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Abstract

Recent advances in the scale and diversity of population genomic datasets for bacteria now

provide the potential for genome-wide patterns of co-evolution to be studied at the resolution

of individual bases. Here we describe a new statistical method, genomeDCA, which uses

recent advances in computational structural biology to identify the polymorphic loci under

the strongest co-evolutionary pressures. We apply genomeDCA to two large population

data sets representing the major human pathogens Streptococcus pneumoniae (pneumo-

coccus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we

identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of

the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of

which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-

based analysis found these genes were also coupled to that encoding dihydrofolate reduc-

tase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resis-

tance genes, a large network component of 384 protein coding sequences encompassed

many genes critical in basic cellular functions, while another distinct component included

genes associated with virulence. The group A Streptococcus (GAS) data set population rep-

resents a clonal population with relatively little genetic variation and a high level of linkage
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disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseu-

douridine synthases, which were each strongly linked to a separate set of loci across the

chromosome, representing biologically plausible targets of co-selection. The population

genomic analysis method applied here identifies statistically significantly co-evolving locus

pairs, potentially arising from fitness selection interdependence reflecting underlying pro-

tein-protein interactions, or genes whose product activities contribute to the same pheno-

type. This discovery approach greatly enhances the future potential of epistasis analysis for

systems biology, and can complement genome-wide association studies as a means of for-

mulating hypotheses for targeted experimental work.

Author summary

Epistatic interactions between polymorphisms in DNA are recognized as important driv-

ers of evolution in numerous organisms. Study of epistasis in bacteria has been hampered

by the lack of densely sampled population genomic data, suitable statistical models and

inference algorithms sufficiently powered for extremely high-dimensional parameter

spaces. We introduce the first model-based method for genome-wide epistasis analysis

and use two of the largest available bacterial population genome data sets on Streptococcus
pneumoniae (the pneumococcus) and Streptococcus pyogenes (group A Streptococcus) to

demonstrate its potential for biological discovery. Our approach reveals interacting net-

works of resistance, virulence and core machinery genes in the pneumococcus, which

highlights putative candidates for novel drug targets. We also discover a number of plausi-

ble targets of co-selection in S. pyogenes linked to RNA pseudouridine synthases. Our

method significantly enhances the future potential of epistasis analysis for systems biol-

ogy, and can complement genome-wide association studies as a means of formulating

hypotheses for targeted experimental work.

Introduction

The study of co-evolution in recombining populations of bacteria has been limited by the scale

and polymorphisms present in population samples for which whole genome sequences are

available. Even the most recent population genomic studies of bacterial pathogens have been

constrained in this respect, such as focusing on a particular genotype[1–3], biasing sampling

towards particular clinical outcomes[4–6], or surveying organisms in which limited genetic

diversity and strong linkage disequilibrium (LD) mask the signals of shared selection pressures

[7,8]. For whole genome-scale modeling of co-evolution, sampling should preferentially span

the entirety of a diverse, recombining species in an unbiased manner.

The first organism satisfying all the above-mentioned desiderata is Streptococcus pneu-
moniae (the pneumococcus), for which over 3,000 genome sequences from a well-defined,

limited study population were recently published[9]. As the pneumococcus is an obligate

nasopharyngeal commensal and pathogen, the bacterial population was evenly sampled

through a structured survey of the hosts. The diverse multi-strain population structure, cou-

pled with the naturally transformable nature of S. pneumoniae, results in low LD across the

genome. Hence this set of pneumococci can be considered as an ideal set for detecting

genes that evolve under shared selection pressure. In contrast, we also investigate how well

a genome-wide analysis of co-evolution can perform when the sampling is done from the

Genome-wide epistasis analysis in bacteria

PLOS Genetics | DOI:10.1371/journal.pgen.1006508 February 16, 2017 2 / 24

Sir Henry Wellcome Postdoctoral Fellowship (grant

number:107276/Z/15/Z). JMM was funded by the

Fondren Foundation. EA acknowledges support

from Chinese Academy of Sciences CAS

President’s International Fellowship Initiative (PIFI)

GRANT No. 2016VMA002. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.



opposite end of the genetic variation spectrum by considering 3,442 genomes of the M1

lineage of S. pyogenes, which has contributed significantly to the global epidemic of group A

Streptococcus infections during the past three decades[3]. In this case recent expansion

from a single progenitor has generated a clonal population that has experienced a minimal

amount of homologous recombination.

Analyzing sets of co-evolving polymorphisms is a powerful means of identifying sites that

interact directly, through protein-protein contacts, and indirectly, through epistatic interac-

tions that affect the same phenotype. The former type of selection pressure has previously

been studied on the scale of individual proteins. It has been known for more than 20 years

that the correlations of amino acids in two columns in a multiple sequence alignment (MSA),

contain exploitable information and provide a non-trivial predictor of protein tertiary struc-

ture spatial proximity[10,11]. Detection of co-evolving mutations in genomes is in the statis-

tical sense analogous to this structural prediction problem, as both phenomena can arise as a

consequence of joint selection pressures. The latest advances in computational structural

biology have shown that by changing the modeling framework from correlations to high-

dimensional model learning one can improve protein contact predictions significantly, an

approach generally referred to as direct coupling analysis (DCA)[12–15]. Furthermore,

including considerations of epistatic interactions between sites has recently been shown to

significantly improve the mapping between genotype and phenotype for a beta lactamase

protein[16].

Co-evolving sites do not necessarily directly interact. Rather, changes at distinct sites may

represent selection for a particular phenotype determined by multiple polymorphic loci.

