<table>
<thead>
<tr>
<th>Phenotype Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ADP-induced platelet aggregation</td>
</tr>
<tr>
<td>2. adrenal Chga/chromogranin A fragments/mL</td>
</tr>
<tr>
<td>3. adrenal Chgb/chromogranin B fragments/mL</td>
</tr>
<tr>
<td>4. adrenal corticosterone/mL</td>
</tr>
<tr>
<td>5. adrenal dopamine beta/hypothalamic/serotonin protein</td>
</tr>
<tr>
<td>6. adrenal dopamine_n/g protein</td>
</tr>
<tr>
<td>7. Adrenal Epinephrine</td>
</tr>
<tr>
<td>8. adrenal epinephrine/mL</td>
</tr>
<tr>
<td>9. adrenal PAH/phenyl/tyrosine/myristate/serotonin protein</td>
</tr>
<tr>
<td>10. adrenal Scg2/secretomycin 1 fragments/mL</td>
</tr>
<tr>
<td>11. area under the curve during intraperitoneal glucose tolerance test in male rats fed a diet with 60% fructose from 8 to 10 weeks</td>
</tr>
<tr>
<td>12. area under the curve during intraperitoneal glucose tolerance test in male rats fed a diet with 60% fructose from 8 to 10 weeks for blood glucose level/mL</td>
</tr>
<tr>
<td>13. AUC during OGTT for insulin</td>
</tr>
<tr>
<td>14. AUC during OGTT, glycemia</td>
</tr>
<tr>
<td>15. basal glucose uptake corrected to cell</td>
</tr>
<tr>
<td>16. basal glycogenesis in diaphragm/mL</td>
</tr>
<tr>
<td>17. basal lipogenesis in epididymal fat/mL</td>
</tr>
<tr>
<td>18. basal lipogenesis in epididymal fat/mL corrected to cell volume</td>
</tr>
<tr>
<td>19. basal lipogenesis in epididymal fat/mL corrected to cell volume</td>
</tr>
<tr>
<td>20. basal lipogenesis in epididymal fat/mL corrected to cell volume</td>
</tr>
<tr>
<td>21. blood glucose/mL_0 in during OGTT</td>
</tr>
<tr>
<td>22. blood glucose/mL_10 min during OGTT</td>
</tr>
<tr>
<td>23. blood glucose/mL_20 min during OGTT</td>
</tr>
<tr>
<td>24. body weight of mothers_g</td>
</tr>
<tr>
<td>25. body weight of mothers_10 wk old</td>
</tr>
<tr>
<td>26. cholesteral content in liver</td>
</tr>
<tr>
<td>27. compensated renal growth in males_8 weeks versus 5 weeks scaled to body weight</td>
</tr>
<tr>
<td>28. conditioned taste aversion</td>
</tr>
<tr>
<td>29. conditioned taste aversion arcosin transform</td>
</tr>
<tr>
<td>30. corticosterone</td>
</tr>
<tr>
<td>31. CORT</td>
</tr>
<tr>
<td>32. CgA</td>
</tr>
<tr>
<td>33. CgB</td>
</tr>
<tr>
<td>34. delta_cortisol effects mm_Hg</td>
</tr>
<tr>
<td>35. delta_cortisol effects rem_Hg</td>
</tr>
<tr>
<td>36. delta_dopamine effects mm_Hg</td>
</tr>
<tr>
<td>37. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F17</td>
</tr>
<tr>
<td>38. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F18</td>
</tr>
<tr>
<td>39. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F19</td>
</tr>
<tr>
<td>40. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F20</td>
</tr>
<tr>
<td>41. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F21</td>
</tr>
<tr>
<td>42. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F22</td>
</tr>
<tr>
<td>43. diastolic blood pressure determined by direct puncture of the carotida artery under light ether anesthesia in 12 week old males fed a normal lab chow at generations F16_F23</td>
</tr>
<tr>
<td>44. difference between ins_0 vol and ins_50 vol</td>
</tr>
<tr>
<td>45. difference between maximal and basal glucose uptake corrected to cell</td>
</tr>
<tr>
<td>46. dry weight of copper concentration in livers</td>
</tr>
<tr>
<td>47. epididymus weight</td>
</tr>
<tr>
<td>48. epididymus weight corrected to body weight</td>
</tr>
<tr>
<td>49. epididymus weight_g_10_wks_old_rats</td>
</tr>
<tr>
<td>50. epididymus weight_g_10_wks_old_rats corrected to 100g body weight</td>
</tr>
<tr>
<td>51. fat cell volume</td>
</tr>
<tr>
<td>52. fat weights_g in left horn of the uterus</td>
</tr>
<tr>
<td>53. fat weights_g in right horn of the uterus</td>
</tr>
<tr>
<td>54. glucose concentrations 10 weeks_old fed a diet with 60% fructose from 8 weeks to 10 weeks male</td>
</tr>
<tr>
<td>55. glucose concentrations 10 weeks_old fed a diet with 60% fructose from 8 weeks to 10 weeks male</td>
</tr>
<tr>
<td>56. glucose concentrations before intraperitoneal glucose tolerance test in male rats 10 weeks old fed a diet with 60% fructose</td>
</tr>
<tr>
<td>57. glucose concentrations during intraperitoneal glucose tolerance test 10 min after glucose load in male rats 10 weeks old fed a diet with 60% fructose</td>
</tr>
<tr>
<td>58. glucose concentrations during intraperitoneal glucose tolerance test 30 min after glucose load in male rats 10 weeks old fed a diet with 60% fructose</td>
</tr>
<tr>
<td>59. glucose concentrations during intraperitoneal glucose tolerance test 60 min after glucose load in male rats 10 weeks old fed a diet with 60% fructose</td>
</tr>
<tr>
<td>60. hemacrit at the age of 30 days in males fed a standard chow</td>
</tr>
<tr>
<td>61. hemacrit at the age of 60 days in males fed a standard chow</td>
</tr>
<tr>
<td>62. insulin concentrations 8 weeks old fed a normal lab chow 0 days male</td>
</tr>
<tr>
<td>63. insulin concentrations 8 weeks old fed a normal lab chow 0 days male</td>
</tr>
<tr>
<td>64. insulin glucose ratios 10 weeks old fed a diet with 60% fructose from 8 weeks to 10 weeks male</td>
</tr>
<tr>
<td>65. insulin glucose ratios 10 weeks old fed a diet with 60% fructose from 8 weeks to 10 weeks male</td>
</tr>
