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Abstract

Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic
eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex,
incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show
how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using
several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces
cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold
expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a
framework in which precise and robust tuning of gene expression is accomplished.
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Introduction

Advancements and innovations in synthetic and computational

biology have revolutionized our ability to rationally engineer

libraries of single synthetic genetic elements (such as promoters or

ribosome binding sites) and have increased our capacity to finely

tune the expression of genes according to specification. Addition-

ally, the rational tailoring of synthetic gene networks is gradually

enabling the engineering of more complex genetic behaviors and

control over various features of gene expression by altering a cells

genetic code [1–5] or its extracellular signal concentrations [6].

Nevertheless, establishing reliable rules for applying regulatory

genetic elements in the engineering of synthetic gene expression

systems is still a major challenge in synthetic biology. One obstacle

to reaching this goal is a lack of well-characterized genetic parts

that can be readily used to accurately and predictably control gene

expression in synthetic genetic contexts [7–10]. Gene expression is

affected by a myriad of trans acting factors as well as

interdependent cis regulatory elements such as promoters,

upstream and downstream untranslated regions (UTR’s) and

introns. Since splicing of introns must be performed before

translation can begin, it is a key step in controlling gene

expression. However, deciphering how splicing regulation is

encoded within pre-mRNA transcripts has proven to be a major

challenge [11,12]. As a result, introns have been largely absent as a

genetic ‘‘part’’ that can be integrated into the design of synthetic

cellular systems. In this study we broaden the repertoire of genetic

elements for bio-engineering by showing how introns can be used

to regulate gene expression in a synthetic gene.

We have constructed a synthetic gene expression library that

tests the effect of most of S. cerevisiae’s native introns with a

quantitative fluorescent output (Figure 1A), enabling in vivo,

dynamic monitoring of intron-mediated regulation of gene

expression in a synthetic gene context. Surprisingly, despite the

mechanistic complexity of intronic splicing and of the splicing

code, analysis of expression data from this novel library shows that

a simple statistical model that integrates the few major known

regulatory determinants of intron splicing in and around introns

(such as RNA secondary structure, GC content and sequence

motifs) accounts for the vast majority of gene expression variability

observed when integrating many different introns into a synthetic

gene expression system. The predictability of intron’s effects is a

major advantage in utilizing such elements for engineering

purposes.
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Results

A synthetic reporter library uncovers rules for accurately
engineering intron splicing into synthetic gene
expression systems

To create a synthetic intron reporter library we transformed

yeast with a library of DNA transformation cassettes each

containing a different native yeast intron. The cassettes were

assembled using the Y-operation [13,14] by which introns were

embedded in a Yellow Fluorescent Protein (YFP) fragment and

concatenated to a common selection marker in high throughput

(Figure 1A, Materials and methods, and figure S1). In this manner

240 strains were created, termed YiFP strains, where the sole

difference between all strains is the native S. cerevisiae intron

intervening the YFP gene. Introns were positioned in the YFP so

as to both eliminate false positive splicing signals (Text S1) and to

mimic the natural location of introns in their endogenous context,

which in S. cerevisiae is biased towards the 59 end of the coding

sequence [5].

We then assessed the contribution of introns to the regulation of

gene expression by dynamic measurements of YFP expression.

The entire library was cultured in 384-well plates together with

reference strains harboring an intron-less YFP (YFP-wt), and

strains that had no YFP altogether. We monitored culture growth

(O.D600) and YFP fluorescence of each strain for 24 hours using a

micro-plate reader, in four independent replicates. Our analysis

shows that while growth characteristics remained coinciding for

almost all intron library strains and controls (Figure 1B, Text S1,

table S2 and figure S9 and Table S8 for outliers), YFP expression

spanned over two orders of magnitude (Figure 1C, figures S2 & S3

and figure S10 and Table S9 for outliers). Strains that had a signal-

to-noise ratio (SNR) below 5 were classified as un-spliced.