However, the complexity of the possible set of interactions has mostly limited previous analy-

ses of epistasis to viral datasets of limited diversity; nevertheless, these studies have shown epis-

tasis to be an important factor in evolution. An application of a phylogenetically-informed

method to influenza subtypes H1N1 and H3N2 identified patterns of substitutions associated

with the emergence of resistance to oseltamivir[17], and many sites were found to be undergo-

ing coordinated evolution within the hepatitis C virus[18]. However, the non-linear expansion

in the number of interactions as the genome length and diversity increase has hampered the

application of such methods to the study of bacterial populations. In recent work, pairwise sta-

tistical correlation analysis was demonstrated to successfully reveal certain types of co-evolu-

tionary patterns across the genome for 51 Vibrio parahaemolyticus isolates[19]. While this

approach appears promising given the way in which linkage disequilibrium is handled in it,

pairwise analyses of association are in general subject to Simpson’s paradox which may cause

difficulties in separating direct and indirect links between variables[20–22]. Furthermore, the

necessity of correcting for a quadratically increasing number of multiple hypothesis tests

reduces the statistical power to detect the true positive associations. A model-based approach

to estimating the strength of co-evolution between genome sites is therefore preferential to

correlation based analysis, as has been clearly demonstrated earlier in the context of protein

evolution[12–15].

Here we demonstrate a new method for the identification of statistically significantly co-

evolving polymorphisms from bacterial genome sequence alignments named genomeDCA

(freely available at https://github.com/mskwark/genomeDCA). By considering the evolution

of polymorphic sites simultaneously and using the inference tools for regularized statistical

model learning one avoids both the problems that drive high levels of false positives and nega-

tives when the number of pairwise interactions grows. The method introduced here offers a

powerful complementary approach to traditional GWAS analyses[23] for the explorative dis-

covery of polymorphisms potentially underlying phenotypes that have an unknown genetic

basis in the emerging era of massive population sequencing for bacteria.

Genome-wide epistasis analysis in bacteria
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Results

Genome-wide identification of coupled loci for the pneumococcus

Analysis of coupled loci for the pneumococcus is derived from a whole genome alignment

generated from short-read data for 3,156 systematically-sampled pneumococcal isolates [9]

each aligned to the reference sequence of S. pneumoniae ATCC 700669 [24]. Filtering this

alignment for biallelic loci at which the minor allele frequency was >1% and >85% of isolates

had a base called identified 81,560 polymorphic sites. Of these, 88.3% were within protein cod-

ing sequences (CDSs), a slight enrichment relative to the 87.2% of the S. pneumoniae ATCC

700669 reference sequence annotated as CDSs. Following the genome-wide linkage analysis

(see Methods), estimates of association strength were retained from 102,551 couplings (S1

Table). A Gumbel distribution fitted to this sample (Fig 1; μ = 0.096 and β = 0.028) signifi-

cantly diverged from the empirical data above a coupling strength of 0.129. The 5,199 cou-

plings (S2 Table) exceeding this threshold were considered as putative epistatic interactions;

these affected 1,936 sites, 89.0% of which were within CDSs. As closely proximal sites were

excluded from this analysis, these coupled sites had a mean separation of 587.4 kb, with only

two sites separated by less than five kilobases (Fig 2). Hence these associations are unlikely to

be artifacts of genetic linkage.

Strong epistatic links between penicillin-binding proteins

The putative epistatic interactions identified by genomeDCA were used to generate a network

(Fig 3). The nodes, each corresponding to a CDS, were colored according to function and

scaled according to the number of epistatic links with which they were associated. The edges

were weighted according to the number of interactions between CDS pairs. Most of the anno-

tated functional categories were represented in the network, with the notable exception of

mobile genetic element genes. This absence was almost entirely the consequence of the lack of

informative sites in these regions of the genome, owing to their high variability across the pop-

ulation. By contrast, the functional category most over-represented in the dataset was surface-

Fig 1. Divergence between theoretical and empirical distributions of coupling strengths between sites. Left panel (A) shows the two distributions

such that the vertical axis corresponds to the log10 probability of a coupling coefficient exceeding the value of the curve on the horizontal axis. The

dashed vertical line depicts the significance threshold; 5199 out of 102,551 couplings exceed the threshold. Right panel (B) displays the absolute

difference between the fitted cumulative Gumbel distribution and the empirical cumulative distribution (on log10-scale) as a function of the coupling

strength. The dashed vertical line marks the smallest coupling (0.129) which has a difference of more than six standard deviations among the first 50,000

empirical-Gumbel differences.

doi:10.1371/journal.pgen.1006508.g001
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associated proteins. Although previous work has suggested immune selection might drive epis-

tasis between antigens [25], in fact this enrichment was entirely the consequence of selection

for antibiotic resistance. Of the 4,617 links represented in this network, 3,578 (77.5%) involved

175 sites found in one of three genes encoding penicillin-binding proteins (PBPs; Fig 3A):

Fig 2. The 5199 significant couplings shown by lines connecting genomic positions which are indexed in kilobases by the running

numbering. The thickness of lines is proportional to the number of linked positions within the corresponding chromosomal elements. The red

markers show the positions of sites identified in an earlier GWAS study of resistance determining variation in the pneumococcal genomes. The

green markers indicate locations of protein coding sequences where significant couplings are present. Gene annotations shown outside the circle

are centered at the positions of the corresponding genes.

doi:10.1371/journal.pgen.1006508.g002
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SPN23F03080 (pbp2x), SPN23F03410 (pbp1a) and SPN23F16740 (pbp2b). These PBPs have

been experimentally demonstrated to be the major determinants of resistance to beta lactams

[26], with changes to each individual protein reducing its affinity for beta lactam antibiotics

while retaining its the ability to bind its natural substrates[27,28]. This link between genotype

and phenotype was also identified by a genome-wide association study (GWAS) using this

dataset[29]. Of the 858 sites found to be significantly associated with beta lactam resistance by

this GWAS, 403 were within these three coding sequences for PBPs; of these, 216 met the crite-

ria to be analysed in this study. These corresponded to 161 of the 175 sites identified within the

same genes by this analysis, representing a highly significant overlap with those sites signifi-

cantly associated with beta lactam resistance by the GWAS (Fisher exact test, OR = 110.2, 95%

confidence interval = 58.85–221.83, p< 2.2x10-16). Hence the couplings between sites in these

genes represent a set of changes that distinguish pneumococci with differing sensitivities to

beta lactam antibiotics. This was in line with the distribution of these alleles across the popula-

tion (S1 Fig), with particular alleles at the coupled sites found in multiple penicillin-insensitive

lineages. This also confirmed that none of the identified associations correlated with the

expansion of a single clone.

