 

Under model 3, 2Y  is independent of genotype, and following the same logic as for model 2 the 

BF, 033 / PPBF  , is given by (1) with  1YY  ,  20 ,1 YX  , and  gYX ,,1 21  . 

 

To compute a BF for model 1, we use the transformation 211 : YYZ  , 212 : YYZ   (note that 

       210211210211 ,,,, ZZpgZZpYYpgYYp   because the Jacobian term that occurs due to 

the transformation cancels out in the numerator and denominator). Further, under model 1, 

genotype g has the same effect on both 1Y  and 2Y , so it is independent of 1Z , and we can 

write      gZZpZpgZZp ,, 12212212  . Again, assuming that    1011 ZpZp   

and    gZZpgZZp ,, 122121  , the Bayes Factor for model 1, 011 / PPBF  , has the form (1) 

with  2ZY  ,  10 ,1 ZX  , and  gZX ,,1 11  . 
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The hyperparameter a. The hyperparameter a
 
controls the expected effect sizes. As a

 
is 

unknown, we assume a prior distribution with weights )...( 1 JwwW   on distinct values 

)6.1,2.1,0.1,8.0()...( 1  J

aaa  . Under these prior assumptions, the Bayes factor for each 

SNP is a weighted average of the BFs calculated under each value of a as follows: 

 





J

j

j

a

C

j

C BFwBF
1

)(  

 

where )( j

a

CBF  is the Bayes factor for model C calculated assuming j

aa   . Effectively, this 

replaces the hyperparameter a
 
with another set of hyperparameters )...( 1 JwwW  . For gene 

expression experiments, these hyperparameters are estimated from the data across all genes, 

using the hierarchical model described below. For secretion experiments we fixed the weights to 

all be equal, since we judged that the small number of assayed proteins would not suffice to 

estimate these weights reliably.  

 

Combining information across SNPs. The above description of Bayes factor calculations 

considers the relationship between one polymorphism (e.g. SNP) and one phenotype (e.g. gene 

expression) measured under two conditions. In what follows we use C

kiBF to denote this Bayes 

factor computed for SNP i in gene k. We now consider combining these BFs for all SNPs within 

500kb of the gene to compute an overall gene-wide BF, C

kBF , that measures the overall evidence 

that gene k is affected by an eQTL of model C (i.e. that gene k follows model C). Specifically, 

we define this gene-wide BF to be equal to the ratio C

kP / 0

kP
 
where C

kP  is the marginal likelihood 

under a model where gene k contains exactly one SNP affecting expression (we refer to this SNP 

as an eQTN) according to model C (with all SNPs equally likely) and 0

kP  is the marginal 

likelihood under the null model that no SNP affects expression at gene k. Under this model the 

gene-wide BF is simply the average of C

kiBF across all Sk SNPs: 





kS

i

C

ki

k

k

C

k

C

k BF
S

PPBF
1

0 1
/  

(We note that if a gene actually contains multiple eQTNs our approach, which assumes each 

gene contains at most one eQTN, will tend to assign that gene to the model of the strongest 

eQTN. This could cause us to miss interaction eQTNs at genes that also contain strong non-

interaction eQTNs.)  

 

Hierarchical model. To combine information across all genes we use a hierarchical model (e.g. 

Veyrieras et al 2007) in which the parameters are: the proportion of genes containing eQTNs 

following each of the models described above ( ),,,,( 43210  ) and the weights 

)...( 1 gwwW   in the prior for   a described above. Specifically, in this hierarchical model the 

probability of the expression data Yk for gene k, given parameters ),( W , is 
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Assuming all genes are independent given these parameters, the overall likelihood is given by: 

 

 
k

k XWYPYWL ),,|()|,(  

 

We used an EM-algorithm to obtain maximum likelihood estimates of hyperparameters, 

namely )ˆ,ˆ( W . We also constructed the 95% profile-likelihood confidence intervals for all 

estimated parameters. Estimated proportions of genes under each model, with confidence 

intervals, are shown for all reported applications of this method in Supplementary Table 1. 

 

Posterior probabilities and Bayesian estimate of false discovery rate. We calculated the posterior 

probability that gene k follows model C using: 

 

 





4

0

ˆ

ˆ
)ˆ,ˆ,|(

c

c

kc

C

kc

BF

BF
WYCfollowskgeneP




 

 

where C

kBF  is calculated using estimated weights Ŵ . 

 

For each gene, the posterior probability that it harbors an interacting eQTL is the sum of 

posterior probabilities (as computed above) for models C=2, 3, and 4. For any given threshold on 

this posterior probability (eg 0.7 is used in the text) we estimate the false discovery rate as the     

mean probability of a false positive (1-posterior probability) across genes exceeding the 

threshold. (Note that, for interacting eQTLs, we are therefore, appropriately, defining false 

positives to include not the null model, but also the no-interaction eQTL model).  