Importantly, YFP fluorescence levels were validated to consistently

reflect YFP mRNA levels using quantitative real time PCR (qPCR)

(figure S4; r = 0.99; p = 2.3e-04). Following normalization, the

expression level of each intron strain was compared to that of the

intron-less YFP strain to give a measure of relative expression

level, that we relate to as ‘‘splicing efficiency’’ (Figure 1D and table

S1).

Interestingly, YiFP strains expression data shows that introns

almost exclusively reduce reporter gene expression compared to

the intron-less YFP reference strain (Figure 1D, Splicing efficiency

,1). This finding highlight the differences between yeast and

mammalian cells in which introns boost gene expression [15,16].

In addition, we observed that simple intron features such as intron

length could not account for the variability in gene expression

recorded in our library (table S6). For example, S. cerevisiae

ribosomal protein genes (RPGs) introns are substantially longer

than introns of non-RPG’s, with means of 400 and 100 base pairs

(bp) respectively; however, RPGs introns were not clustered to

higher or lower splicing efficiencies in our library (Figure 1E).

Conversely, intron features known to significantly affect intron

function such as secondary structure and GC content at intron-

exon junctions, as well as certain sequence motifs were found to be

dominant intron features that dictate splicing efficiently in a

completely synthetic system.

Single cell expression analysis validates splicing efficiency
measurements, and allows the assessment of
population-level variability

To assess how much of the changes in splicing efficiency stem

from a wide distribution of splicing capacity in the population vs

how much stems from single cell behavior, we performed high-

throughput single cell analysis for all 240 library strains using

automated microscopy imaging. We explored whether splicing

efficiency of single cells from intron strains correlate with our

splicing efficiency index (Materials and methods and figure S5).

Results show that average expression from single cells is highly

correlated with our splicing efficiency index (Figure 1F, inset;

r = 0.94) and that noise in YFP expression, i.e. cell-to-cell

variability, within strains is highly correlated with the expression

levels of single cells from the same strain, as also observed for

fluorescently tagged yeast proteins [17]. This characteristic may

play a role in setting a lower bound to the degree one can reliably

down-regulate gene expression with introns. Nevertheless, we did

identify a few introns that confer a lower or higher noise level than

expected (Figure 1F, marked in blue and red, respectively).

Introns in a synthetic gene context are resistant to
changes in environmental conditions

The splicing of specific subsets of pre-mRNAs is modulated in

response to various environmental conditions [18,19]. Interesting-

ly, our results show that introns embedded within a synthetic gene

expression system and exposed to four different conditions known

to elicit changes in splicing levels do not respond accordingly,

despite the fact that the change in growth condition was indeed

being registered by the cells [18,19] (Figure 1G and tables S2 &

S3). The loss of condition-specific splicing in synthetic expression

systems indicates that introns are not sufficient for encoding

splicing specificity. Additionally, in contrast to classes of genetic

elements (such as promoters) that contain variants that are

environmentally responsive, it seems that the entire repertoire of

S. cerevisiae introns is insulated from environmental changes and

may be used as robust regulators in changing environments.

Intronic sequence motifs tune synthetic gene expression
systems

In addition to the canonical splicing signals (59 & 39 splice sites

(SS) and branch point (BP)), which participate in splicing

chemistry, splicing regulatory elements (SREs) within exons and

Author Summary

Synthetic biology is gradually expanding our capability to
engineer biology through rational genetic engineering of
synthetic gene expression systems. These developments
are already paving the way for the accelerated study of
biology and applying engineered biological systems to
major environmental and health problems. However, our
capacity to intelligently modify and control gene expres-
sion depends on our ability to apply a broad range of
genetic regulators in the engineering process. Here we
show that Introns, pivotal regulators of Eukaryotic gene
expression, can be rationally engineered to control a
synthetic gene expression system of a Eukaryote. We
developed a unique reporter-based system to evaluate the
effects of engineering splicing in synthetic biology and
show that the entire intron repertoire of S. cerevisiae can
be accurately used to rationally engineer gene expression.
Our results provide both a proof-of-concept for the
integration of splicing into synthetic biology designs and
a model that can be used by the scientific community for
integrating splicing into their own designs. Following the
extensive use of transcriptional (promoter) and transla-
tional (UTR) elements in synthetic constructs, our results
introduce a new major regulatory system, splicing, that
can be used to rationally engineer genetic systems.

