Supplementary Methods
Network Evaluation
The goal of building random networks is to compare disease networks to what is expected given the binding degrees (the number of connections in the database) of associated proteins. In order for the random networks to represent appropriate comparisons, they must mimic the original networks in their overall structure; furthermore, the binding degree of any one protein in the random network should be exactly the same as it is in the original network. As such, we used a within-degree node-label permutation method and built random networks whose network topology, as measured by clustering coefficient and conformity to the Power Law, is close to the original network and whose individual proteins have the same degree of binding as in the original network [1,2]. 

We define the original PPI network G (the InWeb network) to have a node corresponding to each protein known to participate in a protein-protein interaction, where an edge represents such interaction. Let G have n vertices and E edges. Let G0 be a random graph with the same set of nodes as G and randomly-assigned edges. Moreover, for every node i0 in G0 deg(i0) = deg(i) where deg(i0) is the binding degree of node i0. The algorithm for generating a graph G0 from a given graph G involves two steps, a permutation step and a switching step.
Permutation Step: Let k1, k2, k3, ..., km be the sequence of all possible node degrees in G and let Ki be the set of vertices that have degree ki with 1 ≤ i ≤ m. The following procedure permutes sets of same degree nodes 1,000 times:

1. Repeat the following 1,000 times:

2. For every set Ki, 1 ≤ i ≤ m
(a) Choose randomly two vertices a and b.
(b) Swap its positions in set Ki.
The permutation step has a high impact in randomizing graph G but it has one limitation: the algorithm cannot perturb nodes that have unique degrees. Scale-free networks have a particular degree distribution that follows a power-law, at least asymptotically [2]. The fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as P(k) ~ k-γ where γ is a constant whose value depends on the network. The presence of high degree nodes in the network, often referred to as “hubs”, that have unique degrees creates several situations where our method cannot permute. 
Let Gunique be the union of sub-networks consisting of high-degree nodes and their edges. In order to completely randomize graph G we apply an edge permutation algorithm for network Gunique.

Switching Step: The edge permutation algorithm starts from a given network and involves carrying out a series of switching steps whereby a pair of edges (A−B, C−D) is selected at random and the ends are exchanged to give (A−D , B−C) or (A−C , B−D). The exchange is only performed if it generates no multiple edges or self-edges; otherwise, it is not performed. The entire process is repeated some number T2E times, where E is the number of edges in the graph and T2 is the switching threshold, chosen large enough that the mixing is sufficient. The switching algorithm is used as a second step in our method, continuing the randomization process of graph G after the permutation step. It is applied only to Gunique graph defined by the set of nodes with unique degrees and their edges. The following procedure perturbs Gunique.

1. Repeat the following T2 times:

2. While there are nodes unvisited
(a) Choose randomly edges A−B and C−D
(b) If A−D and B−C do not exist 
i. Add edges A−D and B−C to G0
ii. Remove edges A−B and C−D from G0


The benefit of the permutation method used is that we repeat the entire process to generate 50,000 permuted networks perfectly matched for size, binding degree of proteins within it and overall network structure. As we show in the candidate gene section, this method importantly allows us to score individual proteins in the network, in addition to the network as a whole. Note that since we remove within-locus binding from the original network, random networks then have to be disease-specific. The files placed on our online resource are not disease specific in order to be universal – however, removing within-locus binding before generation of random networks compared to removing them afterward results in minor differences.

To ensure the robustness of our significance, we tested two alternative methods: we (1) built networks from randomly selected SNPs and (2) permuted all the edges, rather than only networks of nodes with unique degrees. We carried this out in CD and RA. Permuting the SNPs requires that the randomly chosen loci be matched for gene content as well as average binding degree of encoded proteins; method 1 is thus severely limited by the strict matching criteria, making this method unsuitable, and additionally, it does not easily allow for scoring of individual proteins. Thus, we permuted 1000 times and remove permutations for which the binding degree distribution of proteins in randomly selected loci was different (binding degree was greater or less than the mean of the disease proteins’ binding degrees plus or minus 10, respectively, and the protein with the highest binding degree was more than the disease protein with the highest binding degree plus 20). Method 2 involves randomly shuffling the edges such that the number of edges per protein is preserved but the identity of binding partners is changed.  Overall, the significance is replicated, though the SNP matching was to a lesser extent (since we were unable to match for full binding degree in most cases). The results of the aforesaid two methods are shown in Figures S3 and S4. 
Evaluation of Permutation Method


