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Abstract

The Hedgehog (Hh) signaling pathway plays a key role in cell fate specification, proliferation,

and survival during mammalian development. Cells require a small organelle, the primary

cilium, to respond properly to Hh signals and the key regulators of Hh signal transduction

exhibit dynamic localization to this organelle when the pathway is activated. Here, we inves-

tigate the role of Cell Cycle Related kinase (CCRK) in regulation of cilium-dependent Hh

signaling in the mouse. Mice mutant for Ccrk exhibit a variety of developmental defects

indicative of inappropriate regulation of this pathway. Cell biological, biochemical and ge-

netic analyses indicate that CCRK is required to control the Hedgehog pathway at the level

or downstream of Smoothened and upstream of the Gli transcription factors, Gli2 and Gli3.

In vitro experiments indicate that Ccrk mutant cells show a greater deficit in response to sig-

naling over long time periods than over short ones. Similar to Chlamydomonas mutants

lacking the CCRK homolog, LF2, mouse Ccrk mutant cells show defective regulation of cili-

ary length and morphology. Ccrk mutant cells exhibit defects in intraflagellar transport (the

transport mechanism used to assemble cilia), as well as slowed kinetics of ciliary enrich-

ment of key Hh pathway regulators. Collectively, the data suggest that CCRK positively reg-

ulates the kinetics by which ciliary proteins such as Smoothened and Gli2 are imported into

the cilium, and that the efficiency of ciliary recruitment allows for potent responses to Hedge-

hog signaling over long time periods.

Author summary

The importance of cilia in development and disease has become broadly appreciated in

recent years due in part to their roles in signal transduction. Despite this attention, crucial

aspects of ciliary assembly and function, such as the mechanisms controlling ciliary

assembly and the signal transduction events occurring in cilia, remain unclear. Cilia play a

central role in sensing and transducing Hedgehog signals in the context of mammalian
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embryogenesis and in a variety of cancers. Here, we investigate the functions of Cell Cycle

Related Kinase (CCRK), which plays an evolutionarily conserved function in the assembly

of cilia and flagella. We find that mouse CCRK positively and negatively regulates ciliary

length. We show that CCRK controls multiple aspects of Hedgehog signaling in vivo and

in vitro by regulating the processing and activities of the Gli transcription factors. Our

data suggest that CCRK controls Hedgehog signaling by promoting the efficient ciliary

import of core signaling components.

Introduction

The role of Hedgehog signaling in vertebrate development

In the mammalian embryo, the Hedgehog (Hh) signaling pathway controls cell proliferation,

cell survival, and tissue patterning (cell fate specification and differentiation) in most tissues

such as the developing nervous system, skeleton, skin, and internal organs (reviewed in [1]).

The role of Hh signaling in tissue patterning has been most extensively studied in the context

of the spinal neural tube. In this system, the Sonic Hedgehog (Shh) ligand functions as a mor-

phogen [2]; cells experiencing the strong, intermediate, low, or absent signaling (in a ventral-

to-dorsal order) adopt the floor plate, motor neuron, V0-V2 interneuron, or dorsal interneu-

ron fates, respectively. The strength of signaling is determined by the amount of ligand cells

experience, as well as the duration of that exposure [3].

Mammalian Hedgehog signaling and the primary cilium

At the surface of signal responding cells, Hh ligands bind to a complex including the trans-

membrane receptor Patched (Ptch1). In the absence of the Hh ligand, Patched inhibits the

seven-pass transmembrane signal transducer, Smoothened (Smo). Binding of Hh ligand to

Patched relieves its inhibition on Smo, thereby activating it. In turn, active Smo regulates the

activity of the Gli family transcription factors, through a process that is not fully understood.

Mammals have three Gli genes (Gli1- 3) [4]. Gli1, whose expression is strongly induced by

Hh signaling, encodes a transcriptional activator of Hh targets but it is not required for embry-

onic Hh signal transduction. Gli2 and Gli3, however, are both necessary to control embryonic

Hh signaling, functioning as activators or repressors of target genes. In the absence of Hh

ligands, Gli2 and Gli3 are phosphorylated by a series of kinases, leading to proteasome-depen-

dent processing into shorter repressor forms [5]. Unprocessed (full-length) forms are kept in a

functionally inactive state due to their physical association with Suppressor of Fused (Sufu,

[6]). Once Smo is activated by signaling, the phosphorylation pattern of Gli proteins is altered

[7]). These changes prevent proteolytic processing (thus repressor formation) and they render

the Gli proteins active such that they can enter the nucleus and activate the expression of a

series of genes, including Gli1 and Ptch1.

In mice, much of this signal transduction occurs in the primary cilium (reviewed in [8]).

This relationship appears to be generally conserved among vertebrates including humans [9,

10]. The primary cilium, present on nearly every cell type in the body, is a microtubule-based

appendage surrounded by an extension of the plasma membrane and anchored by the mother

centriole [11]. It is assembled primarily through a mechanism termed Intraflagellar Transport

(IFT, reviewed in [11]). IFT particles associate with ciliary cargo and microtubule motors,

forming trains that are transported in an anterograde direction towards microtubule plus-

ends (at the distal end of the cilium) by Kinesin II. IFT machinery and cargo to be exported
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from the cilium are loaded onto IFT particles that are returned to the cell body (retrograde

transport towards microtubule minus-ends) through cytoplasmic Dynein 1b.

A large number of mutations have been identified in mice that block the formation of cilia

or alter their assembly and all of these perturbations lead to changes (increase or decrease) in

the activity of Hh signaling in the embryo [12–16]. Key regulatory components of the Hh path-

way show dynamic changes in their localization to cilia, depending on the presence or absence

of signals [17, 18]. In the absence of signals, Patched1 localizes to the cilium, whereas Smo

shows little or no localization. Only a small amount of Gli2, Gli3, and Sufu localize to the cil-

ium (where they concentrate at its tip). In the presence of signals, ciliary localization of

Patched is lost, while Smo, Gli2, Gli3, and Sufu become enriched in the structure [17, 18]. A

number of experiments indicate that this change in ciliary localization is important for the fac-

tors to execute signal transduction [19, 20]. Analysis of mouse mutants has shown that proper

proteolytic processing of full-length Gli proteins to generate repressor forms is dependent on

primary cilia [21]. In parallel, the ability of full-length Gli proteins to undergo differential

phosphorylation, dissociate from Sufu, and activate Hh target genes also requires primary cilia

[22]. Because of this, defects in ciliogenesis result in ligand-independent up-regulation of Hh

targets, down-regulation or absence of ligand-dependent Hh responses, or a combination of

the two effects.

Regulation of ciliary assembly by a kinase, CCRK, and its homologs

Studies of a mutation that perturbs ciliogenesis and Hedgehog signaling in the mouse, broad-
minded (bromi), implicated Cell Cycle-Related Kinase (CCRK, also known as Cdk20) in these

processes [23].

CCRK shares homology with members of the Cyclin-dependent Kinase (CDK) family and

it was originally identified in vertebrates as a Cdk2-activating protein [24]. However, subse-

quent work showed that CCRK has only a minor role in cell cycle progression [25], leaving the

role of mammalian CCRK unclear.

CCRK homologs have been identified and studied in several species (Chlamydomonas rein-
hardtii, C. elegans, Leishmania mexicana, and Danio rerio) and, in all cases, disruption of the

gene leads to defects in ciliary length and/or structure [23, 26–28]. The homolog in the algae

Chlamydomonas is called Long Flagella 2 (LF2). The originally identified mutations in lf2
cause flagella to be significantly longer than normal [26]. However, these mutations were sub-

sequently found to be hypomorphic. In contrast, cells harboring a null allele, lf2-6, generate fla-

gella with a broad range of lengths (either too long, too short, or flagella of different lengths on

the same cell, [29]). Partial knockdown of Ccrk expression in cultured mammalian cells results

in ciliary lengthening [30], as in lf2 hypomorphic Chlamydomonas mutants [26], but the effect

of complete loss of CCRK on Hedgehog signaling and ciliogenesis in mammals has not been

previously determined.

Here, we find that the role of CCRK in mice is complex, as it positively and negatively con-

trols both ciliary length and the activity of the Hh pathway. The results indicate that CCRK

positively regulates import of ciliary cargo including Hh signaling components. They also sug-

gest that efficient flux of Hh signaling components into, and out of, the cilium, is limiting for

long-term, but not initial, Hh responses.

Results

Mouse CCRK is required for embryonic viability and neural patterning

We generated a mutation in the mouse Ccrk gene through gene targeting by removing the first

two exons of the Ccrk genomic locus (see Materials and Methods). This allele, CcrkKO, should
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be null, as it lacks promoter sequences, transcriptional and translational start sites, as well as

the ATP binding site required for kinase activity (Fig 1A). Western blotting of CcrkKO homo-

zygous mutant embryonic extracts indicated that CcrkKO represents a null allele (Fig 1B).