Changes in these genes are strongly epistatic, as alterations of all three PBPs are necessary

for pneumococci to develop non-susceptibility to a broad range of beta lactam antibiotics.

Consequently, the emergence of multidrug-resistant pneumococci is associated with genetic

changes that alter all three of these enzymes over very short evolutionary timescales [30–32].

Another factor that might underlie both the concerted changes at all three loci, rather than a

gradual emergence of resistance, as well as the non-uniform distribution of coupled sites across

these genes (Fig 4) is the potential for alterations in only one protein disrupting direct protein-

protein interactions. As these proteins perform similar functions on the same substrate, and

are all co-localised to the cell membrane, it has been hypothesised that they function as constit-

uents of a multi-enzyme complex[33]. Evidence from co-immunoprecipitation and crosslink-

ing experimental work has supported this idea[34,35] and hence the distribution of coupled

sites between the PBPs was investigated in greater detail.

Structural distribution of coupled sites in PBPs

Couplings were identified between all three PBPs, although almost 95% involved pbp2x. This

might reflect that pbp2x has to be altered for resistance to both penicillins and cephalosporins,

whereas modifications of pbp1a are important primarily for cephalosporin resistance [36], and

modifications to pbp2b are important primarily for penicillin resistance [37]. Alternatively,

if these proteins do interact, these data suggest pbp2x would be central to any potential pro-

tein-protein interactions. The coupled sites are distributed broadly across pbp2x, with the

exception of the PBP dimerization domain, despite the identification of sites within this region

by GWAS.

Co-evolving sites related to pbp1a are more narrowly distributed and involve stronger inter-

actions with pbp2x than with pbp2b (Fig 4, S2 Table). The links between the proteins PBP1A

and PBP2X are distributed between two domains and a further structural analysis (Fig 5, S3

Fig 3. Network of coupled protein coding sequences. This undirected network shows all significant couplings between

protein coding sequences (CDSs). Each node is a CDS, colored according to its functional annotation, and scaled according

to the logarithm of the number of significant coupled loci it contained. Edges are weighted according to the logarithm of the

number of significant coupled loci linking two CDSs. (A) Network component containing the genes pbp2x, pbp1a and pbp2b.

(B) Network component containing the smc gene. (C) Network component containing the tRNA synthetase gene pheS and a

coding sequence for another putative tRNA-binding protein. (D) Network component containing the genes for pspA and

divIVA.

doi:10.1371/journal.pgen.1006508.g003
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Table) showed how the identified positions in pbp1a with the strongest couplings were located

in strand β-4 and the loop connecting strands β-3 and β-4, near the transpeptidase active site,

Fig 4. Distribution of couplings between sites in different PBPs. The red markers are defined as in Fig 2.

doi:10.1371/journal.pgen.1006508.g004
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Fig 5. Structural models of pbp1a, pbp2x, pbp2b with the 100 strongest couplings listed in S3 Table indicated. The figures show the transpeptidase

domains of each PBP with catalytic/active site residues shown in cyan and coupled positions as sticks with other colors. Active site bound antibiotic/inhibitor is

rendered as a space-filling volume when present in the crystal structure. Panels A-D depict: pbp1a with couplings to pbp2x, green colored residues are

coupled with green residues in panel B; orange colored residues in B are coupled with both green and yellow residues in A (A), pbp2x with couplings to pbp1a

(B), pbp2x with couplings to pbp2b in orange (C), pbp2b with couplings to pbp2x in orange (D).

doi:10.1371/journal.pgen.1006508.g005
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but not overlapping with the conserved catalytic residues. The counterpositions in pbp2x
showed a spatially less focused pattern with linked positions near the active site, including the

typically conserved active site residues Ser395 and Asn397, as well as links to positions not in

direct spatial proximity of the active site, but structurally linked to that region through helical

secondary structure elements. Alterations in the active site surroundings can interfere with

inhibitor binding with only minor effect to catalytic function as was evident for substitutions

in the identified β-3/β-4 loop region residues 574–577 which were strongly linked to beta-lac-

tam resistance[38]. Resistant strain pbp1a likewise showed amino acid substitutions at the

identified positions 583 and 585 in strand β-4 in comparison to a beta-lactam susceptible

strain[38] (resistant strain PDB code 2V2F). Position 580 at the N-terminal end of β-4 (typi-

cally a proline) in pbp1a was linked to position 363 in pbp2x, which is part of an ionic interac-

tion (Glu363 to Arg372) present in all current crystal structures of S. pneumoniae pbp2x (see

Methods for details) and may play a structural role by stabilising the α-2/α-4 loop region prox-

imal to the pbp2x active site. Residues at PBP2X positions 401, 404, 412 and 413 are all buried

within the protein, but are connected to active site residues Asn397 and Ser395 via helix α-5. It

is possible that these positions are implicated in active-site shaping as well. For pbp2b, struc-

tural mapping of the top ranking co-evolved sites revealed two major groupings: positions in

the α-2/α-4 loop region that, similarly to the pbp1a case, partially cover the active site, and

positions that, similarly to the pbp2x side of pbp2x –pbp1a couplings, were spatially more dis-

tant but structurally linked to the active site. As in pbp1a, observed flexibility in the α-2/α-4

loop region proximal to the active site points to a potential role in antibiotic resistance of this

structural feature[39].

Associations with other resistance phenotypes

The PBPs are confined to a single network component that contains ten other proteins. Seven of

these are found in close proximity to the three PBPs, and likely represent sequences altered when

resistance-associated alleles of the PBP genes were acquired through transformation events,

which often span tens of kilobases [30,32]. However, it is also possible these could play a role in

‘compensating’ for deleterious side-effects of the changes in the PBP proteins. One of these CDSs

proximal to a penicillin-binding protein gene is mraY, directly downstream of pbp2x and encod-

ing a phospho-N-acetylmuramoyl-pentapeptide-transferase also involved in cell wall biogenesis

(S2 Table, Fig 3). It was previously predicted that mutations in this transferase associated with

beta lactam resistance could represent compensatory changes ameliorating the costs of evolving

beta lactam resistance[29]. Another CDS, gpsB, is shortly upstream of pbp1a and encodes a para-

logue of DivIVA that also plays an important role in peptidoglycan metabolism [40].