Engineering Yeast Gene Expression with Splicing
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Figure 1. A standardized reporter library uncovers splicing regulatory information encoded within introns. A) Overview of the reporter
approach for studying splicing mediated gene expression regulation. Intron insertion cassettes were constructed in-vitro, each comprised of a
selection marker (URA3), a constitutive promoter, the first 195 nucleotides (nt) of the YFP gene, and one of 240 native S. cerevisiae introns followed by
an additional 60 nt of the YFP gene. Each insertion cassette was transformed into the genome of a master strain which contained a promoter-less YFP
gene, thus creating an in-vivo intron-reporter yeast library (YiFP). Culture growth and YFP expression levels of each variant in the library were

Engineering Yeast Gene Expression with Splicing
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introns are key factors that determine splicing efficiency and

expression levels in higher Eukaryotes [2–5,20]. Evidence for SRE

function in S. cerevisiae has been gradually emerging in recent years

[3]. We used our library expression data to identify SREs and

found ISEs and ISS motifs (Figure 2A). We analyzed the positional

distribution of motifs along the 240 introns of the library and

found that the motifs are highly enriched near both splice sites

(Figure 2B, figure S6 and Table S4). In order to test whether

indeed the motifs can be used as independent entities to regulate

intron dynamics we performed directed mutagenesis to the

enhancer motif TTTATGCT in three nucleotides, transforming

it into the silencer motif TTTGTGTA in two independent introns

in two YiFP strains. Transforming these enhancers to silencers

resulted in a reduction of 22% and 13% in their expression levels

compared to the enhancer containing introns (Figure 2C). This

proof of principle opens possibilities for large scale re-encoding of

introns with sequence motifs, demonstrating the mobility and

utility of splicing motifs that reside within introns for engineering

gene expression in synthetic systems.

RNA secondary structure at artificial intron-exon
junctions dictates gene expression

The cross-talk between introns and their surrounding exonic

sequences regulates splicing through the formation of RNA

structures that they create. RNA secondary structure and GC

content of transcripts have been previously implicated with

splicing efficiency and exon/intron definition in several

organisms including yeast [21–25]. However, it is unclear

whether the regulatory function of intron-exon junction

structure transfers to synthetic contexts as do other sequence

motifs, or whether it is lost completely in synthetic contexts as

does the ability of introns to splice according to changes in the

environment. To verify this we performed a detailed analysis of

the correlation between local pre-mRNA folding and GC

content and expression levels in our synthetic library.

Specifically, we computed the local pre-mRNA folding energy

(FE) and GC content profiles of all introns along a sliding

window and tested the correlation of these values at each

window with the expression levels that we measured. Our

analysis demonstrates that introns with unfolded intron-exon

junctions tend to exhibit higher expression levels, while introns

that induced stronger RNA secondary structures at the intron-

exon junction exhibit lower expression levels (Figure 3A).

Therefore, we conclude that FE and GC content at intron-

exon junctions are significant modulators of synthetic gene

expression.

In accordance with previous reports on the effect of RNA

secondary structure and GC content on splicing in endogenous

genes [21–25] our findings provide evidence of intron-exon

junctions structure-based regulation in several synthetic contexts.

This suggests that junction structure is a modular, transferable

regulatory feature that may be useful in the design of synthetic

genetic circuits. Moreover, our results suggest principles for an

informed design of intron/exon junctions to accurately tune

synthetic gene expression systems.