CcrkKO/KO (hereafter referred to as Ccrk-/-) mutant embryos exhibited an embryonic pheno-

type closely resembling that of bromi mutant embryos (Figs 1C and S1), whereas Ccrk+/- mice

showed no apparent phenotype. Ccrk-/- embryos survived until late gestation (embryonic day

Fig 1. Ccrk mutants show pleiotropic embryonic phenotypes. (A) The targeting strategy for generation of a Ccrk null allele. Cre-

mediated recombination was used to generate the null allele (CcrkKO) from the floxed allele. (B) PCR confirmed mutagenesis and western

blotting indicated that CcrkKO is a null allele. (C) Morphological features of embryonic day (E) 9.5 (b,d) and 12.5 (f) Ccrk mutants, such as

exencephaly. Yellow arrows in c,d indicate the lack of the midbrain furrow in Ccrk mutants (d); black arrowheads in e,f highlight the eye

defects in Ccrk mutants (f). (D) Limb skeletal defects, such as preaxial polydactyly (arrow) and achondroplasia of the radius and ulna

(arrowhead).

https://doi.org/10.1371/journal.pgen.1006912.g001
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17.5, E17.5). Like broadminded mutants, Ccrk-/- mutant embryos exhibited a constellation of

defects including exencephaly, mild preaxial polydactyly/limb skeletal defects, reduction of the

retinal pigmented epithelium, and cleft palate (Figs 1C, 1D and S1). We did not detect a

noticeable difference in size between homozygotes and their wild-type littermates. In addition

to failing to close the neural tube, Ccrk-/- mutants lacked the midline furrow in the midbrain,

suggesting that the most ventral, Shh-dependent, floor plate cells were not specified in such

mutants. At neural patterning stages (E10.5) we found uniform low-level expression of Ccrk
throughout the embryo and, as expected due to the mutation induced, Ccrk-/- mutant embryos

failed to show detectable expression (S2 Fig). The phenotypic features we observed have been

described in other mouse mutants with defective Sonic Hedgehog signaling [31–33] and they

are consistent with a role for CCRK in this pathway.

CCRK is required in the spinal neural tube for responses to high levels of

Shh and for repression of weak Hh pathway activity

We investigated the role of CCRK in Shh-dependent neural patterning through analysis of the

Ccrk mutant spinal neural tube (Figs 2 and S3). Shh signaling specifies a number of cell fates

in the neural tube in a concentration and time-dependent manner [3]. The most ventral cell

types, the floor plate and p3 interneuron progenitors flanking the floor plate, require the high-

est/most prolonged extent of Shh signaling. We found that the floor plate was absent in the

Ccrk mutant neural tube, even though Shh expression in the notochord was maintained (Figs

2J and S4). P3 progenitors, marked by Nkx2.2 expression, were reduced in number and

located ectopically in the ventral midline of the mutants (Fig 2I). The reduction in Nkx2.2+

cells was accompanied by ventral expansion of the Pax6-expressing domain in Ccrk mutants

(Figs 2F and S3H), as predicted by the established role of Nkx2.2 in repressing Pax6 expres-

sion. Motor neuron progenitors (pMN) and their post-mitotic descendants, marked by Olig2,

HB9, and Isl1/2 expression, require intermediate levels of Shh signaling while high levels of

signaling inhibit their specification. In Ccrk mutants, the motor neuron progenitor domain

expanded ventrally across the midline (Figs 2G, 2H and S3F), suggesting that mutant cells

exhibit intermediate responses to Shh even when they are positioned ventrally near the source

of Shh ligand. Quantitation of the data (S1 Table) indicates that such changes are statistically

significant. Analysis of patterning over developmental time (controlled for somite stage)

revealed that the dorsalized phenotype was evident at the earliest stages of fate specification

(10–13 somite stage), although by E11.5 (45–47 somite stage) the phenotype had partially

recovered (S4 Fig). We also observed dorsal expansion of the Olig2, HB9, and Isl1/2 expres-

sion domains (motor neurons and their progenitors) in the Ccrk mutant neural tube (Figs 2G,

2H and S3F) in comparison to controls (Figs 2B, 2C and S3E), which was statistically signifi-

cant (S1 Table). The mutant phenotype suggests that Ccrk mutant neural progenitors in the

midline fail to execute the strongest responses to Shh, whereas mutant cells in ventrolateral

regions, dorsal to the normal motor neuron domain, exhibit higher than normal Hh pathway

activity.

As Shh expression in the notochord appeared normal in Ccrk mutants, we hypothesized

that CCRK is required for proper responses to the highest level of Shh signals, rather than pro-

duction of Shh ligands. To address this, we performed a genetic experiment. Rab23 is an antag-

onist of the Shh pathway. In Rab23 mutants, spinal neural progenitors adopt ventral cell fates,

such as p3 and floor plate independently of Shh ligand or the pathway activator Smoothened

[32, 34]. If CCRK acts in the pathway downstream of Shh ligand and of Smoothened, then the

Ccrk mutant patterning phenotype would be genetically epistatic to that of Rab23 mutants.

Indeed, E10.5 Rab23-/-Ccrk-/- double mutants exhibited loss of floor plate and reduction of p3

CCRK controls ciliogenesis and Hh signaling
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Fig 2. Ccrk mutants show defective Shh-dependent patterning of the neural tube. Sections through the

brachial spinal neural tubes of E11.5 wild-type (a-e) and Ccrk mutants (f-j). Note in the mutant that the

CCRK controls ciliogenesis and Hh signaling
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progenitor cell numbers. These features were indistinguishable from those in Ccrk single

mutants, despite the loss of inhibition from Rab23 (S5 Fig, data quantitated in S2 Table).

These data indicate that CCRK is important for regulating Hh pathway activity at a step down-

stream of Shh, Smoothened, and Rab23.

The slight dorsal expansion of the motor neuron domain in Ccrk mutant suggested that

CCRK could also be required for complete repression of Hh pathway activity in the absence

of signaling. Smoothened (Smo-/-) mutants are unable to respond to Hh ligands [35]. We rea-

soned that if loss of CCRK leads to mild, ligand-independent derepression of the Hh pathway,

some Shh-dependent cell fates would be rescued in Ccrk-/-Smo-/- double mutants. Indeed, we

observed restoration of some Shh-dependent cell types, Olig2+ and Nkx6.1+ progenitors, in

Ccrk-/-Smo-/- double mutants, which were never seen in Smo-/- single mutants (S6O, S6P, S6K

and S6I Fig; data quantitated in S3 Table). These data support an additional role for CCRK in

complete repression of Hh pathway activity in the absence of Smoothened-dependent

signaling.

Genetic analysis of Gli transcription factor function in Ccrk mutants

Loss of Gli2 results in a neural patterning phenotype similar to Ccrk mutants (loss of floor plate

and reduction of p3 progenitors) [33]. If the Ccrk mutant neural patterning phenotype results pri-

marily from loss of Gli2 function, then loss of Gli2 in Ccrk mutants should have little, if any, effect

on their phenotype. However, analysis of Ccrk-/-Gli2-/- double mutants revealed a much more dra-

matic dorsalization of neural tube progenitor identity than seen in either single mutant. (S7K and

S7I Fig). Quantitation and statistical analysis of these data are presented in S4 Table.

Although Gli3 provides both positive and negative regulation of Hedgehog responses, its

repressor function has a relatively dominant role in Hedgehog signaling [36]. In the spinal

neural tube, the activator function of Gli3 is dispensable (due to redundancy with Gli2),

whereas its repressor function is uniquely required. If Ccrk mutants retain at least some Gli2

function, then loss of the Gli3 repressor in this background should boost Hedgehog responses

to provide phenotypic rescue. Indeed, Ccrk-/-Gli3-/- double mutants showed phenotypic rescue

in comparison with Ccrk mutants (S8I and S8J Fig, data quantified and analyzed in S5 Table).

Given that Gli2-/-Gli3-/- mutants show the opposite phenotype (loss of floor plate and p3 cell

fates, [37]), we suggest that loss of CCRK partially impairs the functions of both Gli2 and Gli3

activators and that Ccrk mutants retain at least some Gli3 repressor function.

CCRK regulates posttranslational modification of Gli proteins

To complement our genetic analysis, we investigated how the regulation of Gli2 and Gli3 is

affected at the protein level by disruption of Ccrk. We performed western blotting for Gli2

and Gli3 using extracts from E9.5 wild-type and Ccrk mutant embryos (Fig 3A). Wild-type

embryos showed a single full-length species of Gli2 (190 kDa), whereas in Ccrk mutant extracts

we observed an additional, faster migrating species (Fig 3A). This pattern likely reflects a shift

in posttranslational modification of Gli2, such as decreased phosphorylation, leading to dimin-

ished Gli2 activator function. We investigated this possibility and found that Gli2 mobility was

increased in wild-type samples treated with lambda phosphatase, whereas Gli2 in Ccrk mutant

samples showed increased mobility similar to phosphatase treated wild-type samples (lanes 2

expression domain of Pax6 expands ventrally (f), the Isl1/2+ (g) and HB9+ (h) motor neuron domains expand

both ventrally and dorsally, the Nkx2.2 domain (i) is small and positioned in the midline at the expense of the

Shh-expressing floor plate (j). Shh expression in the notochord is unaffected in the mutant. Quantitation of

data from 3 embryos/genotype and statistical analysis of data are presented in S1 Table.

https://doi.org/10.1371/journal.pgen.1006912.g002
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and 4 in Fig 3B) even without phosphatase treatment. This suggests that Gli2 in mutant cells

occurs in a hypo-or non-phosphorylated state. As expected, inclusion of the phosphatase

inhibitor Na3VO4 reversed the effect of phosphatase on Gli2 in wild-type samples (Fig 3B, lane

3). Curiously, Na3VO4 treatment caused Gli2 migration to be retarded in Ccrk mutant samples

(Fig 4B, lane 6). These results were consistently observed in three separate experiments. Our

interpretation of the results is that, during incubation of extracts Gli2 is phosphorylated and

dephosphorylated by endogenous kinases and phosphatases (when lambda phosphatase and

Na3VO4 were omitted). It appears that the balance of these activities favors phosphorylation in

wild-type samples and dephosphorylation in Ccrk mutant samples.

We also observed profound effects of the Ccrk mutation on the abundance of Gli3 forms.