The three proteins in the network component that were not proximal to a PBP-encoding

CDS were dyr (also known as folA or dhfR), encoding dihydrofolate reductase, and three

nearby genes (S2 Table, Fig 3). Mutations in the dyr gene cause resistance to trimethoprim

[41]. The earlier GWAS study[29] found a significant association between both dyr and folP
with beta lactam resistance, despite no functional link to such a phenotype, nor any likely rea-

son why they would directly interact with PBPs. Hence the detected interaction between dyr
and the pbp genes is most likely explained by the co-selection for resistances that have accumu-

lated in the same genetic background, resulting in the multi-drug resistant genotypes observed

to have emerged over recent decades[42].

Couplings between core genome proteins

To identify other functional roles that might underlie the distinct sets of couplings represented

in Fig 3, a gene ontology (GO) analysis was performed for each network component containing

Genome-wide epistasis analysis in bacteria
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more than two nodes. This identified five significant signals, including that for penicillin-bind-

ing associated with the previously described component (GO:0008658, Fisher’s exact test,

OR = 337.3, 95% confidence interval = 25.40–15878.4, p = 0.00048 after Benjamini-Hochberg

correction). However, the strongest association was that of the largest network component,

containing 384 CDSs (Fig 3B), with ATP binding activity (GO: 0005524, Fisher’s exact test,

OR = 2.89, 95% confidence interval = 2.01–4.18, p = 8.75x10-7). Other GO terms significantly

associated with this component were GO:0005737, corresponding to cytosolic localisation

(Fisher exact test, OR = 3.44, 95% confidence interval = 2.10–5.62, p = 0.0001 after Benjamini-

Hochberg correction), and GO:0016021, corresponding to integral membrane proteins (Fisher

exact test, OR = 2.32, 95% confidence interval = 1.45–3.66, p = 0.043 after Benjamini-Hochberg

correction), which have cytosolic segments, despite being surface associated. These associations

partly reflect the preponderance of cytosolic ATP-hydrolysing tRNA synthetases, of which

enzymes for the processing of eleven amino acids were present among these CDSs, and mem-

brane-associated ATP-hydrolysing ABC transporters. The most highly connected node in the

component, linking to 22 other CDSs, was another ATPase. SPN23F11420, encoded the Smc

protein, is critical in organizing the chromosome and forms the basis of a multi-protein com-

plex in both prokaryotes and eukaryotes [43]. Hence this large diverse set of coupled CDSs

included many components of the essential cytosolic machinery, the interactions of which are

critical to the basic functioning of the cell.

The fourth significant enrichment of GO terms also involved tRNAs (GO:0000049—tRNA

binding; Fisher exact test, OR = 869.1, 95% confidence interval = 36.83–4.50x1015, p = 0.00048

after Benjamini-Hochberg correction), which applied to a component containing three nodes

(Fig 3C). One corresponded to pheS, a phenylalanyl tRNA synthetase, while the other was

SPN23F19340, annotated as encoding a tRNA binding protein of unknown function. Attempt-

ing to identify a more specific functional prediction using the CDD database[44] we found this

protein possessed a “tRNA_bind_bactPheRS” domain, specifically involved in processing phe-

nylalanyl-tRNAs, and only otherwise found in PheT, which directly interacts with PheS in the

phenylalanyl-tRNA synthetase. Hence this coupling may represent a previously unexpected

direct protein-protein interaction.

The CDS directly downstream of pheS, encoding a putative membrane-associated nuclease

(SPN23F05260), was coupled to a tRNA methyltransferase adjacent to pspA in a separate net-

work component (Fig 3D). The pspA gene, encoding a surface-associated protein involved in

pathogenesis and immune evasion, was itself present in the same network component, and

engaged in some of the strongest coupling interactions in the dataset. These linked to the

divIVA, encoding a cell morphogenesis regulator [40], and three CDSs upstream of ply, encod-

ing the major pneumococcal toxin pneumolysin[45] which, like pspA, is critically important in

pneumococcal virulence and upregulated during infection[46]. These three ply-associated

CDSs (SPN23F19480-SPN23F19500) encode proteins likely to play a role in localising or trans-

porting pneumolysin from the cytosol into the cell wall[45]. Hence these coupling links could

be the consequence of these virulence proteins engaging in interactions at the surface of the

cell.

Interactions were also detected between CDSs and non-CDS sequence. The 213 non-CDS

coupled sites were enriched in non-coding RNAs (Fisher exact test, OR = 1.92, 95% confidence

interval = 0.963–3.48, p = 0.041), suggesting they may represent functional links between RNA

and proteins. However, the non-coding RNAs involved were riboswitches in 5’ untranslated

regions. When a bipartite network was constructed that displayed couplings between CDSs

and upstream non-CDS regions (S2 Fig), the network components mirrored those in Fig 3.

This suggested the links represented sequence proximal, and therefore linked, to CDSs that

were coupled, rather than epistatic interactions involving direct protein-DNA interactions.

Genome-wide epistasis analysis in bacteria
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Correspondingly, neither DNA binding (GO: 0003677) nor RNA binding (GO:0003723) were

enriched in this network. Similarly, there was no enrichment of coupled sites in non-coding

regions between divergently transcribed CDSs, which should be enriched for regulatory ele-

ments (Fisher test, OR = 0.48, 95% confidence interval = 0.283–0.757, p = 0.00074).