<tr>
<td>66. insulin glucose ratios 8 weeks old fed a normal lab chow 0 days male</td>
</tr>
<tr>
<td>67. insulin glucose ratios 8 weeks old fed a normal lab chow 0 days male</td>
</tr>
<tr>
<td>68. insulin norepinephrine ng_mg_protein</td>
</tr>
<tr>
<td>69. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>70. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>71. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>72. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>73. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>74. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>75. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>76. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>77. insulin stimulated glycogenesis in epididymal fat/mL glucose_g_2h</td>
</tr>
<tr>
<td>78. Interleukinin L112</td>
</tr>
<tr>
<td>79. Interleukinin L13</td>
</tr>
<tr>
<td>80. Interleukinin L6</td>
</tr>
<tr>
<td>81. Interleukinin L8</td>
</tr>
<tr>
<td>82. Interleukinin L8</td>
</tr>
<tr>
<td>83. isoprenaline induced lipolysis of isolated adipocytes connected to cell volume</td>
</tr>
<tr>
<td>84. isoprenaline induced lipolysis of isolated adipocytes connected to cell volume</td>
</tr>
<tr>
<td>85. isoprenaline induced lipolysis of isolated adipocytes connected to cell volume</td>
</tr>
<tr>
<td>86. isoprenaline induced lipolysis of isolated adipocytes connected to cell volume</td>
</tr>
<tr>
<td>87. kidney cortex glatatohne_NAADP_min_gprotein</td>
</tr>
<tr>
<td>88. kidney cortex glatatohne_NAADP_min_gprotein</td>
</tr>
<tr>
<td>89. kidney cortex glatatohne_NAADP_min_gprotein</td>
</tr>
<tr>
<td>90. kidney cortex GSH_Px dependent superoxide dismutase N_GSH_min_gprotein</td>
</tr>
<tr>
<td>91. kidney cortex SOO superoxide dismutase NL_gprotein</td>
</tr>
<tr>
<td>92. kidney cortex TBARS_min_gprotein</td>
</tr>
<tr>
<td>93. kidney weight</td>
</tr>
<tr>
<td>94. kidney weight corrected to body weight</td>
</tr>
<tr>
<td>95. leptin</td>
</tr>
<tr>
<td>96. leptin</td>
</tr>
<tr>
<td>97. leptin</td>
</tr>
<tr>
<td>98. leptin</td>
</tr>
<tr>
<td>99. leptin</td>
</tr>
<tr>
<td>100. leptin</td>
</tr>
<tr>
<td>101. leptin</td>
</tr>
<tr>
<td>102. leptin</td>
</tr>
<tr>
<td>103. leptin</td>
</tr>
<tr>
<td>104. leptin</td>
</tr>
<tr>
<td>105. leptin</td>
</tr>
<tr>
<td>106. leptin</td>
</tr>
<tr>
<td>107. leptin</td>
</tr>
<tr>
<td>Serum_SgII</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>serum_LDL_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_LDL_cholesterol_concentrations_in_11_week_old_males_fed_a_high_fat_high_cholesterol_diet_for_4_weeks</td>
</tr>
<tr>
<td>serum_insulin_nmol_L_nonfasted_10_wks</td>
</tr>
<tr>
<td>serum_insulin_nmol_L_60_min_during_OGTT</td>
</tr>
<tr>
<td>serum_insulin_nmol_L_120_min_during_OGTT</td>
</tr>
<tr>
<td>serum_IDL_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL_cholesterol_concentrations_in_male_rats_10_weeks_old_fed_a_diet_with_60per_fructose_from_8_weeks_to_10_weeks</td>
</tr>
<tr>
<td>serum_HDL3_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL3_cholesterol_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL2_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL2_cholesterol_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL2_cholesterol_concentrations_in_11_week_old_males_fed_a_high_fat_high_cholesterol_diet_for_4_weeks</td>
</tr>
<tr>
<td>serum_glutathione_mmolL</td>
</tr>
<tr>
<td>serum_epinephrine_ngml</td>
</tr>
<tr>
<td>Serum_Epinephrine</td>
</tr>
<tr>
<td>serum_dopamine_ngml</td>
</tr>
<tr>
<td>Serum_dopamine</td>
</tr>
<tr>
<td>serum_cystglycine_mmolL</td>
</tr>
<tr>
<td>serum_cysteine_mmolL</td>
</tr>
<tr>
<td>Serum_cysteine</td>
</tr>
<tr>
<td>serum_cortisone_mmol</td>
</tr>
<tr>
<td>serum_dopamine_ng/ml</td>
</tr>
<tr>
<td>serum_dopamine</td>
</tr>
<tr>
<td>serum_Epinephrine</td>
</tr>
<tr>
<td>serum_epinephrine_ng/ml</td>
</tr>
<tr>
<td>serum_glutathione_mmolL</td>
</tr>
<tr>
<td>serum_HD12_cholesterol_concentrations_in_11_week_old_males_fed_a_high_fat_high_cholesterol_diet_for_4_weeks</td>
</tr>
<tr>
<td>serum_HD12_cholesterol_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HD12_phospholipid_concentrations_in_11_week_old_males_fed_a_high_fat_high_cholesterol_diet_for_4_weeks</td>
</tr>
<tr>
<td>serum_HD12_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HD13_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HD13_cholesterol_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL_cholesterol_concentrations_in_11_week_old_males_fed_a_high_fat_high_cholesterol_diet_for_4_weeks</td>
</tr>
<tr>
<td>serum_HDL_phospholipid_concentrations_in_11_week_old_males_fed_a_high_fat_high_cholesterol_diet_for_4_weeks</td>
</tr>
<tr>
<td>serum_HDL_phospholipid_concentrations_in_7_week_old_males_fed_a_standard_chow</td>
</tr>
<tr>
<td>serum_HDL_cholesterol_concentrations_in_male_rats_10_weeks_old_fed_a_diet_with_60per_fructose_from_8_weeks_to_10_weeks</td>
</tr>
<tr>
<td>serum_HD1_cholesterol_concentrations_in_male_rats_10_weeks_old_fed_a_diet_with_60per_fructose_from_8_weeks_to_10_weeks</td>
</tr>
<tr>
<td>serum_HD1_phospholipid_concentrations_in_male_rats_10_weeks_old_fed_a_diet_with_60per_fructose_from_8_weeks_to_10_weeks</td>
</tr>
</tbody>
</table>
Serum sodium