In wild-type embryos, Gli3 is found in two forms: a full-length form (185 kDa) that can be

Fig 3. CCRK regulates Gli2 and Gli3 proteins. (A) Gli2 and Gli3 western blotting in E9.5 embryonic

extracts; β-actin serves as a loading control. Full-length Gli2 (Gli2-FL) showed a second, faster migrating

band (Gli2*) in Ccrk mutants, suggesting differential posttranslational modification. FL-Gli3 levels were

significantly increased, whereas processed Gli3 repressor (Gli3-Rep) levels were somewhat reduced in Ccrk

mutant extracts. (B) Extracts from wild-type and Ccrk mutant embryos were incubated alone, with addition of

lambda phosphatase, or with lambda phosphatase plus the phosphatase inhibitor Na3OV4 and analyzed by

Gli2 western blotting. The results suggest that the faster migrating species (Gli2*) from Ccrk mutants in (A)

represents a dephosphorylated state. Similar results were observed in three separate experiments. (C)

Quantitation of Gli3-FL, Gli3-Rep, and Gli3-FL/Gli3-Rep ratios, normalized to β-actin. 2 samples/genotype

were analyzed. Error bars represent standard error of the mean (SEM). P values from Student’s t-tests are

shown.

https://doi.org/10.1371/journal.pgen.1006912.g003
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rendered into the activator state (Gli3Act) and a proteolytically generated 85 kDa repressor

form (Gli3Rep) [5]. Shh signaling suppresses formation of Gli3Rep in favor of the full-length

form that can function as a transcriptional activator. We found that the full-length form of

Gli3 was significantly increased (~4-fold) in Ccrk mutant embryos (Fig 3C). Despite this

increase, our genetic data indicate that the Gli3 activator function is impaired in Ccrk mutants

given that Ccrk/Gli2 and Gli2/Gli3 double mutants show a similar, strongly dorsalized, neural

patterning phenotype (S7 Fig, [37]). The increase in full-length Gli3 levels in the mutants may

reflect increased stability of non-functional full-length Gli3 (see Discussion). We also observed

a modest (~40%) decrease in the levels of the Gli3 repressor form in Ccrk mutants, which may

reflect inefficient proteolytic processing of Gli3 and may explain the weak ligand-independent

activity of the Hedgehog pathway in Ccrk mutants indicated by the partial rescue phenotype of

Smo/Ccrk mutants (S6 Fig). Collectively, the data indicate that CCRK is required for proper

posttranslational modifications of Gli2 and Gli3, necessary for their functions as transcrip-

tional regulators.

Ccrk mutant cells show impaired Hedgehog pathway responses in vitro

To investigate the defect in Hedgehog signaling in Ccrk mutants in more detail, we generated

primary mouse embryonic fibroblasts (pMEFs) from Ccrk mutant and control embryos. We

Fig 4. Ccrk mutant fibroblasts show diminished Hh pathway activity. (A) qPCR results for Gli1 expression (normalized to β-actin)

in wild-type and Ccrk mutant primary mouse embryonic fibroblasts (MEFs) stimulated with increasing concentrations of Smoothened

agonist (SAG). (B) Normalized luciferase activity in immortalized wild-type and Ccrk mutant MEFs transfected with 8x Gli-binding site/

firefly luciferase, as well as constitutive renilla luciferase, constructs and stimulated with SAG. (C, D) Normalized results of qPCR for

Gli1 (C) and Ptch1 (D) expression in immortalized MEFs stably transfected with pcDNA3.1 (mock), wild-type CCRK, or K33R (kinase

dead) mutant CCRK constructs in the presence or absence of 200 nM SAG. Error bars represent standard error of the mean. Data

obtained from 3 biological replicates per condition. P values from Student’s t-tests: **, p<0.01; *, p<0.05; ns, not significant.

https://doi.org/10.1371/journal.pgen.1006912.g004
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compared Hh pathway activity between mutant and wild-type cells in unstimulated cells, as

well as in cells stimulated with Smoothened agonist (SAG). When exposed to varying con-

centration of SAG for 24 hours, the direct Hh target gene Gli1 (monitored by qPCR) was

expressed at a reduced level (30–40%) compared to wild-type cells (Fig 4A). This phenotype

was confirmed using wild-type and mutant cells transfected with a Gli binding site/luciferase

reporter (Fig 4B).

We next investigated immortalized wild-type and Ccrk mutant MEF cell lines. We validated

this model by stably transfecting the mutant cell lines with constructs overexpressing either

wild-type CCRK or a version with a K33R mutation that is predicted to disrupt kinase activity

[29]. The immortalized Ccrk mutant cells showed a deficiency in Hh pathway activity similar

to primary Ccrk mutant cells (Fig 4C and 4D). Mutant cells harboring the wild-type construct

showed responses that were slightly higher than controls, whereas mutant cells harboring the

K33R mutant version showed no evidence of rescue. These data confirmed the role of CCRK

in the phenotype and indicated that the kinase activity of CCRK is required for its ability to

potentiate Hh pathway activity.

Next, we investigated the defect in Hh pathway activity as a function of time of SAG expo-

sure. We stimulated cells with 200 nM SAG for periods ranging from 2 to 24 hours. Interest-

ingly, we found normal or slightly elevated levels of induction of Gli1 expression in Ccrk
mutant cells up to 12 hours of SAG exposure in comparison to control cells (Fig 5). However,

after about 12 hours of exposure, wild-type cells exhibited continuously increased levels of

expression, whereas the increase was modest for Ccrk mutant cells. A similar phenomenon

was observed when cells were stimulated with lower amounts of SAG (5 or 20 nM, S9A Fig).

Ccrk mutant cells showed a qualitatively similar pattern of responses with respect to Ptch1
expression, although expression by mutant cells was slightly reduced at times�12 hours with

larger differences in expression seen at 14–24 hours (S9B Fig). These results suggest that

CCRK function is more important for later periods of signaling than for short-term responses.

Because wild-type cells show a continuous increase in Gli1 expression with increased dura-

tion of SAG exposure, it is possible that the activity at 24 hours represents prior pathway

Fig 5. Ccrk mutant cells show defective long-term Hh pathway responses. Ccrk mutant and control

MEFs treated with 200nM SAG for varying periods of time (0 to 24 hours). Normalized Gli1 expression (fold

induction over unstimulated cells) assayed by qPCR is shown. Note that the deficit in mutant responses is

seen at late time points (starting at 12 hours treatment). Error bars reflect standard error of the mean. Data

obtained from 3 biological replicates per condition. P values from Student’s t-tests: **, p<0.01; *, p<0.05; ns,

not significant.

https://doi.org/10.1371/journal.pgen.1006912.g005
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activity combined with recent pathway activity. If this were the case, the defective responses in

Ccrk mutant cells at 24 hours exposure could be due to a loss in their memory of prior activity

or to a failure to mount strong responses beyond 8 hours of exposure. To investigate this, we

conducted a hysteresis experiment to determine to what extent the cells retain activity from

prior signaling events once the inducer is removed for extended periods (S10 Fig). When

wild-type and mutant cells were exposed to SAG for 8 hours, they mounted similar responses.

When cells were treated with SAG for 8 hours, followed by SAG washout (plus inclusion of the

Smo inhibitor Cyclopamine) for 24, 48, or 72 more hours, wild-type cells showed levels of Gli1
expression similar to, or somewhat higher than, those observed immediately after 8 hours

of SAG exposure, indicating that prior exposure to SAG maintains Gli1 expression for an

extended period. The Ccrk mutant cells also retained wild-type levels of Gli1 expression 24

hours after removal of inducer, although their responses were somewhat lower than wild-type

at 48 and 72 hours. Collectively, these data argue that the failure of Ccrk mutant cells to mount

strong responses to exposure times beyond 8 hours lies in their failure of long-term signaling

rather than a loss of memory of prior signaling events.

CCRK regulates the morphology and length of primary cilia

Because CCRK homologs in other organisms function in ciliogenesis and because ciliary

defects were observed in mutants for the CCRK-binding protein BROMI, we investigated the

effects of CCRK disruption on cilia in the mouse. Cilia in the Ccrk mutant embryonic neuroe-

pithelium were generated at roughly normal frequencies but they adopted a shortened, swollen

morphology (Figs 6A and S11). Staining with the ciliary marker Arl13b showed a small ring-

like pattern (Fig 6A). Both of these ciliary phenotypes resemble those found in bromi mouse

mutants [23]. We next analyzed cilia in Ccrk mutant and control MEFs. Ccrk mutant MEFs

generated cilia, albeit with notable differences from wild-type. First, we found that, while both

Arl13b and the IFT protein IFT88 localized to Ccrk mutant cilia, they showed an accumulation

at the distal end of the cilia in comparison to wild-type cilia (Fig 6B). This phenotype suggests

an imbalance between the processes of anterograde and retrograde IFT and is similar to the

distal swelling seen in Chlamydomonas flagella null for the Ccrk homolog lf2 [29]. Second, we

measured the length of wild-type and Ccrk mutant cilia under steady-state (serum starved)

conditions (Fig 6C). Although the average cilia lengths were generally similar (2.6 and 3.5 μm,

for control and mutant cilia, respectively), there was a broader distribution of cilia lengths in

the mutant cells than in the control cells (std. dev. of 0.78 vs. 1.9 for control and mutant cilia,

respectively). This finding is reminiscent of the length phenotype of Chlamydomonas lf2 null

flagella, which can be much longer or shorter than those of wild-type [29].