Genome-wide identification of coupled loci for the group A

Streptococcus M1 population

The whole genome alignment used in this analysis consists of short-read data for 3,442 isolates

belonging to the contemporary M1 lineage of S. pyogenes, which has contributed significantly

to the global epidemic of group A Streptococcus infections during the past three decades[3]. Fil-

tering this alignment for polymorphic sites at which the minor allele frequency was>1%

resulted in 324 SNP loci (coupling estimates in S4 Table). To investigate the effect of including

SNPs with more rare minor alleles we also performed an analysis without such MAF based fil-

tering. However, uninformative polymorphic sites where the minor allele was private to a single

genome only were still excluded in this analysis, leaving 5078 SNPs out of the total of 12400

SNPs present in the alignment (coupling estimates in S6 Table, http://dx.doi.org/10.5061/dryad.

gd14g). Similar to the pneumococcus analysis, we employed the Gumbel model to determine a

threshold for significant couplings (Fig 6). For the two sets of loci there are 5952 and 1840 cou-

plings exceeding the thresholds 0.014 and 0.023, respectively. Inclusion of loci with rare minor

alleles (MAF< 1%) did not impact rankings of the strongest couplings found in the smaller

locus set. None of the loci with the rare minor alleles were among the 2000 top ranking cou-

plings, while 5.3% of couplings ranking between 2000–3000 involved any such loci. However,

their fraction was approximately 30% among couplings ranking between 3000–5000, which

indicates that relatively rare minor alleles may also lead to moderate levels of coupling signals

Fig 6. Divergence between theoretical and empirical distributions of coupling strengths between sites for S. pyogenes, defined as in Fig 1. Left

panel shows the distributions for the 324 locus data set and right panel for the 5078 locus data set.

doi:10.1371/journal.pgen.1006508.g006
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when they are tightly linked as is the case for M1 data. Nevertheless, the vast majority of the loci

with MAF< 1% were included in couplings very close to zero (S5 Fig). Since the M1 lineage

stems from a recent expansion from a single progenitor cell, there has been on an evolutionary

timescale relatively little opportunity for recombination to disrupt the clonal frame resulting

from this genome-wide population sweep, consequently the SNP loci are relatively tightly linked

across the whole chromosome. To better enable an inspection of the biological meaning of the

significant 5952 couplings, we ranked them using successively the following three criteria: 1)

size of the coupling coefficient (rounded off to two decimal points), 2) percentage of isolates

where both SNP loci involved in a coupling had the minor allele, 3) minimum of the average

genome-wide Hamming distances of isolates carrying the minor alleles at the two loci, respec-

tively. Large values of the latter two criteria emphasize cases where both minor alleles at a

strongly coupled pair of loci are simultaneously widely distributed across the population, i.e.

maximize their phylogenetic spread. The loci included in the twenty highest ranking couplings

are visualized together with the maximum likelihood phylogeny in Fig 7.

The overall pattern of couplings between S. pyogenes genes lacked a pattern akin to the very

strongly linked penicillin-binding proteins observed in S. pneumoniae. However, there were

some similarities evident in comparison of the results obtained from the two population

genome data sets. Of the twenty coupling interactions ranked most highly according to the

above stated criteria, eight involved two RNA pseudouridine synthases, despite only eight such

enzymes being annotated in the chromosome. The 16S rRNA U516 pseudouridylate synthase

gene rsuA (M5005_Spy1092) accounted for five couplings, one of which linked to a CDS

(M5005_Spy0101) directly orthologous with the tRNA binding protein identified in the

Fig 7. Phylogeny of the M1 lineage and the distribution of minor/major alleles in the SNP loci involved in the 20 most highly ranked significant

couplings.

doi:10.1371/journal.pgen.1006508.g007
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analysis of S. pneumoniae (SPN23F19340). Other linked genes involved in nucleotide metabo-

lism were the prsA2 ribose-phosphate pyrophosphokinase (M5005_Spy0018) and the GTP-

binding transcription factor typA (M5005_Spy1255). The tRNA pseudouridine synthase gene

truB accounted for a further three couplings, one of which was to the Cas1 nuclease-encoding

CDS M5005_Spy1286, part of the RNA-dependent S. pyogenes CRISPR2 system. These poly-

morphisms were homoplasic, as indicated by the phylogeny in Fig 7, demonstrating the pair-

ings have arisen on multiple occasions, and do not simply reflect common descent.

Effect of the population structure correction

The smaller dimensionality of the M1 data set allowed us to systematically vary the level of

population structure correction in the pseudolikelihood inference and study its effect on the

estimated couplings. Since the inference was computationally expensive for the pneumococcus

data, only the default level of correction (0.90) was used for all the resampling based analyses.

S6 Fig shows that the ranking of the few thousand top couplings is stable across threshold lev-

els 0.75–0.90, whereas the lower thresholds pull more strongly some of the uncorrected cou-

plings ranked between 4000–10000 towards the lowest ranking (around 50000). In contrast,

the threshold 0.95 appears to be too high since the ranking becomes less stable and some of the

weaker signals are given too much emphasis.

Discussion

Natural selection continuously shapes genetic variation in bacterial populations, acting to

purge sequence variation that is deleterious and to maintain variation that is beneficial. Labo-

ratory experiments provide the gold-standard method for establishing underlying mechanisms

among observed variable sites. However, such experiments also necessitate the definition of a

measurable phenotype, which may be a daunting task for many complex traits relevant for sur-

vival and proliferation of bacterial strains. The exponentially increasing size of the genome

sequence databases provide a valuable resource for generation of hypotheses for experimental

work. In eukaryotes, GWAS methods have been used for more than a decade to probe for

DNA variation that is non-randomly allied with phenotypic differences indicative of a possible

causal genotype-phenotype relationship [47,48]. In bacteria, use of GWAS for this purpose is

of much more recent origin but has been demonstrated to hold a considerable promise in the

light of more densely sampled populations[23,29,49–52]. However, GWAS is not the only way

in which wealth of bacterial sequence information has been proposed to be used to gauge

which genes could potentially be targets of positive selection and to generate hypotheses for

experimental work. For example, Li et al. screened genome sequences of closely related pairs

of isolates in a densely sampled pneumococcal population which would differ at particular

genes of interest to provide candidate targets for phenotypic tests[53].