Serum total cholesterol concentrations in 7 week old males fed a standard chow

Serum total cholesterol concentrations in 11 week old males fed a high fat, high cholesterol diet for 4 weeks

Serum total phospholipid concentrations in 11 week old males fed a high fat, high cholesterol diet for 4 weeks

Serum total phospholipid concentrations in 7 week old males fed a standard chow

Serum triglyceride concentrations in male rats 8 weeks old fed a normal lab chow

Serum triglyceride concentrations in male rats 9 weeks old fed a diet with 60% fructose from 8 weeks to 9 weeks

Serum VLDL cholesterol concentrations in 11 week old males fed a high fat, high cholesterol diet for 4 weeks

Serum VLDL cholesterol concentrations in 7 week old males fed a standard chow

Serum VLDL phospholipid concentrations in 11 week old males fed a high fat, high cholesterol diet for 4 weeks

Serum VLDL phospholipid concentrations in 7 week old males fed a standard chow

Triglyceride Liver

Triglyceride Muscle

Urine adrenaline concentration

Urine adrenaline mmol

Urine creatine mmol

Urine dopamine concentration

Urine P mmol

Urine noradrenaline concentration

Urine protein g L

Urine protein g L

Urine uric mmol

Urine Ca mmol L

Urine Cl mmol L

Urine creatinine mmol L

Urine dopamine concentration

Urine K mmol L

Urine Na mmol L

Urine phosphate mmol L

Urine protein g L

Urine uric mmol L

Weight of rats males 12 weeks old

Weight of copper concentration in livers

Systolic blood pressure determined by direct puncture of the carotid artery under light ether anaesthesia in 12 week old males fed a normal lab chow at generations F16, F17

Systolic blood pressure determined by direct puncture of the carotid artery under light ether anaesthesia in 12 week old males fed a normal lab chow at generations F16, F18

Total plasma protein g L

Urine adrenaline concentration

Urine adrenaline mmol

Urine creatine mmol

Urine dopamine concentration

Urine K mmol

Urine Na mmol

Urine noradrenaline concentration

Urine protein g L

Urine uric mmol

Weight of rats males 12 weeks old

Weight of copper concentration in livers