 

Comparisons to mapping log-fold change. To assess the power of our method relative to a 

traditional test for association with response, we compared, at each gene, the evidence of an 

interaction eQTL from mapping the log-fold change in expression (specifically the minimum p-

value) to evidence of an interaction eQTL from the Bayesian regression (posterior probability of 

an eQTL following one of the interaction models). We found that, at a false discovery rate 

threshold of 0.10, our method identified more interactions, indicating that our method provides 

an increase in power over directly mapping the log-fold change (Supplementary Fig. 2).  

 

Combining mapping results across populations. We found that BFs (calculated for each SNP and 

gene comparison) often differed depending on the population used for eQTL mapping. These 

discrepancies were associated with differences in heterozygosity between populations (p-value = 

1.2x10
-161

, r
2
 = 0.054), suggesting that differences may be due, in part, to differences in allele 
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frequency at eQTLs. To combine information across populations, previous cis eQTL mapping 

studies have quantile normalized phenotypes within populations and then pooled multiple 

populations together 
12

. This approach could reduce power, however, if there are substantial 

differences in allele frequency at eQTLs. To avoid this issue, we chose to calculate BFs for each 

SNP-gene comparison separately in the two populations and then multiply the BFs together to 

combine information across populations.  

 

It is important to note, however, that multiplying Bayes factors across populations ignores the 

direction of genotypic effects in the two populations. To assess the reproducibility of our 

mapping results across populations, we used linear regression to estimate the genotypic effect on 

expression of each eQTL that interacted with GC treatment separately in TSI and YRI. We used 

the most likely model to identify the relevant treatment condition for each eQTL’s genotypic 

effect, and regressed expression in that condition on genotype at the most likely eQTN while 

controlling for expression in the opposite treatment condition. For example, the genotypic effect 

of GC-only eQTLs was estimated by regressing expression in GC-treated samples on genotype 

with expression in control-treated samples as a covariate. We find that genotypic effects are 

largely consistent across populations. Specifically, we find that, excluding eQTNs with minor 

allele frequencies less than 0.05, 80% of the eQTNs that interacted with GC treatment had 

concordant genotypic effects on log-fold change across populations. We found that GC-only 

eQTNs were more concordant, where 89% of GC-only and only 67% of control-only eQTNs 

(posterior probability > 0.7) had effects in the same direction in both populations. eQTNs with 

effects in opposite directions across populations are noted in Supplementary Table 2.  

 

Minor allele frequencies for eQTLs. We also compared the distribution of minor allele 

frequencies of the candidate eQTN was between the three eQTL models. We did not observe any 

significant differences (Supplementary Fig. 9).          
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Assaying allelic imbalance using quantitative real-time PCR 

Cis-acting regulatory polymorphisms will cause differential expression between chromosomes in 

heterozygotes. On a population level, this will cause unequal representation of alleles at coding 

polymorphisms on the same haplotype in the mRNA of individuals heterozygous for the 

regulatory polymorphism. We used TaqMan quantitative genotyping assays to assay allelic 

imbalance at coding SNPs in LD with eQTLs that interacted with GC treatment. Imbalanced 

expression of the two coding alleles is an independent line of evidence for a cis-acting regulatory 

polymorphism and for the configuration of the effect in the two treatment conditions (i.e. the 

interaction model).  

 

Total RNA from an aliquot of the same culture samples used to hybridize microarrays (this was a 

separate RNA extraction as that used to hybridize microarrays) was synthesized into cDNA 

using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, 

CA) according to the manufacturer’s protocol. Quantitative real-time PCR was performed in 384 

well plates using the ABI PRISM 7900HT Sequence Detection System.  The 10 l reactions 

contained 5 μl of Taqman® Universal PCR Master Mix with no AmpErase® UNG, 0.25 μl of 

Taqman® 40X SNP Genotyping Assay, 0.25 μl of nuclease-free water, and 4.5 μl of cDNA.  

Taqman® 40X SNP Genotyping Assays were purchased from Applied Biosystems.  Applied 

Biosystems standard recommended PCR cycling conditions were used. Raw data were analyzed 

using ABI SDS software version 2.2.2 (Applied Biosystems, Foster City, CA). To account for 

differences between the two fluorochromes, a standard curve was built for each of the two alleles 

using serial dilutions of a genomic DNA from an individual that was heterozygous at the coding 

SNP. PCR products were quantified for each allele separately in each reaction. For each assay, 

we calculated the natural log-ratio between the two different alleles. The numerator of this ratio 

was always the allele associated with increased expression in the corresponding treatment 

condition. Within each treatment, we quantile normalized allelic log-ratios and used a one-tailed 

t-test to identify significant differences in average allelic log-ratios between heterozygotes and 

homozygotes (as an empirical null distribution of allelic log-ratios) at the eQTL.   
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Assessing population differences in response 