By leveraging from the most recent advances in computational protein structure prediction

and statistical machine learning, we have been able to introduce a method that promises to com-

plement the popular GWAS approach for understanding how polymorphisms affect phenotypic

variation. This work identified many different coupled sites across the genome, which network

analysis revealed to define separate clusters of genes involved in resistance, virulence, and core cell

functions. Our study represents the first attempt to use statistical modeling to fully exploit large-

scale bacterial population genomics to identify patterns of co-evolution in sequence variation.

As illustrated by the genomic data from the contemporary M1 lineage, when a population

has experienced a very limited amount of homologous recombination, it will be more chal-

lenging to separate couplings related to LD from those that are under shared co-evolutionary

pressure. Our further analysis ranking pairs of SNP loci by the degree of phylogenetic spread
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of the minor alleles and their matching at both loci in addition to the strength of the coupling,

illustrates that it may be possible to deduce biologically relevant signals even under such cir-

cumstances. Further research on different ways to post-process the coupling estimates to more

precisely reflect different evolutionary scenarios is therefore warranted.

Our approach provides a comprehensive genome-wide view of epistasis, which is both

quantitatively and qualitatively different from studies of coupled evolution between function-

ally-related genes or proteins. Results applying to single pathways or functions, such as the

penicillin-binding proteins, likely reflect strong selection for functionally important interac-

tions. Many such interactions are likely to exist throughout the pneumococcal genome, partic-

ularly related to central and secondary metabolism, but will not be detected in this study for

two reasons. Firstly, the operonic organisation of coding sequences means such sites will often

be in linkage disequilibrium with one another, and therefore excluded from this analysis on

the basis of proximity within the chromosome. Secondly, strong selection against mismatched

alleles at interacting sites would be expected to limit the maintenance of diversity at these

sites, meaning minor allele frequencies above the threshold required in this study will not be

attained. This genomeDCA method instead highlights interactions important in shaping the

evolution of a population, such as the diversification of the pneumococcal penicillin-binding

proteins. These unlinked genes have been under strong selection to decrease their affinity for

beta lactams in some isolates, yet still co-existing with sensitive isolates, resulting in the genetic

variation necessary for both coupling analyses and GWAS.

The biological interpretation of the many other coupled sites should account for the possibil-

ity of being driven by the avoidance of deleterious non-productive interactions, necessary for

the maintenance of binding specificity between interacting proteins. These can only be detected

through a whole genome approach, providing a previously unattainable insight on those interac-

tions that cannot be anticipated from a priori functional analyses. Such non-productive interac-

tions are, by definition, more numerous than the specific interactions between functionally

related proteins. Furthermore, each individual interaction is likely to be under weaker selection

compared with specific functional interactions, and therefore detectable levels of variation are

more likely to be maintained at the relevant polymorphic sites across the population. Therefore

not all couplings detected in this work will represent functional links; some will instead provide

a new type of data about the ‘noise’ inherent in an imperfectly specific complex biological sys-

tem. This type of interaction is very difficult to detect in a high-throughput manner by any other

methodology, and may well play a previously underappreciated role in bacterial evolution.

Importantly, as we have demonstrated, it is not necessary to specify the relevant phenotypes

a priori for this approach to work successfully. Therefore a single analysis with this method

may simultaneously reveal co-selected sites for many different traits, and provide an indication

of their relative influence on evolutionary patterns, as illustrated by the results on the pneumo-

coccus. The selective pressure for at least some of the population to develop beta lactam insen-

sitivity clearly has a substantially greater influence on the co-evolution of unlinked sites than

any other loci in this population. Since our approach is widely applicable to data generated by

bacterial population genomic studies, it has considerable potential to identify important targets

for subsequent experimental work designed to gain system level understanding about the evo-

lution and function of bacteria.

Materials and methods

Genome data

The 3,156 genomes of the pneumococcus used in our study are obtained from the study by

Chewapreecha et al[9], including 71 additional genomes not presented in their original article.
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A list of the accession numbers of all the 3,156 genomes is provided in the Supplementary

materials (S5 Table) and the multiple sequence alignment is available from the Dryad Digital

Repository: http://dx.doi.org/10.5061/dryad.gd14g. We used a genome alignment produced as

in Chewapreecha et al[9] of the total length 2,221,305 bp, in which 388,755 SNP loci were pres-

ent, out of which 134,037 loci had a minor allele frequency (MAF) of at least 0.01. Out of these

we selected 81,560 loci that had coverage of at least 84.1%, i.e. not more than 500 genomes

with a gap/unresolved base pair at the considered sequence position. As the analysis focused

solely on the biallelic loci, the observed nucleotides have been replaced, so that the entire align-

ment was composed of only three letters (two representing observed allele (major/minor) and

one gap/unobserved allele). This was done in the interest of reducing the number of parame-

ters of learnt models approximately 3-fold.

The 3,442 genomes of the S. pyogenes were obtained from the study by Nasser et al. [3], rep-

resenting the post-resurgence epidemic strains of the original article, that is, the contemporary

lineage. The multiple sequence alignment is available from the Dryad Digital Repository:

http://dx.doi.org/10.5061/dryad.gd14g. We used the genome alignment produced in Nasser

et al. with the total length of 1,838,562 bp in which 12400 SNP loci were present for the post-

epidemic strains. Maximum likelihood phylogeny was estimated with RAxML[54] using the

12400 SNPs and the GTR+Gamma model with 100 bootstraps. The same filtering criteria were

used as for the pneumococcus, which resulted in 324 SNP loci being included in the geno-

meDCA analysis. To visualize the phylogeny together with the allele distributions observed at

a subset of the SNP loci, we used the Phandango software available at http://jameshadfield.

github.io/phandango/. In addition, analysis was also performed without MAF based filtering,

such that only SNP loci where the minor allele was private to a single genome were excluded.

This analysis included 5078 out of the 12400 SNPs present in the alignment.