To test whether our permutation method created random networks that matched the InWeb network in overall properties, we computed the binding degree distribution and the clustering coefficient for each random network. The binding degree distribution of the InWeb network, which is scale-free, follows the power law, and the random networks should too if they are structured like the InWeb network [2-4]. Because we permute within-degree, the distribution should be identical; indeed, we found that the random networks follow the power law and their distribution, which fits k-1.7 (where k is equal to a given binding degree), are equivalent to the InWeb network. Secondly, the clustering coefficient, C, which is the probability that two binding partners of a vertex are connected, was computed for the random networks and the InWeb network. We found that the InWeb clustering coeffecient was close to that of the random networks: C for the InWeb network was 0.261 and the mean C for the random networks was 0.197. The difference is due to the small amount of edge permutation that we perform on nodes with unique degrees.


Next, we tested the distribution of p-values that the permutation method reported for randomly selected groups of 30 SNPs (to roughly mimic RA and CD loci sets). If the permutation method correctly tested the null hypothesis, then the distribution of p-values for each metric should be uniform. For 50 such random groups of SNPs, we find via a (2 test for uniform distribution that the network connectivity, the common interactor connectivity, and the associated protein indirect connectivity fit what is expected under a uniform distribution (p = 0.923, p = 0.787 and p = 0.896). The associated protein direct connectivity is skewed towards insignificant p-values (p = 1), and thus the p-value distribution for this metric is less uniform. However, the skew towards p=1 for random SNPs indicates that for this metric, the permutation method would be more likely to call a false negative rather than a false positive. 


Finally, to validate that p-values are comparable across proteins, we tested for a correlation between prioritization p-value and binding degree. Such a correlation would indicate that the network significance assigned to individual proteins is mainly a function of representation in InWeb rather than relevance to disease processes. First, we selected 25 sets of 30 random gene-containing SNP wingspans, built random networks and ran them through the pipeline using 5,000 permutations. We then evaluated the p-values assigned to individual proteins (1046 proteins in total across all random networks). The R2 between binding degree and –log(p) was 0.000094 (p=0.757). We then collected the scores for proteins from all 5 complex traits discussed here (408 proteins in total) and R2 was 0.0065 (p=0.104). We therefore conclude that p-values assigned to proteins are not heavily confounded by the degree to which they are represented in the database.

Testing Method on Fanconia Anemia

Genes that harbor risk variants for Mendelian disease are often found to physically interact [5,6]. One such disease, Fanconi Anemia (FA), is a canonical example, where causal genes participate in the same protein complex or downstream signaling. We therefore input 9 FA genes (FANC- A, B, C, D2, E, F, L, M, I) into the pipeline and found that the direct network connectivity was 23, which is many more than expected by chance (p < 2 × 10-5, an average of 0 expected by chance). The associated protein direct connectivity, associated protein indirect connectivity and common interactor connectivity were all significantly enriched (p < 1 × 10-5, p = 0.00150, p = 0.00373, respectively). These results agree with the current understanding of FA pathogenesis. The network is shown in Figure S5. 
Nomination of candidate genes within loci.

We applied an iterative scoring method to nominate candidate genes in multigenic loci. The goal of the approach is to identify a subset of candidate genes per locus (preferably one candidate gene although risk variants, if regulatory, could feasibly affect multiple genes) that are more highly connected to disease loci than by chance via permutation, or that score the highest compared to other proteins in the locus.