Identifying interactions between ancestry and GC treatment. To identify genes that may 

contribute to inter-ethnic differences in phenotypes related to GCs, we contrasted the 

transcriptional response to GCs between YRI and TSI LCLs. Differences in transcriptional 

response between populations will result in differences in average expression levels that differ 

depending on treatment, as opposed to GC-independent population differences that will be 

identical in both treatments. As this is analogous to gene-environment interactions, we used the 

same statistical framework to identify genes with differences in transcriptional response between 

populations. Covariate-corrected expression levels were quantile normalized across individuals 

(both YRI and TSI) for each gene to reduce the effect of outliers. As population differences at 

the phenotypic level may reflect population differences in response following a consistent pattern 

across many genes, we identified the direction of population differences at each gene in terms of 

log-fold change and found that up-regulated genes tended to show a stronger response in YRI 

LCLs (Supplementary Fig. 3). 

 

Expected population differences based on eQTLs. Differences in allele frequency at QTLs will 

cause differences in mean phenotypic values between populations. Concordance between allele 

frequency differences and differences in phenotypic means can be used to validate QTL effects. 

This is because allele frequency differences at false positive QTLs will not cause differences in 

phenotypic means between populations. As a validation of the genetic effects on the 

transcriptional response to GCs at the cis eQTLs, we asked if allelic differentiation was 

consistent with observed differences between populations in average transcriptional response 

(i.e. log-fold change) at corresponding genes. 

 

For a phenotype affected by a biallelic polymorphism, the mean phenotypic value for a 

population (µ) is expected to be the sum of the mean phenotypic values in each genotype class 

(genotypes coded by copies of minor allele ),,( 210  ) weighted by their frequencies 

),,( 210 fff : 

 

221100  fff   

 

Assuming Hardy-Weinberg equilibrium, genotype frequencies can be expressed as a function of 

major allele frequency (p = frequency of major allele):  

 

2

2

10

2 )1()1(2  pppp   

 

Assuming additive genotypic effects allows us to express the mean phenotypic value per 

genotype class in terms of the genotypic effect ( ).   

 

)2()1())(1(2 0

2

00

2   pppp  

 

 This reduces, algebraically, to: 

 

p 220   
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Assuming that the mean phenotypic value was the same in both populations (within each 

genotype class) and that the genotypic effect was the same, the predicted difference in mean 

phenotypic value between two populations (e.g. YRI and TSI) can, therefore, be expressed as 

follows: 

 

)(2)22()22( 00 TSIYRITSIYRITSIYRI ppppdifferencepredicted  
 

 

We compared observed differences between populations to expectations based on the allele 

frequencies and the genotypic effects at eQTLs (see Figure 3a). 

 

 

 

 



15 

 

References 

 
1. Akey, J.M., Biswas, S., Leek, J.T. & Storey, J.D. On the design and analysis of gene expression 

studies in human populations. Nat Genet 39, 807-8; author reply 808-9 (2007). 

2. Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. 

Bioinformatics 24, 1547-8 (2008). 

3. Lin, S.M., Du, P., Huber, W. & Kibbe, W.A. Model-based variance-stabilizing transformation for 

Illumina microarray data. Nucleic Acids Res 36, e11 (2008). 

4. Dunning, M.J., Ritchie, M.E., Barbosa-Morais, N.L., Tavare, S. & Lynch, A.G. Spike-in 

validation of an Illumina-specific variance-stabilizing transformation. BMC Res Notes 1, 18 

(2008). 

5. Stark, A.L. et al. Heritable and non-genetic factors as variables of pharmacologic phenotypes in 

lymphoblastoid cell lines. Pharmacogenomics J (2010). 

6. Choy, E. et al. Genetic analysis of human traits in vitro: drug response and gene expression in 

lymphoblastoid cell lines. PLoS Genet 4, e1000287 (2008). 

7. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene 

lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57 (2009). 

8. Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. 

Genome Biol 4, P3 (2003). 

9. Zhou, L. et al. Infection and genotype remodel the entire soybean transcriptome. BMC Genomics 

10, 49 (2009). 

10. Grundberg, E. et al. Global analysis of the impact of environmental perturbation on cis-regulation 

of gene expression. PLoS Genet 7, e1001279 (2011). 

11. Guan, Y. & Stephens, M. Practical issues in imputation-based association mapping. PLoS Genet 

4, e1000279 (2008). 

12. Veyrieras, J.B. et al. High-resolution mapping of expression-QTLs yields insight into human gene 

regulation. PLoS Genet 4, e1000214 (2008). 

 

 

  

 