We also interrogated the role of CCRK in a cell type that generates longer cilia, IMCD3,

engineered to express a fluorescent reporter, IFT88::YFP [38], allowing us to monitor intrafla-

gellar transport. We used CRISPR/Cas9-mediated mutagenesis to disrupt Ccrk in IMCD

IFT88::YFP cells (Fig 7A). Ccrk mutant IMCD cells generated cilia but, similar to neuroepithe-

lial cells and MEFs, the mutant cilia showed swelling at the distal ends, as determined by scan-

ning and transmission electron microscopy (Fig 7B). This phenotype was accompanied by the

accumulation of IFT88::YFP at the distal ends of cilia (Fig 7C). Stable transfection of the Ccrk
mutant IMCD cells with a construct expressing wild-type CCRK resulted in complementa-

tion/phenotypic rescue. We next monitored the movement of IFT88::YFP particles in live

wild-type and Ccrk mutant IMCD cells using TIRF microscopy to generate kymographs from

which we determined rates of anterograde and retrograde IFT (Fig 7C). The rates of antero-

grade transport were not statistically different between wild-type and mutant cells. Retrograde

IFT occurred at a slightly slower rate in Ccrk mutant cells compared to controls (0.62 and
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0.51 μm/sec, in wild-type and mutant cells, respectively, Fig 7D). Although it was difficult to

determine IFT frequencies due to movie-to-movie variability, IFT events occurred at normal

or somewhat reduced frequencies in the mutant cells (Fig 7E). These data indicate that IFT

Fig 6. Regulation of ciliary morphology and length by CCRK. (A) Primary cilia in the E9.5 Ccrk mutant and

wild-type neuroepithelium assayed by scanning electron microscopy and Arl13b/gamma-tubulin staining. (B)

Primary cilia in Ccrk mutant and wild-type MEFs stained with antibodies against acetylated α-tubulin, Arl13b, and

IFT88. Scale bars in A and B are 1 μm. (C) Distribution of ciliary length in Ccrk mutant and control (Ccrk+/-) MEFs

binned in 0.25 μm groups. Lengths were measured from Arl13b and γ-tubulin-stained cilia. Average lengths and

standard deviation for distributions are shown.

https://doi.org/10.1371/journal.pgen.1006912.g006
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Fig 7. Ciliary phenotypes and IFT assays in wild-type and Ccrk mutant IMCD3 cells harboring an IFT

reporter. (A) Ccrk mutant IMCD3 cells (expressing an IFT88::YFP construct)were generated by CRISPR/Cas9

mutagenesis. A clone with a homozygous 67 bp insertion (causing a frame shift and multiple nonsense codons

downstream) was identified and analyzed further. (B) Scanning and transmission electron microscopic analysis

of wild-type and Ccrk mutant IMCD3 cilia. The mutant cilia showed swelling at their distal ends. (C) IFT88::YFP

expression in wild-type and Ccrk mutant IMCD cells. The Ccrk mutant cells uniformly showed accumulation of

IFT88::YFP at their distal ends. Transfection of the mutant cells with a wild-type Ccrk expression construct

rescued this phenotype. Kymographs from live imaging of IFT88::YFP particle movement in wild-type and Ccrk

mutant cilia are shown (distal cilia ends at the top, time increases from left to right). Anterograde transport

occasionally showed abrupt changes in speed in the mutants. Rates (D) and frequencies (E) of anterograde

and retrograde IFT particle movement were determined from the kymographs. Speed quantitation was

determined from 235 and 61 particles (anterograde) and 74 and 25 particles (retrograde) in wild-type and Ccrk

mutant cilia, respectively. Frequency quantitation was determined from 45 and 64 cilia movies from wild-type

and Ccrk mutant cells, respectively. Error bars represent standard error of the mean. Statistical analysis

represents results from Student’s t-test. Scale bars in B are 1 μm.

https://doi.org/10.1371/journal.pgen.1006912.g007
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was only modestly affected in Ccrk mutant cells, a result similar to findings from Chlamydomo-
nas lf2 mutants [39]. While this defect may have some contribution to the Ccrk mutant ciliary

length and morphology phenotype, other deficits, such as transport of the ciliary cargo per se,
may play a more important role.

CCRK controls the kinetics of ciliary protein localization

We determined whether the localization of Hedgehog signaling components to Ccrk mutant

cilia was affected in embryonic fibroblasts. We assayed the localization of SuFu, Smo, Gli2 and

Gli3 under unstimulated conditions or after 24 hours of stimulation with the Smoothened ago-

nist. Each of these proteins shows enrichment in cilia upon Hh pathway stimulation [17, 18].

We observed similar patterns of localization for these proteins under the two steady-state con-

ditions in wild-type and Ccrk mutant cells (Fig 8A). However, Gli2 localized to wild-type cilia

more frequently than to mutant cilia under unstimulated conditions. We investigated the tem-

poral change in localization patterns by assaying the frequency and amount of ciliary Gli2

localization as a function of time of SAG-mediated pathway induction. Interestingly, the fre-

quency of wild-type cilia with Gli2 localization reached a plateau around 30 min of induction,

whereas Ccrk mutant cilia did not show uniform localization until 4 hours of induction (Fig

8B). Similarly, the kinetics of increase in ciliary Gli2 fluorescence upon induction were much

slower in Ccrk mutant cells than in wild-type cells. Analysis of Smoothened ciliary localization

revealed a similar delay in recruitment in Ccrk mutant cells. These data suggest that, although

the rates by which IFT complexes move are relatively unaffected by loss of CCRK, the effi-

ciency of ciliary recruitment and transport of Hedgehog regulatory proteins, and perhaps

other cargo, is controlled by CCRK. These findings suggest that CCRK regulates ciliary length,

morphology, and function in Hedgehog signaling by promoting the efficiency of ciliary cargo

recruitment and transport.

Discussion

We show here that the evolutionary conserved kinase, CCRK, regulates a broad array of pro-

cesses at levels ranging from the subcellular to the organismal. We find that mouse CCRK

controls several aspects of ciliogenesis, which in turn are important for Hedgehog signal trans-

duction, patterning, and embryonic morphogenesis. The role of Ccrk is similar to that of

broadminded (bromi), identified in a forward genetic screen [23]. BROMI protein physically

associates with CCRK and promotes its stability. In support of a common function, Ccrk null

mutants phenocopy bromi mutants with respect to embryogenesis, Hedgehog pathway effects,

and ciliary defects.

We suggest that CCRK in the mouse plays a role analogous to LF2, its homolog in the green

algae Chlamydomonas reinhardtii. Chlamydomonas flagella show a structure strikingly similar

to that of mammalian cilia and both organelles are assembled using similar mechanisms, such

as intraflagellar transport (IFT). A comparison of the phenotypes of Chlamydomonas lf2 null

mutants with those of Ccrk null mutant cells shows close similarities. First, Ccrk and lf2 null

cells both generate cilia/flagella with a broader range in lengths compared with controls. Sec-

ond, similar to lf2 mutant flagella, mouse Ccrk null cilia show swelling at their distal ends,

which is accompanied by an accumulation of IFT proteins at this site. Third, recent analysis of

lf2 mutant flagella undergoing regeneration revealed that IFT particles loaded with ciliary

cargo (tubulin) were transported much less frequently than controls, although the transport

frequency of all IFT particles (loaded or unloaded) was only slightly reduced [39], suggesting

that these mutants fail to load IFT particles with cargo properly or to dispatch loaded particles

from the flagellum base. Similarly, Ccrk mutant cilia show only small changes in the rates and
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frequencies of IFT, whereas the enrichment of cargo (Smoothened, Gli2) in cilia upon Hh

pathway activation was substantially slower in Ccrk mutant cells.

CCRK regulation of ciliary length and structure

Ccrk mutant cilia show two overt phenotypes: swelling at their distal ends and defective length

control. The distal swelling is accompanied by accumulation of the ciliary proteins Arl13b and

IFT88 at this end. Such a phenotype is consistent with a defect in retrograde IFT or, possibly,

an imbalance in the efficacy of retrograde versus anterograde IFT [14, 15]. The slightly re-

duced retrograde IFT rates and frequencies in Ccrk mutant cilia may be responsible for this

Fig 8. Localization of Hedgehog signaling proteins to Ccrk mutant cilia. (A) Localization of Hh pathway

components to wild-type and Ccrk mutant MEFS under unstimulated or stimulated (200nM SAG for 24 hours)

conditions. Note that Gli2 staining (arrowhead) was rarely observed in Ccrk mutant cilia under unstimulated

conditions. (B) Ciliary localization of Gli2 and Smo was monitored in terms of frequency and staining intensity

as a function of time of SAG exposure (0 to 24 hours). Percentages of cilia with Gli2 or Smo localization were

determined from between 100 and 300 cilia per condition and statistical significance was analyzed using Chi-

square tests. Staining intensity was measured from between 25 and 40 cilia per condition and statistical

significance was analyzed using Student’s t-tests. Error bars represent standard error of the mean. P values

from statistical analyses: **. P<0.01; *, p<0.05; ns, not significant.

https://doi.org/10.1371/journal.pgen.1006912.g008
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phenotype. Alternatively, a defect in the IFT turnover process at distal ends of cilia, which

involves disassembly/unloading of anterograde IFT trains and assembly/loading of retrograde

IFT trains, could lead to such a phenotype. CCRK could regulate the activity of retrograde IFT

machinery per se or it could control the ciliary import of proteins that are rate-limiting for ret-

rograde transport.

The role of CCRK in the control of ciliary length is less clear, as the means by which cells

sense and control their lengths are not well understood. Cilia and flagella initially undergo a

lengthening phase, then slow their growth to reach a steady-state length. Many models have

been proposed to explain how cells sense their ciliary length, such as the “time-of-flight” or ion

current models [40]. Regardless of the sensing mechanism, the cell must execute some form of

length control in response to this information. We suggest that differential loading of cargo

onto IFT particles provides this control [39, 41]. According to this hypothesis, during a growth

phase, IFT particles are efficiently loaded with cargo needed to assemble cilia at their tips.