DCA and regularized model learning

Direct Coupling Analysis (DCA) was introduced as a method to predict residue-residue contacts

in protein structures from multiple sequence alignments (MSAs) of many homologous proteins

[12,55]. A general review about the use of DCA in protein contact prediction has been recently

made by de Juan et al.[56] The essence of DCA is to use the data to learn a probabilistic model in

an exponential family referred to as a Potts model, and to use model parameters to characterize

the data. Potts models are generalizations of the well-known Ising model[57], where each variable

can take q different values (q = 2 for the Ising model); for the contact prediction problem q equals

21 corresponding to the twenty normally occurring amino acids and a gap state in an MSA. Potts

models and Ising models contain linear (one-variable) and quadratic (two-variable) terms; in

DCA the quadratic terms, also referred to as couplings or interactions, are used to characterize the

data. For completeness we give a mathematical definition of Potts models in Supplementary Infor-

mation, where we also give further details on how these models are parametrized.

In this work we use the MSA built on loci of variation in the genome sequences, filtered

such that at each locus in one sequence we only have a major allele, a minor allele, or the locus

can be missing. A sequence is thus coded as a string of symbols major/minor/gap, and we use

the table of such strings to learn a Potts model with q = 3 states. A coupling between a pair of

loci can be parametrized by a 3x3 parameter matrix. The parametric dimensionality conse-

quently grows by the number of loci squared, i.e. is here on the order of 1010 for the pneumo-

coccus data, whereas the number of observations is on the order of 103. Models are therefore

regularized as discussed in Ekeberg et al[58].

A central aspect of the DCA procedure is that only a set of strongest predicted interactions

are retained[12,55]. Indeed, as the number of parameters of these models in practical use is
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much larger than the sample size, a selection is necessary. For the contact prediction problem

the number of retained predictions has often been taken to be about the length of the protein

[14,59]. Here we have determined instead a threshold for significant interactions using the sta-

tistical theory of extreme value distributions, as explained below.

The final central aspect of DCA is the actual learning procedure, or inference. Exact solution

of maximum likelihood (ML) inference of general Ising and Potts models is a computationally

hard problem and not feasible for the instances of interest; in statistics such likelihood func-

tions are often referred to as intractable. Several approximate learning schemes have therefore

been developed[12,55,58,60–64]. DCA for protein contact prediction has also been combined

with other methods[59,65]. We have in this work used pseudolikelihood inference as described

below.

Deriving the meaning of inferred Potts model parameters in a highly under-sampled situa-

tion is not a simple mathematical problem, and no agreement has so far been reached in the

DCA literature[66,67]. For instance, the numerical values of inferred parameters depend on

the regularization, such that large regularization yields small inferred parameter values. As in

most DCA studies we have in this work relied on the empirical observation, discussed e.g. in

Ekeberg et al.[62], that the order of the largest inferred parameters is only weakly dependent

on regularization. The subsequent analysis is then based on the identity of these largest predic-

tions, while the corresponding numerical values are not used further. For a recent theoretical

discussion of the performance of DCA for contact prediction compared to faithfully recon-

structing the full probability distribution over sequences, see Jacquin et al.[68]

Pseudolikelihood inference and parameter scoring

Pseudolikelihood was originally introduced in the early 1970’s to enable estimation of parame-

ters in spatial statistical models with intractable likelihood functions[69,70]. This inference

technique has experienced a strong revival in the recent years for high-dimensional applica-

tions where the number of possible model parameters greatly exceeds the number of observa-

tions, known as the ‘small n, large p’ problem[71]. In particular, pseudolikelihood provides

consistent estimators of the model parameters unlike the competing variational inference

methods[72]. The outcome of the inference is a set of matrices Jij describing the interactions

between loci i and j. We score these numbers by their Frobenius norms |Jij|, which we refer to

as interaction strengths, but without the Average Product Correction (APC) which has become

the most common choice in the protein contact prediction problem. The APC approach is not

suitable for the interaction parameter matrices in the current application since they are not

sparse in the statistical sense as is the case with residue interaction matrices.

The pseudolikelihood method allows an efficient correction for population structure by

the reweighting scheme used in plmDCA for an MSA in protein analysis[58], which ensures

that highly similar sequences are not artificially inflating the support for direct dependence

between alleles. We used the default reweighting scheme in plmDCA with a 0.9 similarity

threshold over the variable alignment positions, except for the 5078 locus M1 data where the

minimum similarity between any pair of sequences was 98% and threshold 0.95 was used.

Resampling procedure

The number of parameters in our model for the pneumococcus data is far larger than has

hereto been considered in analogous studies. Also, neighboring loci are most often in linkage

disequilibrium (LD) which has a confounding biological effect on their interaction. For both

these reasons, we have chosen to dissect the pneumococcal core chromosome into approxi-

mately 1,500 non-overlapping segments and apply pseudolikelihood inference on subsets of
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the loci, chosen randomly from each genomic window of average size of 1500 nt. These partic-

ular choices were motivated by attempting to achieve a balance between minimizing the effect

of LD and the need to keep the number of SNP loci included in any single instance of the pseu-

dolikelihood inference limited enough such that the computation time would remain reason-

able. For each such sample we learned about 106 parameters, scored them as described above

and saved only the 3000 largest interaction parameters to reduce memory consumption. As

seen from the results, the vast majority of the stored maximal couplings were relatively small,

indicating that sufficiently many values were included from each analysis. For each sample the

inference took approximately 190 minutes and used approximately 2GB of memory on a single

core of a standard Intel Core i5 processor. The whole re-sampling and model fitting procedure

was repeated 38,000 times to ensure stable inference about the parameters. However, sequen-

tial examination of the results from the estimation runs showed that the list of top scoring cou-

plings did not change markedly after a few thousand iterations, indicating that substantially

fewer iterations had been sufficient for practical purposes. Interaction estimates were averaged

for any pairs of sites that occurred multiple times among the saved parameters, which resulted

in 102,551 pairs of sites with non-negligible coupling coefficients from the aggregated re-sam-

pling results (S1 Table). This set is approximately five orders of magnitude smaller than the set

of all possible interactions for the 81,560 considered loci.

