Text S2: Sampling variance of genetic correlation

Assume that two traits y_1 and y_2 are measured on all individuals with heritabilities of h_1^2 and h_2^2 , genetic correlation of r_G , and phenotypic correlation of r_P . Assume that y_1 and y_2 are standardised so that $E(y_1) = E(y_2) = 0$ and $var(y_1) = var(y_2) = 1$. If we construct two new traits,

$$z_1 = y_1 + y_2 = a_1 + e_1$$
 and $z_2 = y_1 - y_2 = a_2 + e_2$

where a_1 and a_2 are the genetic effects, we then have

$$var(z_1) = 2(1 + r_P)$$
, $var(z_2) = 2(1 - r_P)$ and $cov(z_1, z_2) = 0$

$$var(a_1) = h_1^2 + h_2^2 + 2h_1h_2r_G$$
, $var(a_2) = h_1^2 + h_2^2 - 2h_1h_2r_G$, and $cov(a_1, a_2) = h_1^2 - h_2^2$

If we denote h_{z1}^2 and h_{z2}^2 as the heritabilities for the two new traits, then

$$h_{z1}^2 = \text{var}(a_1) / \text{var}(z_1)$$
 and $h_{z2}^2 = \text{var}(a_2) / \text{var}(z_2)$

We know from our derivations above that $var(\hat{h}_{z1}^2) = var(\hat{h}_{z2}^2) = 2/[N^2 var(A_{ij})]$, with N being the sample size and $var(A_{ij})$ being the variance of the genetic relationship between individuals i and j.

We can calculate r_G from the equations above

$$r_{G} = [\text{var}(a_1) - \text{var}(a_2)] / [\text{var}(a_1) + \text{var}(a_2) - 2(h_1 - h_2)^2]$$

Let
$$\alpha = \text{var}(a_1)$$
, $\beta = \text{var}(a_2)$ and $\Delta = 2(h_1 - h_2)^2$, then

$$\hat{r}_{\rm G} = [\hat{\alpha} - \hat{\beta}]/[\hat{\alpha} + \hat{\beta} - \hat{\Delta}]$$

A first order Taylor approximation of the sampling variance of \hat{r}_{G} is

$$\operatorname{var}(\hat{r}_{G}) \approx \left(\frac{\partial \hat{r}_{G}}{\partial \hat{\alpha}}\right)^{2} \operatorname{var}(\hat{\alpha}) + \left(\frac{\partial \hat{r}_{G}}{\partial \hat{\beta}}\right)^{2} \operatorname{var}(\hat{\beta}) + 2 \frac{\partial \hat{r}_{G}}{\partial \hat{\alpha}} \frac{\partial \hat{r}_{G}}{\partial \hat{\beta}} \operatorname{cov}(\hat{\alpha}, \hat{\beta})$$

where the sampling variance of $\hat{\Delta}$ is ignored because $\hat{\Delta}$ is likely to be small.

Since
$$\frac{\partial \hat{r}_G}{\partial \hat{\alpha}} = \frac{2\hat{\beta} - \hat{\Delta}}{(\hat{\alpha} + \hat{\beta} - \hat{\Delta})^2}$$
 and $\frac{\partial \hat{r}_G}{\partial \hat{\beta}} = \frac{-2\hat{\alpha} + \hat{\Delta}}{(\hat{\alpha} + \hat{\beta} - \hat{\Delta})^2}$, we can get

$$\frac{\partial \hat{r}_{G}}{\partial \hat{\alpha}} = \frac{2(\hat{h}_{1}^{2} + \hat{h}_{2}^{2} - 2\hat{r}_{G}\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}}) - 2(\hat{h}_{1}^{2} + \hat{h}_{2}^{2} - 2\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}})}{16\hat{h}_{1}^{2}\hat{h}_{2}^{2}} = \frac{1 - \hat{r}_{G}}{4\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}}}$$

$$\frac{\partial \hat{r}_{G}}{\partial \hat{\beta}} = \frac{-2(\hat{h}_{1}^{2} + \hat{h}_{2}^{2} + 2\hat{r}_{G}\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}}) + 2(\hat{h}_{1}^{2} + \hat{h}_{2}^{2} - 2\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}})}{16\hat{h}_{1}^{2}\hat{h}_{2}^{2}} = \frac{-1 - \hat{r}_{G}}{4\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}}}$$

Since $cov(z_1, z_2) = 0$, $cov(\hat{\alpha}, \hat{\beta}) \approx 0$ so that

$$\begin{aligned} \operatorname{var}(\hat{r}_{G}) &\approx \left(\frac{1 - \hat{r}_{G}}{4\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}}}\right)^{2} \operatorname{var}(\hat{\alpha}) + \left(\frac{1 + \hat{r}_{G}}{4\sqrt{\hat{h}_{1}^{2}\hat{h}_{2}^{2}}}\right)^{2} \operatorname{var}(\hat{\beta}) \\ &= \frac{(1 - \hat{r}_{G})^{2}}{16\hat{h}_{1}^{2}\hat{h}_{2}^{2}} \left[\operatorname{var}(z_{1})\right]^{2} \operatorname{var}(\hat{h}_{z1}^{2}) + \frac{(1 + \hat{r}_{G})^{2}}{16\hat{h}_{1}^{2}\hat{h}_{2}^{2}} \left[\operatorname{var}(z_{2})\right]^{2} \operatorname{var}(\hat{h}_{z1}^{2}) \\ &= \frac{(1 - \hat{r}_{G}r_{P})^{2} + (\hat{r}_{G} - r_{P})^{2}}{\hat{h}_{1}^{2}\hat{h}_{2}^{2}N^{2} \operatorname{var}(A_{ij})} \end{aligned}$$

For power calculation, we can substitute the estimates with the true parameters. We then have

$$\operatorname{var}(\hat{r}_{G}) \approx \frac{(1 - r_{G} r_{P})^{2} + (r_{G} - r_{P})^{2}}{h_{1}^{2} h_{2}^{2} N^{2} \operatorname{var}(A_{ij})}$$