Genome-wide scan on total serum IgE levels identifies 

FCER1A as susceptibility locus
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Subjects and study design

A description of the GWA study population and the replication samples is given in Table S1.

KORA S3/F3 500K genotyping and quality control

Genotyping for KORA S3/F3 500K was performed using Affymetrix 500K Array Set consisting of two chips (Sty I and Nsp I). Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard recommendations. Genotypes were determined using BRLMM clustering algorithm (http://www.affymetrix.com/support/technical/whitepapers/brlmm_ whitepaper.pdf). The genotypes were determined in batches of at least 400 chips. For quality control purposes, we applied a positive control and a negative control DNA every 48 samples. The overall genotyping efficiency of the GWA was 98.26 %. Before statistical analysis, we performed filtering of both conspicuous chips and SNPs based on quality measures to ensure robustness of association analysis. On chip level only subjects with overall genotyping efficiencies of at least 93% for both chips and at most one discordant call for 50 SNPs being on both chips were included. In addition the called gender has to agree with the gender in the KORA study database. On SNP level from a total of 500,568 SNPs, we excluded for the purpose of this analysis all SNPs on chromosome X leaving 490,032 autosomal SNPs for the GWA screening step. From these 353,569 (72.15%) SNPs passed all quality control criteria, and were selected for the subsequent association analyses. Criteria leading to exclusion were genotyping efficiency < 95% and minor allele frequency (MAF) < 3%. An exact Fisher test has been used to detect deviations from Hardy Weinberg Equilibrium, and we excluded all SNPs with P-values below 10-6. Details on the number of excluded SNPs per quality criterion are described in Table S2. 
Detailed information on SNP selection for replication and finemapping

For replication in KORA S4 (population-based, n=3,890), we used the following inclusion criteria: 

(i) P < 10-4 in stage 1 analysis

(ii) P <10-3 with at least one neighboring SNP (+/-100 kb) with P<10-3 

Details on the SNPs selected for replication are shown in Table S3.
After we had identified the FCER1A and RAD50 region through the genome-wide scan and replication, we additionally analysed 6 tagging SNPs in FCER1A as well as 4 tagging SNPs in RAD50 using the pairwise tagging algorithm (r2 >0.8) implemented in HAPLOVIEW 3.3 (HapMap data release #22, March 2007, on NCBI B36 assembly, dbSNP b126. In addition, two previously described functional SNPs of FCER1A [1,2] and 2 SNPs in intron 24 of the RAD50 hypersensitive site 7 (RHS7) [3] were genotyped.  
SNP genotyping and quality control in the replication samples

Genotyping of SNPs was performed with the iPLEX™ (Sequenom San Diego, CA, USA) method by means of matrix assisted laser desorption ionisation-time of flight mass spectrometry method (MALDI-TOF MS, Mass Array™, Sequenom, San Diego, CA, USA) according to the manufacturers instructions.(www.sequenom.com ). Shortly, 5 ng of genomic template DNA were amplified applying 5 units of HotStarTaq DNA Polymerase (Qiagen, Hilden, Germany). Thermocycling started with a single denaturation step for 15 min at 95°C, followed by 45 cycles of denaturation for 20 sec at 95°C, annealing for 30 sec at 56°C and extension at 72°C for 1 min, finally followed by 72°C for 10 min.

Subsequently PCR products were treated with shrimp alkaline phosphatase (SAP, Amersham, Freiburg, Germany) for 20 min at 37°C to remove excess dNTPs followed by 10 min at 85°C to inactivate SAP (Table S3). Base extension (iPLEX™ Sequenom, San Diego, CA) reactions in a final volume of 10 μl contained extension primers at a final concentration of 0.635 μM and 0.6 units ThermoSequenase (Amersham, Freiburg, Germany).

Base extension reaction conditions were 94°C for 2 min, followed by 40 cycles of 94°C for 5 sec, 52°C for 5 sec, and 72°C for 5 sec. Afterwards the base extension products were treated with SpectroCLEAN resin (Sequenom, San Diego, CA, USA). 20 nanoliters of the reaction solution were spotted onto a 384 format SpectroCHIP microarray (Sequenom, San Diego, CA, USA) presloaded with a matrix of 3-hydroxypicolinic acid (3-HPA). A modified Bruker Biflex MALDI-TOF MS was used for data acquisitions from the SpectroCHIP. Genotype calling was performed in real time with MassARRAY RT software version 3.0.0.4 (Sequenom, San Diego, CA, USA). For quality control 5% of the selected samples were genotyped in duplicate and in addition 4% of negative controls were used.