The whole pneumococcus analysis workflow is illustrated in S4 Fig. Software implementing

both the resampling procedure (Python) and the parameter inference (Matlab) is made freely

available at https://github.com/mskwark/genomeDCA. The smaller number of variable sites in

the S. pyogenes alignment made it possible to fit the model simultaneously to all considered SNP

loci and save the couplings exhaustively without resampling. The analysis of the smaller set of

324 loci took approximately 2 minutes and used 370 MB of memory, whereas the set of 5078 loci

took approximately 11 hours and used 5GB of memory. The couplings for the smaller set are

listed in S4 Table (52326 entries) and for the larger set in S6 Table (approximately 13M entries),

which is available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.gd14g.

Choice of significance threshold for interactions

To select a list of highest scoring interactions among the 102,551 estimates for the pneumococ-

cus which are unlikely a result of neutral and sampling variation in the studied population, we

employed the statistical theory of extreme value distributions [73]. Since in each resampling

step the largest 3000 parameters were saved, these can under a null model of random interac-

tions between loci be considered as a sample from an extreme value distribution, such as the

Gumbel distribution. We fitted a Gumbel distribution to the distribution of the estimated

parameters using least squares minimization between the fitted distribution and the empirical

rank distribution of the coefficients located between 25% and 75% quantiles. Fig 1A shows the

fitted distribution which has a remarkably good fit to the vast majority (95%) of the coeffi-

cients. To select a threshold for a significant deviation from the null model we identified the

first value for which the predicted curve was more than six standard deviations (SD) away

from the empirical distributions (Fig 1B). The SD was estimated using the deviances for the

50,000 smallest coefficients. The 5199 couplings exceeding the threshold 0.129 are listed in S2

Table and in addition the 500 strongest couplings in S3 Table. The latter were used in the

structural plots for the PBPs. The same Gumbel model fitting procedure was also employed to

define the significance thresholds for the S. pyogenes data, except that we excluded all couplings

below 0.01 for the larger locus set where the vast majority of the nearly 13M couplings in total

were very close to zero (S5 Table). This resulted in 7514 couplings being included in the Gum-

bel analysis. The empirical distributions and the fitted Gumbel models are shown in Fig 6.
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A resampling-based analysis of haplotypes generated randomly from a population by merg-

ing alleles sampled from the marginal allele frequency distribution of each SNP locus showed

that couplings as large as those exceeding the threshold chosen for the coefficients in the origi-

nal data were never encountered (S3 Fig). In the analysis we used 5000 replicates of the haplo-

type re-sampling based on the same chromosomal windows as in the analysis of the original

data. Hence, our approach was concluded to maintain a strict control of false positive interac-

tions for unlinked loci stemming from population sampling variation.

Functional analysis and structural modeling

Networks were displayed and analysed using Cytoscape [74]. GO terms were inferred from

applying Interpro scan [75] and CD-search [44] to the S. pneumoniae ATCC 700669 genome

[EMBL accession: FM211187]. These were matched to network components, and a Fisher

exact test used to test for enrichment of 139 instances of GO terms that featured in a network

component twice or more, relative to the CDSs that contained sites analyzed in this study, but

not found to include a significantly coupled loci. The p values were corrected for multiple test-

ing using the method of Benjamini and Hochberg [76].

Crystal structures of S. pneumoniae PBPs with the following IDs: 2C5W (pbp1a), 2WAF

(pbp2b), 2ZC3 (pbp2x) were retrieved from the Protein Data Bank[77] (www.rcsb.org; acces-

sion date January 8, 2016) and visualized in The PyMOL Molecular Graphics System, Version

1.8 Schrödinger, LLC. Inferred co-evolving sites were visualized using the Circos software[78].

Supporting information

S1 Text. Mathematical details of the Potts model for DCA.

(DOCX)

S1 Fig. Comparing the distributions of coupled sites in penicillin-binding protein genes

with those identified by a genome-wide association study for polymorphisms associated

with beta lactam resistance. (A) Domain annotation of the PBP2X, PBP1A and PBP2B pro-

teins, based on analysis with the Pfam database. (B) Distribution of coupled loci identified by

this analysis. The columns corresponding to polymorphic loci identified as being significantly

coupled with others by this analysis are coloured according to the base present in each isolate

in the collection, ordered according to the whole genome phylogeny shown on the left. (C)

Distribution of loci found to be significantly associated with beta lactam resistance through a

genome-wide association study of this Maela population by Chewapreecha et al. Only those

sites that match the inclusion criteria for this study (i.e. biallelic with<15% of sites missing

across the population), and are within the three displayed genes, are shown. The phylogeny is

estimated from all core genome SNPs for the 3,156 isolates using the GTR model with approxi-

mate rate heterogeneity in FastTree as in Chewapreecha et al.
(TIF)

S2 Fig. Bipartite network showing the couplings between coding sequences and upstream

untranslated regions. The network is displayed as in Fig 3, except that untranslated regions

are shown as black triangles. (A) Network component showing the links between pbp2x, pbp2b
and the upstream regions around pbp1a. (B) Network component showing the coupling

between smc and upstream regions. (C) Network component showing the pspA and divIVA
genes.

(TIF)

S3 Fig. Distributions of estimated coupling coefficients for the original data and for haplo-

types generated randomly from a population by merging alleles sampled from the
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marginal allele frequency distribution of each SNP locus. The red curve is generated from

5000 replicates of the haplotype re-sampling based on the same chromosomal windows as

used in the analysis of the original data.

(TIF)

S4 Fig. Workflow chart describing the inference procedure employed for the pneumococ-

cus data.

(TIF)

S5 Fig. Empirical distribution functions of coupling values for loci including a SNP with

either rare or more common MAF in the M1 data set.

(TIF)

S6 Fig. Comparison of rankings of the estimated couplings for the M1 324 locus set under

either no population structure correction or a varying threshold for average sequence

identity.

(TIF)

S1 Table. List of 102,551 estimated SNP couplings for the Maela data.

(XLSX)

S2 Table. List of 5,199 significant couplings for the Maela data.

(XLSX)

S3 Table. Genomic positions and estimated couplings for the inter-PBP links shown in Fig

5.

(XLSX)

S4 Table. Estimated couplings for 324 SNP loci with MAF> 1% in the S. pyogenes data.

(TXT)

S5 Table. Access numbers for the Maela data.

(TXT)
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