However, as the cilium begins to reach a steady-state length, cargo loading is significantly

down-regulated, leading to reduction in the amount of ciliary cargo being delivered. If cargo,

such as tubulin, were rate-limiting for ciliary assembly, this would cause slowing and then

stopping of ciliary growth. Thus, ciliary cargo loading may be improperly regulated in Ccrk
mutant cells and the variation in ciliary length may be explained by such a defect. In Chlamy-
domonas IFT trains loaded with tubulin are transported frequently during the growing phase,

but this frequency is strongly attenuated when the cilium is at steady state. In lf2 mutants with

regenerating flagella, the frequency of transport is greatly reduced compared to controls. In

these mutant flagella, at steady state, the frequency is higher than in normal flagella. Reduced

transport during growth delivers fewer tubulin subunits to the cilium, resulting in its shorten-

ing in some cells. However, in other lf2/Ccrk mutant cells, there may be a delay in reaching

steady state, as cargo loading and transport is not appropriately down-regulated, causing those

cilia to grow longer than normal.

Regulation of Hedgehog signaling by CCRK in the embryo

Disruption of Ccrk in the embryo results in phenotypes indicative of defects in Hedgehog signal-

ing, similar to other mouse mutants with elevated or decreased activity of the pathway [31–33].

In Ccrk mutants, cell fates in the most ventral neural tube, that require strong Shh signaling, are

either absent (floor plate) or reduced in number and mispositioned (p3 cells), while cell fates

requiring intermediate levels (pMN cells) are concomitantly expanded into ventral territories.

This suggests that, while Ccrk mutants are capable of Shh signaling, the strongest responses are

defective, with cells executing intermediate responses instead. In addition, the Ccrk mutant

pMN domain also expands dorsally, suggesting that cells that would normally adopt fates con-

trolled by low levels of signaling behave as if they experience intermediate levels. The observa-

tion that cells requiring weak activity of the pathway are restored in Smo mutants when Ccrk is

mutated suggests that CCRK represses the Hh pathway in the absence of signals. Thus, CCRK

both potentiates and represses the activity of the Hh pathway, depending on context.

The Ccrk/Rab23 epistasis data, along with the SAG in vitro data, indicate that CCRK acts in

the response to Shh (rather than in ligand production) at the level of Smo or downstream of it.

Hh signaling in the mouse embryo is mediated by the combined functions of Gli2 and Gli3

activator/repressor forms. The epistasis and biochemical analyses suggest that all of these activ-

ities are partially impaired in Ccrk mutants. Despite the similarity between the Ccrk and Gli2
mutant patterning phenotypes, the Ccrk mutant phenotype is not caused by loss of Gli2 activity

alone, as disruption of Gli2 in Ccrk mutants resulted in exacerbation of the phenotype (stron-

ger dorsalization) and because disruption of Gli3 in Ccrk mutants resulted in phenotypic

CCRK controls ciliogenesis and Hh signaling

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006912 August 17, 2017 16 / 30

https://doi.org/10.1371/journal.pgen.1006912


rescue, whereas disruption of Gli2 and Gli3 results in a strongly dorsalized patterning pheno-

type [37]. It is unlikely that the Ccrk mutant phenotype is due to loss of Gli3Act function

alone, as Gli3 activator is not required for floor plate specification in the presence of Gli2.

Thus, the most parsimonious explanation for these data is that both Gli2Act and Gli3Act func-

tions are impaired in Ccrk mutants and this has the combined effect of diminishing strong Shh

responses. Low-level Smo-independent Hh pathway activity in Ccrk mutants might be due to

reduced Gli3Rep function. Indeed, the mutants exhibited reduced amounts of the 85 kDa

Gli3Rep form, consistent with diminished proteolytic processing of the Gli3. However, the

residual Gli3Rep in these mutants is likely to be functional since loss of Gli3 can rescue the

Ccrk mutant phenotype.

The state of Gli2 and Gli3 proteins in Ccrk mutant embryos supports the arguments pre-

sented above. The full-length (FL) forms of both Gli2 and Gli3, representing GliAct or GliAct

precursor forms, are affected in the mutants. FL-Gli2 changes its electrophoretic migration,

consistent with inefficient post-translational modification (e.g., phosphorylation). The change

could represent incomplete PKA phosphorylation at the Pc-g sites in the N-terminus of Gli2,

which potentiate Gli2Act by promoting its dissociation from Sufu [7]. FL-Gli3 shows dramatic

accumulation in Ccrk mutants. Although this could, in principle, cause hyperactivation of Shh

responses in Ccrk mutants, it may also be a secondary effect of reduced Gli3Act function. This

is because release of full-length Gli proteins from their inhibitor, Suppressor of Fused (Sufu)

[6], leads to rapid degradation of such proteins, whereas failure to dissociate from Sufu leads

to FL-Gli stabilization but loss of its transcriptional functions [42].

Collectively, the genetic and biochemical data suggest that the functions of Gli2Act and

Gli3Act forms are impaired, possibly due to their inability to efficiently dissociate from Sufu.

In addition, inefficient processing of FL-Gli3 results in diminished Gli3Rep function, which,

in turn, increases inappropriate, ligand-independent activation of the Shh pathway.

Loss of CCRK causes ciliary and Hh signaling defects that both resemble

and differ from those resulting from loss of other ciliary regulators

While the ciliary and Hh signaling phenotypes of Ccrk mutants share some similarities with

those of other mouse mutants with mutations in ciliary regulators, they differ in important

ways from each. Loss of IFT B proteins (such as Ift172), like loss of Ccrk, results in both di-

minished high level Hh responses and weak ectopic Hh pathway activity. However, IFT B

mutants typically fail to generate cilia (unlike Ccrk mutants) and the intermediate/high level

Hh responses are more significantly impaired in IFT B mutants than Ccrk mutants [13]. Loss

of IFT A proteins (such as Ift122) or cytoplasmic dynein (Dync2h1) result in accumulation of

IFT complexes in the distal tips of cilia, similar to Ccrk mutants. However, loss of IFT A pro-

teins only causes increased Hh pathway activity, Dync2h1mutants only show diminished path-

way activity, whereas Ccrk mutants show both diminished and ectopic pathway activity [14,

15]. Although loss of the ciliary kinesin Kif7 and loss of CCRK each cause deregulation of cili-

ary length, their effects on Hh pathway activity and neural patterning are largely opposite from

one another [43, 44]. Thus, it appears that the roles of CCRK in ciliary assembly and Hh path-

way control are distinct from those of previously studied regulators, although CCRK and such

regulators are likely to be functionally connected.

Regulation of Hedgehog signaling components by CCRK in the cilium

We suggest that CCRK indirectly controls the function and biochemical state of Hh signaling

components by promoting their import into the cilium. This is supported by our analyses of

Smo and Gli2 ciliary localization. In normal cells during the first several hours of SAG
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exposure, the levels of Smo and Gli2 increase in the cilium over time indicating the rate of cili-

ary import of these proteins exceeds the rate of their ciliary export during the first 1–2 hours of

signaling. In contrast, the rates of Gli2 and Smo ciliary accumulation were substantially

delayed in Ccrk mutant cells. This observation may be explained by a reduced rate of ciliary

import of Gli2 and Smo. Alternatively, there may be an increase in the rate of ciliary export of

these factors in Ccrk mutant cells. While we cannot definitively distinguish between these pos-

sibilities at present, we favor the first one. The distal accumulation of Gli proteins in retrograde

IFT mutant cilia [15], coupled with direct interactions between Gli proteins and Kinesin II

subunits [45], suggest Gli proteins are transported by IFT. Because retrograde IFT rates are

modestly impaired in Ccrk mutant cilia and the frequency of IFT events is somewhat reduced

in such cilia, an increase in Gli2 ciliary export is unlikely. The accumulation of IFT88 at the

distal ends of Ccrk cilia is also consistent with impaired retrograde IFT. Although we were

only able to assay the change in cargo accumulation during the first few hours after stimulation

(as the levels of proteins reach a steady state thereafter), we hypothesize that Ccrk mutant cilia

continuously exhibit reduced flux of cargo transport. A reduction in the rate of ciliary trans-

port of Hh pathway components could result in diminished Hh pathway activity. Signaling

downstream of Smo results in modification of Gli proteins and dissociation from their inhibi-

tor Sufu, events which are dependent on their transport within cilia [20, 21]. Thus, diminished

influx of pathway activators (Smoothened and Gli2) could result in the generation of fewer

activated Gli transcription factor molecules per unit of time. This would cause a cumulative

defect in the transcriptional output of the pathway.

Regulation of Hh pathway responses over time

Examination of Gli1 induction in wild-type cells over time suggests there are at least two

phases in the response. During the first phase, between 2 and 12 hours, the increase in target

mRNA level is mostly linear with a shallow slope with respect to induction time. This could be

explained by the generation of a fixed level production of target gene message per unit of time

coupled with perdurance of previously made transcripts. During the second phase, between 12

and 24 hours of exposure, the magnitude of the response increases much more rapidly. The

change of slopes is related to the state of the network during each of these periods.

The change in the rate of target mRNA increase between the first and second phases may

be explained by recruitment of a signal amplification mechanism to further enhance responses

during the second phase. While we do not know the mechanistic basis of this amplification, it

may rely on the production of more Gli2 which is transcriptionally up-regulated by Shh signal-

ing in fibroblasts [46]. Thus, the time of onset of this amplification would be determined by

the time it takes from the initial increase in Gli2 transcription to the generation of active Gli2

protein. Once active Gli2 protein levels accumulate, they may mediate a more robust response

to SAG per unit of time.

In Ccrk mutant cells, the rate of increase in Gli1 and Ptch1 expression with SAG exposure

remains slow and continuous from 2 hours until well beyond 24 hours of induction, suggesting

that the sensitization mechanism normally acting during the second phase is defective. The

hysteresis experiments indicate that the dampened responses of mutant cells at late time points

are caused by a reduction in the generation of activated Gli proteins per unit of time, rather

than loss of cellular memory of prior signaling events (due to, e.g., shortened half-lives of acti-

vated Gli proteins).

