S1 Text: Detailed model dynamics

Once B_1 and B_2 gametes have reached mutation-selection equilibrium, part of the population is heteroplasmic (mutation-selection equilibrium is generation 0 in Figs. 2 and 3). When a mutation from B_1 to U_1 occurs in a gamete homoplasmic for the wild type haplotype, the proportion of B_1 and B_2 gametes with any level of heteroplasmy initially decreases (generations 0 – 100 in Figs. 2C and 3C-D). The influx of U_1 gametes homoplasmic for the wild type haplotype converts some heteroplasmic B_2 gametes into homoplasmic B_2 gametes. In turn, this drives down the proportion of heteroplasmy in B_1 gametes via $B_1 \times B_2$ matings. (When the mutation rate is smaller, this initial drop in heteroplasmy is less noticeable (S2 and S3 Figs.).)

After about 100 generations, U_1 gametes homoplasmic for mutant mitochondria begin to increase in frequency (Fig. 3B). As described earlier, this leads to matings between B_2 gametes homoplasmic for mutant mitochondria and B_1 gametes carrying the wild type haplotype, which result in heteroplasmic B_1B_2 cells (Figs. 2C and 3C-D; note that most B_1 gametes are homoplasmic for the wild type haplotype or only carry a few mutant mitochondria at this stage). This results in an increase in the proportion of heteroplasmic B_1 and B_2 gametes and B_1B_2 cells (generations 100 – 1350 in Figs. 2C and 3C-D). Selection against heteroplasmy thus decreases the relative fitness of B_1 (\(w_{B_1}\) and B_1B_2 (\(w_{B_1B_2}\)) cells (Figs. 2A and 3A). From generations 1350 – 1820, the proportion of heteroplasmic B_1 and B_2 gametes and B_1B_2 cells decreases (Figs. 2C and 3C-D). Despite this, w_{B_1} and $w_{B_1B_2}$ continue to decrease (\(w_{B_1}\), however, starts to converge with w_{U_1}). While the proportion of heteroplasmic B_1 and B_2 gametes and B_1B_2 cells decreases during this period, the
level of heteroplasmy within heteroplasmic gametes and cells increases (Figs. 2C-E and 3C-F). The increased levels of heteroplasmy outweigh the reduced proportion of heteroplasmic cells, and the net effect is increased selection against heteroplasmic B_1B_2 cells (Figs. 2A, 3A).

From generations 1350 – 1820 U_1 rapidly spreads through the population, increasing from 0.077 to 0.474. During this period, $U_1 \times B_2$ matings become more frequent, increasing the proportion of homoplasmic B_2 gametes. In turn, this increases the proportion of homoplasmic B_1B_2 cells and B_1 gametes through $B_1 \times B_2$ matings (Figs. 2C-E and 3C-F). More B_2 gametes are now homoplasmic for mutant mitochondria (Fig. 3D; note that these B_2 gametes begin to appear around generation 1400 in Fig. 3D). $B_1 \times B_2$ matings involving B_2 gametes homoplasmic for mutant mitochondria become more common, leading to B_1B_2 cells with high levels of heteroplasmy (compare Fig. 2D with 2E). Increased levels of heteroplasmy within B_1B_2 cells drives down $w_{B_1B_2}$ and w_{B_1} (Figs. 2A and 3A). As the frequency of B_1 decreases, w_{B_1} becomes increasingly determined by $U_1 \times B_2$ matings and w_{B_2} converges to w_{U_1} around generation 1900 (Fig. 3A). During the remainder of the simulation, $w_{B_1B_2}$ and w_{B_1} decrease further as U_1 replaces B_1.

Since there are few cells homoplasmic for mutant mitochondria at the beginning of the simulation, the relative advantage of U_1 over B_1 is low when the frequency of U_1 is low (e.g. $w_{U_1} = 0.99984$ and $w_{B_1} = 0.99881$ at generation 50 in Fig. 3A, giving a relative advantage for U_1 of 0.001). As the frequency of U_1 gametes with mutant mitochondria increases, so too does the relative advantage of U_1 (e.g. $w_{U_1} = 0.99984$...
and \(w_{R_1} = 0.98476 \) at generation 2500 in Fig. 3A, giving a relative advantage for \(U_1 \) of 0.015). For more details about the change in gamete and cell type distributions as \(U_1 \) spreads, see S1-S2 Videos.