Figure S5. Relationships among the levels of functional divergence [i.e. the divergence at coding sites (\(D_n\)) or the divergence at conserved noncoding region (\(D_x\))] and neutral polymorphism [i.e. the level of neutral polymorphism (\(\theta_{neu}\)) or the level of normalized neutral polymorphism (\(P_{neu}=\theta_{neu}/d_{neu}\))]. Scatter plots display values of two variables in gray dots for (a) \(D_n\) and \(\theta_{neu}\), (b) \(D_x\) and \(\theta_{neu}\), (c) \(D_n\) and \(P_{neu}\), and (d) \(D_x\) and \(P_{neu}\). Red circles are average values for the pooled gray dots in 100 bins each containing 1% of the data points. The solid, green line shows the fit of a linear model. The values of \(\theta_{neu}\) and \(P_{neu}\) here are based on the Watson data. The results derived from the Perlegen data are given in Fig. 3.