We suggest a model (S12 Fig) in which CCRK increases the rate of import of Hh pathway

components during pathway stimulation. However, the decreased rate of cargo import in Ccrk
mutant cells does not impact the ability of such cells to mount appropriate responses during
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the first phase of signaling. In contrast, the reduced import rate is limiting with respect to

mounting an amplified response during the second phase. If the amplification mechanism

occurs through increasing Gli2 protein levels, it is possible that the additional Gli2 critically

depends on its efficient transport into and out of the cilium.

While our model is testable, it remains unclear how the import of ciliary cargo is regulated

and what the role of CCRK in this mechanism may be. Future identification of CCRK sub-

strates should be helpful in this regard.

Materials and methods

Ethics statement

All experiments on mice were conducted according to institutional and NIH animal welfare

regulations. Mice were euthanized according to AVMA approved guidelines (CO2 inhalation).

Animal experiments were approved by the IACUC committee at the University of Georgia

(Approval #A2012 12-009-A2).

Generation of a Ccrk null mutant allele

A bacterial artificial chromosome clone containing the Ccrk gene generated from mouse AB2.2

embryonic stem (ES) cell genomic DNA was used for targeting construct design. The clone was

modified by two homologous recombination steps in E. coli using a recombineering method

(Red/ET kit, GeneBridges). A LoxP site was inserted 1020 bp upstream of the first exon of Ccrk,

and a LoxP-PGK::neoR-LoxP cassette was inserted 430 bp downstream of the end of exon 2

(within intron 2) of Ccrk. A 12.5 kb Xba1 fragment (harboring a 6.85 kb 50 arm of homology

and a 2.55 30 arm of homology) was subcloned into pBluescript. The XbaI fragment was then

isolated from the vector backbone and used for homologous recombination in ES cells.

AB2.2 mouse ES cells were grown on feeder cells, electroporated with the targeting construct,

and selected with G418 following standard protocols [47]. Targeted clones were identified by PCR

using a forward primer within the neoR sequence and a reverse primer positioned within the

genomic sequence 245 bp downstream of the end of the 30 arm of homology. Targeting was veri-

fied by PCR using primers at the 50 and 3’ ends of homology and euploidy confirmed [47]. Injec-

tions of targeted ES cells resulted in several chimeric animals that transmitted the allele, Ccrkfl,
through the germline. Ccrkfl/+ males were crossed with Tg(EIIa-Cre)/+ deleter females (Jackson

labs) to generate the null allele of Ccrk. The progeny was screened for Cre-mediated excision

between the 5’-most and 3’-most LoxP resulting in the CcrkKO mutant allele, harboring a deletion

of exons 1 and 2 and carrying a single LoxP site using primer pairs for the wild-type (GCAGGAG

CCTATGCTGGATCCCTGT and AACGATCTCGCCAGTCTGTGCAGG) and deleted (CCTT

CCCACGTTAGTGTAGGTTCTTCTC and GGAGGGTGACCACACATGAAAGTCT) alleles.

This allele was confirmed to be protein null by western blotting (Fig 1B). Subsequent genetic

experiments were performed using this null allele. A LacZ gene-trap allele of mouse Ccrk was gen-

erated from an embryonic stem cell line harboring a LacZ reporter inserted between exons 2 and

3 of Ccrk (referred to here as Ccrktm1aLacz, also called Cdk20tm1a(KOMP)Wtsi). This line was obtained

from the Knockout Mouse Project, Wellcome Trust Sanger Institute. The Ccrktm1aLacz mouse line

was used to characterize the Ccrk expression pattern (S2 Fig). Mice homozygous for this mutation

showed a phenotype very similar to the CcrkKO allele described above.

Mouse and cell lines

Mouse lines. In addition to Ccrk mutant alleles (described above), other strains used in

the study were obtained from Dr. Kathryn Anderson (Rab23opb2, [32]), Andrew McMahon

CCRK controls ciliogenesis and Hh signaling

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006912 August 17, 2017 19 / 30

https://doi.org/10.1371/journal.pgen.1006912


(Smotm1Amc, [48]), Alexandra Joyner (Gli2zfd, [33]), and Jackson Laboratories (Gli3Xt-J, Stock#

000026, [49]) and genotyped according the protocols in the associated references. The bromi
allele was genotyped according our previously published protocol [23]. All alleles are function-

ally null and all were maintained on a C3H/HeJ background for>4 generations.

Cells. Primary mouse embryonic fibroblast cultures were generated from E13.5 embryos

and cultured as described [50]. Immortalized MEF lines were derived from these primary cul-

tures using established methods [50]. Complementation of the Ccrk null immortal lines was

performed by transfecting a plasmid containing wild-type or K33R mutant Ccrk driven by a

ubiquitous promoter (pUB6-CCRK/V5/His). Clonal lines were established and genotyped.

Expression of transgenic CCRK was verified by western blot using anti-V5 antibody.

An mIMCD3 IFT88::YFP stable cell line that has been previously used to study IFT trans-

port [16, 38] was a kind gift from Dr. Jagesh Shah (Harvard Medical School). IMCD3 Cells

were cultured as described [16]. During live-imaging cells were switched to phenol red free

media with 25mM HEPES.

A Ccrk null mutation was generated in these cells using CRISPR/Cas9 mutagenesis as

described [51]. Briefly, we used bioinformatics approaches to find a candidate gRNA target

site (CCCACATGGTGCGGGCTTTGTGCT) in exon 3 of mouse Ccrk. The sequence was

BLASTed against the mouse genome to confirm it was unique with low chance of off-target

mutagenesis. We generated a gBLOCK (IDT) fragment containing this target as well as the

remaining guide RNA sequence from [54].

hCas9 (a gift from George Church (Addgene plasmid # 41815, [51]), the gRNA PCR prod-

uct, and a puromycin resistance plasmid were transfected into stable IMCD IFT88::YFP cells

to generate stable lines. Genotyping of clones identified a clone heterozygous for a 67 bp inser-

tion (5’-CTATTCCATTAGGCTAAG TAATATGCCATTGACTATTTTAAAAATGAGA

AATCTAATGGATAGAGAA-3’). Homozygous clones were generated using a second round

of mutagenesis. Clones were analyzed to identify homozygote lines created through gene

conversion. Mutant IMCD3 cells were complemented through stable transfection with a

pUB6-CCRK/V5/His plasmid vector. Clonal stable transgenic lines were generated and veri-

fied. Complementation of the IMCD Ccrknull phenotype was verified based on IFT88::YFP

expression patterns.

Mouse embryonic fibroblast culture and Hedgehog pathway

manipulation

Control and Ccrk null MEFs were exposed to varying concentrations of Smoothened agonist

(SAG, Cayman Chemical), or to fixed concentrations of SAG for varying time periods, fol-

lowed by harvesting of RNA, with vehicle (DMSO) serving as a negative control. All experi-

ments were performed in triplicate.

In hysteresis experiments, MEFs were induced with 200 nM SAG for 8 hours. The SAG was

then washed out and the Smoothened inhibitor Cyclopamine (10 μM, Calbiochem), was

added to counteract any signaling that could result from remaining SAG. In other samples,

cells were continually exposed to SAG for up to 72 h. The relative, normalized expression of

Gli1 was determined using qPCR.

Quantitation of relative Hh target gene expression

RNA was extracted from MEFs using the E.Z.N.A. Total RNA Kit I (Omega R6834-00). cDNA

was synthesized using qScript (Quanta). RT-qPCR was performed using Gli1 (IDT Mm.

PT.58.11933824) and Ptch1 (IDT Mm.PT.58.5305068), and normalized to Actb (IDT Mm.
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PT.58.33540333) levels using an Applied Biosystems 7500 Real Time PCR System. Normalized

values were averaged among triplicates and expressed with standard error.

Cell immunohistochemistry, microscopy and quantitation

Control and Ccrk mutant MEFs were grown to confluency on glass coverslips and serum

starved in 1% FBS for 24 hours to induce ciliogenesis. The cells were processed for staining

using standard protocols [54] with the following antibodies: rabbit polyclonal against mouse

Smoothened (kindly provided by Dr. Kathryn Anderson, Sloan Kettering Institute), rabbit

polyclonal against Arl13b (Kindly provided by Dr. Tamara Caspary, Emory University),

mouse monoclonal against acetylated α-tubulin (Sigma-Aldrich), and a mouse monoclonal

against γ-tubulin (Sigma-Aldrich). Cells were stained with appropriate secondary antibodies

together with DAPI. Images were taken on Zeiss Axioplan 2 microscope with a 100x oil objec-

tive and analyzed using AxioVision4.6 and FIJI Software.

MEFs were exposed to 200 nM SAG for time periods ranging from 30 min to 24 hours and

then fixed. Experiments were performed in triplicate. Cells were immunostained as described

above to visualize the localization of Gli2 and Smoothened to the cilium after different lengths

of exposure to SAG. Fluorescent intensity was determined using ImageJ software. Background

fluorescence was used to set thresholds for measuring frequency of cilia showing localization.

Values were obtained for 50–200 cilia per condition/coverslip.

Ciliary length was determined for control and Ccrk null MEFs through immunolabeling to

visualize steady-state cilia length. The axonemes of cilia were labeled with Arl13b and acety-

lated α-tubulin, whereas the centrosome was labeled with γ-tubulin. Cilia in the focal plane

were measured from the base of the cilium where it intersected the centrosome to the tip of the

Arl13b staining. Length measurements were performed using Zeiss 4.0 and ImageJ Software.