Primer sequences of the SNPs selected for replication and fine mapping are shown in Table S4.
Mutational analysis FCER1A 

FCER1A exons were amplified with intronic primers and were directly sequenced using a BigDye Cycle sequencing kit (Applied Biosystems).
Details are provided in Tables S5 and S6. 

Haplotype analysis

Haplotype reconstruction and association analysis from the unphased genotypes was performed on the KORA S4 replication sample using the SNP tagger implemented in HAPLOVIEW 3.3.2 [4] and the function haplo.glm implemented in the S-PLUS/R library HaploStats [5] (http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm). The latter computes maximum likelihood estimates of the haplotype probabilities using an EM algorithm. All common haplotypes were included in the linear regression; the most common haplotype served as reference. Rare haplotypes (frequency <1%) were pooled and included in the model as one group. Each possible haplotype combination per individual entered the additive model as a weighted observation. The weights were calculated from the posterior probabilities of the respective pair of haplotypes. Haplotype analysis was performed on all FCER1A and RAD50 SNPs replicated in KORA S4.  Results of the haplotype analysis, which was computed adjusted for gender and age, are reported in Table S7.

Analysis of population sub-structure

The association is very unlikely to be due to population stratification for two reasons: First, if the result would indeed be caused by population stratification, this stratification would have been the same in the KORA, LISA, GINI and ISAAC Study with the same substructures and the same extent of substructure in each of the three samples. Second a recent experimental assessment has found little population stratification to exist within and across Germany [6]. To test for possible population stratification in KORA S3/F3 500K an EIGENSOFT analysis was performed as described in [7]. A genomic control analysis led to a value of λ, the inflation factor, of 1.09.

Extended SNP analysis in the RAD50-IL13 region in a subset of 526 children from the ISAAC replication cohort

Table S8 shows details of the additional SNPs typed in a subset of the ISAAC cohort and their association with total IgE. We report the p-values of a t-test in a dominant model. All tests are based on log-transformed IgE-values. Figure S2 shows the patterns of pairwise LD between the SNPs at the RAD50-IL13 locus.
Additional association analysis of FCER1A and RAD50 with AE and asthma

Associations of FCER1A and RAD50 variants tagging the significant SNPs from the GWAS and replication studies on total IgE with the dichotomous traits AE and asthma were analysed in a cohort of 562 German parent-offspring trios for AE and a cohort of 638 asthma cases and 633 controls. German trios and UK asthma cases and controls were recruited and phenotyped as previously described [8,9]. In the family-setting we analysed association of single SNPs with eczema using the classical transmission disequilibrium test (TDT), while association with log-transformed total IgE values was analysed with the quantitative version of the TDT (QTDT). For association between asthma status and SNP genotype we fitted parametric model using the LAMP program. The program estimates disease allele frequency, a SNP allele frequency and three penetrances(disease prevalence is set to 5%) by assuming a multiplicative model and ignored linkage [10,11]. Association analysis of IgE was applied with MERLIN (-fastAssoc option). We fitted a simple regression model and used a variance component approach to account for the correlations between family members. The program estimates the additive effect of each SNP on the level of IgE and imputes missing genotype with expected genotype score using the Lander-Green algorithm [12,13].

Results are shown in Table S9.
Post-hoc analysis of previously reported candidate genes

In a secondary approach, we also examined the results of the GWAS with respect to previously reported candidate genes for total IgE (Table S10). To this end, we searched the public databases for candidate genes for total IgE identified in at least two independent cohorts of substantial size (>200 subjects).

We list all SNPs from within or around (±100kb) these genes covered by the affymetrix 500k screening panel. In addition, we checked for affymetrix SNP(s) in LD (r2>0,6) with reported variants and their association with total IgE in our GWAS. Occasionally it was not possible to pinpoint to one SNP as being more important among a number of SNPs with equally strong and potentially even independent effects (“multiple SNPs”). In addition, in some of the cases we were not able to derive rs numbers.

Table S11 shows all affymetrix SNPs from within or around (±100kb) selected candidate genes which yielded a nominal p-value < 0.05.
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