For a given gene in a multigenic locus, we identify whether it participates in the direct network only, the indirect network only, or both. If it participates in the direct network, we enumerate the number of distinct loci it connects to, D, and compare this number to the values obtained in permuted networks Di for the ith permutation. The number of successes, S, is enumerated, where S=1 if Di is greater than or equal to D, otherwise S equals 0. After 50,000 permutations, the direct score for that protein is therefore:
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If the protein participates in the indirect network, we perform a similar enumeration. A caveat to the indirect connections is that unlike direct connections, a protein can indirectly connect to another protein in multiple ways and to a locus in even more ways. Based on the biological assumption that more indirect connections suggests more relatedness (functionally speaking), we would like to up-weight additional connections; as such, the indirect binding score I between a protein and another locus is the maximum number of indirect connections to a protein in that locus over all proteins in that locus. We compare I to the values Ii obtained in permuted networks for the ith permutation. The number of successes, S, is enumerated, where S=1 if Ii is greater than or equal to I, otherwise S equals 0. After 50,000 permutations, the indirect score for that protein is therefore:
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If a protein participates in both networks, the direct and indirect scores are Bonferroni correct for two tests and the best score is assigned. 


Thus, each protein emerges with a final score that is used to nominate candidate genes within a locus; this score is further Bonferroni corrected for the number of possible candidates in that locus. In the text we distinguish between genes that achieve a corrected p < 0.05 from those that only achieve nominal significance. Nominal significance refers to significant after corrected for 2 tests (where applicable) but without correction for the number of genes in a locus; however, when building final networks (Figure 4) we use nominally significant genes. Genes in single-gene loci are automatically nominated if they participate in either network, but are only included as “candidates” if they achieved p < 0.05. This process is iterated twice where upon genes scoring p < 0.05 are nominated as the definitive causal gene, and all other genes in that locus are removed for the next iteration. 

Calculating Tissue Specificity

mRNA expression information was downloaded from a previously published dataset and is described elsewhere [7]. The dataset consists of enrichment scores for 14,184 transcripts measured in 54 immune, 8 gastro-intestinal, 27 neurological and 37 miscellaneous other tissues (126 total). The enrichment score reflects the expression of a given transcript in a particular tissue compared to the rest of the transcripts in that tissue [7]. To test the tissue-specificity of the candidate genes, for each tissue we compared the enrichment score distribution of the candidate genes to the rest of the genes in the dataset. We used a 1-tailed Wilcoxon rank-sum test to assign significance to each tissue. We found that in both RA and CD, nearly all immune tissues ranked higher than other tissues. To test whether our finding was a function of all genes in CD and RA loci being immune genes, we took the rest of the genes in associated loci for RA and CD and compared their expression distribution to the rest of the genes in the genome and found that they were less enriched than the candidate genes (Figure 3). 
Calculating enrichment in association


To test whether common interactors were enriched for association to disease, we designed a method to assign association scores to genes so that the size of the gene does not bias the score achieved. We assigned recombination hotspot-bounded linkage-disequilibrium blocks in the genome an association score that represents the maximum Z score in that block (each block contains multiple SNPs). Since the maximum Z score is correlated to the number of independent SNPs genotyped in that block (r~0.3), we removed this effect via linear regression in R: the original Z score was regressed onto the number of independent SNPs in the LD block, and the residuals from this regression were used as the corrected association score for each block. To determine the number of independent SNPs in a block, we ran the HapMap CEU genotype files (which are representative of both the CD and RA populations in these studies) through the PLINK pruning function, which returns only independent SNPs based on linkage disequilibrium calculations [8]. 

Genes were then assigned association scores based on the blocks they overlap; this score distribution can then be compared to the distribution obtained by scoring all genes in the genome. Using the Z scores from the RA and CD meta analyses [9,10], we scored all gene-overlapping LD blocks in the genome (we removed all regions that contain no genes). This resulted in 28,264 Z scores which we consider our background distribution. For each disease we remove regions corresponding to the known input associated loci since these by definition cannot represent common interactors (30 loci for CD, 29 loci for RA). Common interactors were assigned multiple independent Z scores each according to the LD blocks they overlap (plus 110kb upstream and 40kb downstream of the gene transcriptional footprint). We took all common interactors, determined all unique blocks that they overlapped, and compare this Z score distribution to the background with a 1-tailed Wilcoxon rank sum test. We found that in both diseases, there was evidence of significant enrichment in common interactors for association.
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