Embryo processing and immunostaining

E9.5–11.5 embryos were dissected and prepared for cryosectioning using standard protocols

[40]. Cryosections were stained with primary antibodies and fluorescent secondary antibodies

(Jackson Immunologicals), followed by counterstaining with DAPI. Primary antibodies were:

mouse anti-Shh 5E1, mouse anti-Nkx2.2, mouse anti-HB9, mouse anti-Isl1/2, mouse anti-

FoxA2, mouse anti-Nkx6.1, mouse anti-Pax7 (all from DSHB at 1:10), and sheep anti-Chx10

(1:600, Exalpha), and rabbit anti-Pax6 (1:300, Covance).

Transmission and scanning electron microscopy

Wild-type and Ccrk homozygous null IMCD3 cells were grown to confluency, followed by fix-

ation in 2% glutaraldehyde/0.01% tannic acid and post-fixation in 1% O4Os. Samples were

embedded in EPON resin for Transmission Electron Microscopy (TEM) or gold-coated

(Structure Probe, Inc) for Scanning Electron Microscopy (SEM). Sections for TEM were cut

using a RMC MT-X microtome (RMC Products) and placed on copper grids and visualized

using a JEOL JEM-1210 Transmission Electron Microscope (JEOL, Inc.). SEM samples were

visualized using a Zeiss 1450EP SEM microscope (Carl Zeiss MicroImaging).

Measurement of IFT parameters

Live imaging was performed using a Total Internal Reflection Fluorescence (TIRF) microscope

[52] at 60X magnification with videos taken at 10 frames per second. Cells were plated on

inverted Transwell1 membranes (Corning) and grown for 7 days as described [53]. The vid-

eos were analyzed by generating kymographs using ImageJ. Anterograde and retrograde IFT
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speeds and frequencies were calculated by taking measurements of the IFT88::YFP tracks seen

on the kymographs [52].

In situ hybridization, skeletal analysis, and β-galactosidase staining

In situ hybridization was performed on frozen sections from E9.5 embryos according to meth-

ods previously described [54]. Whole-mount in situ hybridization was performed according to

methods previously described [51]. Riboprobes were synthesized using a kit from Roche

according to the manufacturer’s instructions from the following plasmid templates: Shh [55],

Gli1 [56], Olig2 [31], and Pax6 [57]. Analysis of Ccrk expression was performed using sense

and antisense riboprobes synthesized from a 507 bp PCR-amplified fragment of the 3’ UTR

region of mouse Ccrk (from positions 1169–1676 in mRNA sequence ID: NM_053180.2) sub-

cloned into pGEM-T Easy (Promega). The Ccrk plasmid was digested with NcoI and tran-

scribed using the Sp6 promoter to generate sense probes or digested with SacI and transcribed

using the T7 promoter to generate antisense probe.

Cartilage and bone from E16.5 Ccrk null and wild-type control embryos were stained with

Alcian Blue and Alizarin Red according to standard protocols [47]. Whole-mount β-galactosi-

dase staining of e10.5 Ccrktm1aLacZ/+ and control embryos was performed using a standard pro-

tocol [51].

Western blotting

Whole embryo protein lysates for immunoblotting were obtained by homogenizing E10.5

embryos in modified RIPA buffer with protease inhibitor cocktail (Roche). Protein concentra-

tion was determined by the BCA Protein Assay (Pierce). Equal amounts of protein (10 μg)

were loaded for electrophoresis. After electrophoresis, proteins were transferred to PVDF

membranes (Millipore). Membranes were washed with 1x TBS containing 0.2% Tween 20

(TBST) and blocked for 1 hour in TBST containing 5% skim milk. Membranes were then incu-

bated overnight at 4˚C with a mouse monoclonal anti-Gli3 (kindly provided by Dr. Susie

Scales, Genentech, CA), a guinea pig polyclonal antibody against mouse Gli2 (described in

[58]), a rabbit polyclonal antibody against CCRK (kindly provided by Dr. Robert Fisher,

Mount Sinai Hospital, NY, NY) or mouse anti-β actin (Cell Signaling Technology). After

washing, membranes were incubated with HRP-labeled secondary antibodies. Signals were

detected with a chemiluminescent reagent (Millipore) following the manufacturer’s instruc-

tions. Signals were quantitated using ImageJ.

In vitro phosphatase treatment

Whole embryo protein lysates for in vitro phosphatase treatment were prepared from e9.5

embryos by clarifying in Triton lysis buffer (1% triton X-100, 50mM HEPES, 150mM NaCl,

2mM DTT) with protease inhibitor cocktail (Roche) for 15 min at 17,000 × g at 4˚C. Thirty

micrograms of extracts plus lambda phosphatase reaction buffer supplied with manufacturer

(NEB, MA) in 50 ul total reaction volume were incubated at 30˚C for 30 min with 400 unit

lambda phosphatase. After phosphatase treatment, the reactions were stopped and run on

SDS-PAGE, followed by western blotting analysis with a guinea pig polyclonal anti-Gli2

antibody.

Luciferase assays

Wild-type and CcrkKO/KO pMEFs were cultured as described above. Cells were transfected

using Lipofectamine 2000 reagent (Invitrogen) with the 8xGliBS-Luc [59], containing eight
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copies of Gli-binding elements fused to the firely luciferase gene, as well as a Renilla luciferase

construct for normalization. Cells were serum starved in OptiMEM (GIBCO) for 24 h and

treated for an additional 24 h period with varying concentrations of SAG or DMSO (control)

in serum-free media. Gli reporter activity was assayed using the Dual-Luciferase1 Reporter

Assay System (Promega). Firefly luciferase activity was normalized to Renilla luciferase activ-

ity. Experiments were performed in triplicate.

Quantitation and statistical analysis

Quantitation of cells positive for markers in the neural tube was determined by counting posi-

tive cells per section from two sections per embryo with an average obtained. The positions of

dorsal and ventral limits of expression domains were determined by measuring the total ven-

tral-dorsal length of the neural tube in sections and expressing the positions of these expres-

sion domain limits as fractions of the total ventral-to-dorsal length. Values were analyzed

across 3 embryos per genotype per stage to obtain overall averages, standard deviations, and

statistical significance. Statistical analysis was conducted using either Student’s t-tests or Chi-

square tests (for frequencies of Gli2 and Smo ciliary localization), computed using StatPlus

software (Analystsoft).

Supporting information

S1 Fig. Cleft palate phenotype in Ccrk and Bromi mutants. E17.5 wild-type (a,d,g), Ccrk
mutant (b,e,h) and Bromi mutant (c,f,i) dissected heads show cleft palate (arrows in e and f) in

both mutants. Histological staining of sections (g,h,i) reveals fusion defects of palatal shelves in

the mutants (arrowheads in h,i).

(TIF)

S2 Fig. The Ccrk expression pattern at E10.5. (A) Ccrk expression was assayed using by

in situ hybridization using an antisense probe directed against the 3’ untranslated region of

the gene. Ccrk expression in E10.5 wild-type embryos appeared weak and mostly uniform

throughout the embryo with slightly more intense staining in the limb buds and pharyngeal

arches and weak-to-no staining in the heart. This staining appeared to be specific because

staining of Ccrk null homozygotes with the antisense probe (as well as staining of wild-type

embryos with a Ccrk sense probe) showed no clear signal. (B) The uniform expression pattern

was confirmed by β-galactosidase staining of embryos heterozygous for a LacZ gene-trap inser-

tion in Ccrk (Ccrktm1aLacZ).

(TIF)

S3 Fig. In situ hybridization analysis of E9.5 neural tube patterning. Shh expression (a,b)

was seen in the Ccrk mutant notochord (b) but not in the ventral neural tube. Gli1 (c,d) stain-

ing intensity was reduced in Ccrk mutant neural tube sections (d). Olig2 (e,f) was expressed in

a domain that expanded dorsally and ventrally (across the ventral midline) in Ccrk mutants (f)

relative to controls (e). Pax6 (g,h) expression was observed in ectopic ventral domains in the

mutant neural tube (h).

(TIF)

S4 Fig. Quantitation of Shh-dependent neural tube patterning as a function of develop-

mental stage in Ccrk mutants. Wild-type and Ccrk mutant embryos were obtained between

E9.0 and E11.5 and somite number determined. Sections at the 4-5th somite level were stained

for FoxA2, Nkx2.2, Olig2, and Pax6. Numbers of expressing cells (FoxA2, Nkx2.2, Olig2) as

well as ventrally-positioned nonexpressing cells (Pax6) were counted. As early as the 10-

13-somite stage, Ccrk mutants showed a dorsalized pattern manifested as fewer Fox2+, Nkx2.2

CCRK controls ciliogenesis and Hh signaling

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006912 August 17, 2017 23 / 30

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006912.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006912.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006912.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006912.s004
https://doi.org/10.1371/journal.pgen.1006912


+, Olig2+, and Pax6- cells. By the 24-27-somite stage, the Olig2+ domain had expanded in the

mutant. Vnt, ventral neural tube. Quantitation derived from 3 embryos per genotype/stage (2

sections per embryo). Error bars represent standard error of the mean. P values from Student’s

t-tests: �, p<0.05; ��, p<0.01; ns, not significant.

(TIF)

S5 Fig. Ccrk is epistatic to Rab23 with respect to neural tube patterning. Sections through

the lumbar neural tubes of E10.5 wild-type (a-e), Ccrk single mutant (f-j), Rab23 single mutant

(k-o), and Ccrk/Rab23 double mutants (p-t) were stained for Shh (a,f,k,p), FoxA2 (b,g,l,q),

Nkx2.2 (c,h,m,r), HB9 (d,I,n,s), and Pax6 (e,j,o,t). Whereas ventral markers (Shh, FoxA2,

Nkx2.2) showed a dorsally expanded profile in Rab23 mutants, these markers were reduced

and expressed in more ventrally restricted domains in Ccrk mutants. Pax6 expression was

inhibited in Rab23 mutants and was ventrally expanded in Ccrk mutants. Ccrk/Rab23 double

mutants showed patterns indistinguishable from Ccrk single mutants. Results from quantita-

tion of data from 3 embryos/genotype and statistical analysis are presented in S2 Table.

