Text S3 Average fixation probability

We wish to find the rate of change of the average probability of fixation of a focal allele,

$$\partial_t \bar{P} = \sum_X g(X) \partial_t P(X) + \sum_X \partial_t g(X) P(X).$$ \hspace{1cm} (21)

The first sum is given by the average of Eq. (2), weighted by genotype frequencies:

$$- \sum_X g(X) \partial_t P(X) = s \bar{P} + \sum_X g(X) S(X) P(X) + \sum_{X,Y} g(X) r(X,Y) (P(Y) - P(X) - \frac{1}{2} \sum_X g(X) P(X)^2.$$ \hspace{1cm} (22)

To calculate the second sum in Eq. (21), we require the rate of change of background frequencies:

$$\partial_t g(X) = S(X) g(X) + \frac{1}{2} \sum_Y (g(Y) R(X,Y) - g(X) R(X,Y)),$$ \hspace{1cm} (23)

where $R(X,Y)$ is the rate at which individuals with genotype X recombine to form individuals with genotype Y. (The factor of 1/2 in Eq. (23) is necessary because each recombination event involves two parents recombining to form two offspring.) Note that unlike $r(X,Y)$ (the rate at which recombination moves the focal allele from background X to background Y), the definition of $R(X,Y)$ does not involve the focal allele, and in general $r(X,Y) \neq \frac{1}{2} R(X,Y)$. However, it is true that $\sum_X g(X) r(X,Y) = \frac{1}{2} \sum_X g(X) R(X,Y)$ for all Y, since both sides are expressions for the total rate of recombination events producing offspring with genotype Y. Thus, when we substitute Eqs. (22) and (23) into Eq. (21), we find that the terms involving S and r cancel, leaving

$$- \frac{\partial \bar{P}}{\partial t} = s \bar{P} - \frac{1}{2} \sum_X g(X) P(X)^2.$$ \hspace{1cm} (24)

Rewriting the second term in terms of the mean and variance of $P(X)$, we obtain Eq. (3).