(TIF)

S6 Fig. The Ccrk mutation partially suppresses the Smoothened mutant neural patterning

phenotype. Wild-type (a-d), Ccrk mutant (e-h), Smoothened (Smo) mutant (i-l), and Ccrk/Smo
double mutants (m-p) were harvested at E9.5. Morphologically, Ccrk/Smo double mutants

resemble Smo single mutants (i), except that the head size was partially rescued in the double

mutants (m). Sections through the rostral spinal neural tubes were stained for Nkx2.2 (b,f,j,n),

Olig2 (c,g,k,o), and Nkx6.1 (d,h,l,p). Nkx2.2 expression was not rescued in the double mutants

but some Olig2+ (o) and Nkx6.1+ (p) cell fates were restored. Results from quantitation of

data from 3 embryos/genotype and statistical analysis are presented in S3 Table.

(TIF)

S7 Fig. Disruption of Gli2 exacerbates the dorsalized phenotype of Ccrk mutant neural

tube. Sections through the brachial spinal neural tubes of E11.5 wild-type (a-c), Ccrk single

mutants (d-f), Gli2 singe mutants (g-i), and Ccrk/Gli2 double mutants (j-l). Note that the

double mutant neural tube lacks Nkx2.2 and Shh expression (k and j, respectively), shows sig-

nificant reduction of Isl1/2+ (l, in green) and Olig2+ (k, in red) motor neurons and MN pro-

genitors, and that Chx10+ V2 interneurons (l, in red) are ectopically positioned in ventral

domains in the double mutant. Quantitation of data from 3 embryos/genotype and statistical

analysis of data are presented in S4 Table.

(TIF)

S8 Fig. Loss of Gli3 suppresses the Ccrk mutant neural patterning phenotype. Sections

through the brachial neural tubes of E11.5 wild-type (a-d), Gli3 null mutants (e-h), Ccrk mutants

(i-l), Ccrk/Gli3-/-mutants (m-p) and Ccrk/Gli3+/- (q-t) mutants were stained for Shh (a,e,I,m,q),

Nkx2.2 (b,f,j,n,r), Olig2 (c,g,k,o,s), and Isl1/2 (d,h,l,p.t). Ventral regions of the neural tubes are

shown. Whereas the Gli3-/- mutants showed nearly normal patterning phenotype, the Ccrk
mutant neural tube was partially dorsalized, as evidenced by the loss/reduction of Shh (i) and

Nkx2.2 (j) staining. In Ccrk-/-Gli3-/- double mutants, the Shh+ floor plate was restored (m) and

Nkx2.2 expression was extinguished in the ventral midline (n). Ccrk-/-/Gli3+/-mutants showed a

variable rescue of Shh+ floor plate specification (q, n = 3/5). Results from quantitation of data

from�3 embryos/genotype and statistical analysis are presented in S5 Table.

(TIF)

S9 Fig. Hh pathway responses of Ccrk mutant MEFs over time. (A) Normalized qPCR analy-

sis of Gli1 expression by wild-type and Ccrk mutant MEFs in response to 20 nM or 5 nM
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Smoothened agonist (SAG) as a function of time of exposure. Ccrk mutant cells showed a clear

deficiency in their responses at late time points. (B) Normalized qPCR analysis of Patched1
(Ptch1) expression in response to 200 nM SAG over time. Although Ccrk mutant MEFs

showed a slight deficiency in response to SAG for short periods, the defect was far more pro-

nounced at longer periods of exposure (� 12 hours). Quantitation was performed using 3 bio-

logical replicates per condition. Error bars represent standard error of the mean. P values from

Student’s t-tests: ��, p<0.01; �, p<0.05; ns, not significant.

(TIF)

S10 Fig. Ccrk mutant MEFs retain hysteretic activity upon removal of SAG. We treated con-

trol (Ccrk+/-) and Ccrk mutant MEFS under a series of conditions outlined in (A). Cells were

treated with vehicle alone, treated continuously with 200 nM SAG for 8, 24, 58, or 72 h, or they

were first treated with 200 nM SAG for 8 h (phase I) followed by SAG washout and addition of

10 μm Cyclopamine (Cyclop.) added for an additional 24, 48 or 72 h (Phase II). A diagram

depicting expectations of hysteretic and non-hysteretic activity profiles after inducer removal

is shown in (B). (C) Normalized qPCR analysis of Gli1 expression under the conditions out-

lined in A. Ccrk mutant MEFs mounted normal responses to SAG after 8 hours of exposure

and they retained levels of Gli1 expression comparable to controls even after signaling had

been terminated for 24–72 h. Quantitation was performed using 3 biological replicates per

condition. Error bars represent standard error of the mean. P values from Student’s t-tests: ��,

p<0.01; �, p<0.05; ns, not significant.

(TIF)

S11 Fig. Immunofluorescent analysis of cilia in the spinal neural tubes of wild-type and

Ccrk mutant embryos. (A) Low magnification confocal images of the ventral neural tubes of

E10.5 wild-type and Ccrk mutants stained for Arl13b (red) and DAPI (blue). Note that cilia

were abundantly generated in the mutants. (B) High magnification images of neural tube cilia

stained for γ-tubulin (red) to highlight basal bodies and Arl13b (green) to highlight cilia. Scale

bars are 10 and 4 μm in A and B, respectively.

(TIF)

S12 Fig. Model depicting the function of CCRK in ciliary cargo transport and the implica-

tions for activity of the Hh signaling pathway. (A) We propose that CCRK acts through an

unknown mechanism to promote the loading of ciliary cargo onto IFT particles so that they

may be imported into the cilium. Such cargo includes regulators of Hh signal transduction

(e.g. Gli2), tubulin dimers, and potentially, regulators of ciliary assembly/disassembly. (B) An

individual Gli transcription factor molecule must first be loaded onto transport machinery

and then transported towards the cilium tip where it can be activated (via its dissociation from

Sufu). Once activated, the Gli molecule must be transported back to the cell body where it

can enter the nucleus and activate target genes. We suggest that the initial step (loading and

transport) is inefficient in Ccrk mutant cells. This would have the effect of delaying the time

required for an individual molecule to be imported, activated, and function. Hence, fewer

activated Gli molecules would be generated in the Ccrk mutant per unit of time. (C) During

the period of Hh pathway induction, normal cells show two phases: an initial phase of slow

increase, during which Gli2 is upregulated (due to feedback), and a second phase when the

magnitude of the response is amplified (possibly due to the increased levels of Gli2). We

suggest that the initial phase is relatively insensitive to the efficiency of ciliary import of Hh

pathway regulators, but the transport efficiency is rate limiting for the response during the

amplification phase. Thus, the decrease in the rate of ciliary transport of Hh pathway regula-

tors in Ccrk mutant cells has very little effect during the initial phase, but it has a dramatic
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effect on the response during the amplification phase.

(TIF)

S1 Table. Quantitation of patterning changes in E10.5 neural tubes (Fig 2). Immunostained

sections from embryos of Wild-type and Ccrk-/- genotypes were analyzed with respect to a)

the position of dorsal and ventral limits of expression domains as a fraction of neural tube size

(Pax6, Isl1/2, HB9) or b) numbers of marker positive cells per section (Nkx2.2 and Shh). Num-

bers of embryos per genotype and numbers of sections per embryo analyzed are shown, in

addition to average values, standard deviations, and P values from Student’s t-tests.

(TIF)

S2 Table. Quantitation of patterning changes in Ccrk/Rab23 experiment (S5 Fig). Immunos-

tained sections from embryos of Wild-type, Ccrk-/-, Rab23-/-, and Ccrk-/-Rab23-/- genotypes

were analyzed with respect to numbers of FoxA2+, Shh+, and Nkx2.2+ cells per neural tube sec-

tion. Numbers of embryos per genotype and numbers of sections per embryo analyzed are

shown, in addition to average values, standard deviations, and P values from Student’s t-tests.

(TIF)

S3 Table. Quantitation of patterning changes in Ccrk/Smo experiment (S6 Fig). Immunos-

tained sections from embryos of Wild-type, Ccrk-/-, Smo-/-, and Ccrk-/-Smo-/- genotypes were

analyzed with respect to numbers of Nkx2.2+, Olig2+, and Nkx6.1+ cells per neural tube sec-

tion. Numbers of embryos per genotype and numbers of sections per embryo analyzed are

shown, in addition to average values, standard deviations, and P values from Student’s t-tests.

(TIF)

S4 Table. Quantitation of patterning changes in Ccrk/Gli2 experiment (S7 Fig). Immunos-

tained sections from embryos of Wild-type, Ccrk-/-, Gli2-/-, and Ccrk-/-Gli2-/- genotypes were

analyzed with respect to numbers of Nkx2.2+, Olig2+, and Isl1/2+ cells per neural tube section.

Numbers of embryos per genotype and numbers of sections per embryo analyzed are shown,

in addition to average values, standard deviations, and P values from Student’s t-tests.

(TIF)

S5 Table. Quantitation of patterning changes in Ccrk/Gli3 experiment (S8 Fig). Immunos-

tained sections from embryos of Wild-type, Ccrk-/-, Gli3-/-, Ccrk-/-Gli3+/- and Ccrk-/-Gli3-/-
genotypes were analyzed with respect to numbers of Shh+ cells per neural tube section. Num-

bers of embryos per genotype and numbers of sections per embryo analyzed are shown, in

addition to average values, standard deviations, and P values from Student’s t-tests.

(TIF)
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