We inserted introns into additional positions within our

synthetic gene expression system, collectively creating a

gradient of junction folding strengths. These locations along

the gene were selected to create intron-exon junctions with

either very strong (165 bp from YFP start), strong (original

library, 195 bp from start), intermediate (370 bp from start), or

weak RNA folds (461 bp from start). Introns were selected to

collectively span the expression range measured in the original

reporter library and were inserted in each of the 4 positions

(Figure 3B). Gene expression measurements of all strains with

introns positioned at the strongest fold were decreased

compared to the expression of the same introns in the original

position that had a weaker fold. Expression data from these 40

unique strains support the notion that strong artificial junction

folding strengths negatively regulate gene expression

(Figure 3C; p = 8.3e-03). We did not, however, observe

increased splicing at junctions with folding energies even

weaker than that of the weak fold (position 461) (figure S7).

Additionally, since the splice sites in the original location of the

complete intron library had relatively strong FE and high GC

content this can also explain why these intron reporters

displayed lower expression levels compared to an intron-less

control. Collectively, our results of varying Intron-exon

junctions demonstrate the robustness and wide applicability

of intron-exon junction secondary structure design as an

efficient tool for splicing mediated control of gene expression

in synthetic expression systems, since junction fold strengths

both regulate splicing efficiency and are fully transferable

between different exonic locations.

A model of Intronic transcript features enables accurate
tuning of gene expression

Deciphering the splicing regulatory ‘‘code’’ [11,12,26] is a

major ongoing challenge of modern genetics. Hence, from a bio-

engineering perspective it would be important to create a set of

simple reliable rules for using introns in synthetic systems with

accurate, user specified outcomes on gene expression even before

the splicing code is completely understood. For this, dictating

features of intron splicing in synthetic contexts must be defined

and accurate predictions of their effect must be available. To this

end, we incorporated the major determinants of intron splicing in

synthetic contexts into a model that lays the basic rules and

generates accurate and reliable predictions for tuning synthetic

gene expression using introns.

We compiled a dataset of intronic features using three

independent approaches: first we manually defined simple, intuitive

features such as intron length and distances from the branch-point

position to both splice sites (See SI for a complete list). Second, we

computed various features related to the GC content and local pre-

monitored using a micro-plate reader. B) All strains in the YiFP reporter library grew similarly. C) However, each intron conferred unique YFP
expression levels. D) Each strain’s average expression levels, YiFP(i), were compared to that of an intron-less reference strain, YFP(wt), to get an
assessment of ‘‘splicing efficiency’’. YiFP strains whose YFP levels did not pass the detection limit were considered as ‘‘non-spliced’’ (marked with
circles). Error bars represent 61 SD from four independent experiments. E) Splicing efficiency of ribosomal and non-ribosomal protein genes (RPGs) is
distributed in a similar manner. F) Analysis of YFP expression at the single cell level (using automated microscopic imaging) validated splicing
efficiency measurements of spliced introns (inset graph, r = 0.94), and enabled assessment of splicing efficiency noise in a population. Noise is
represented by the (squared) YFP expression coefficient of variation (CV2), i.e. the variance (s2) normalized by the squared mean YFP expression (m2),
for each intron strain as determined using microscopic imaging analysis. Gene names of introns that presented noise higher (red) or lower (blue) than
normal are indicated (outliers of linear regression; p,0.1). G) Splicing efficiency in a synthetic context is robust to environmental change. Yeast were
grown in several stress conditions (Amino acid starvation, Rapamycin, 1M KCl) known to affect the splicing machinery. Error bars represent 61 SD
from three independent experiments.
doi:10.1371/journal.pgen.1004407.g001
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mRNA folding along each intron and intron-exon junctions, as

mentioned before (Figure 3A). Finally, we scored each intron for the

presence of a sequence motif (table S5).

We tested the contribution of each feature in the dataset to gene

expression and the top-scoring features validated that RNA

structures at intron-exon junctions (r = 0.44; p = 8.21e-06, table

S6) as well as several intronic sequence motifs (table S6) were the

primary determinants of intron-mediated tuning of synthetic gene

expression in this synthetic context. To assess the combined

contribution of the various intron features to gene expression

levels, we constructed a linear regression function that optimizes

combinations of features that accurately account for the empiric

expression levels (Materials and methods and table S7). The

regression function was built by iteratively adding single features that

yield the highest correlation to expression, considering only features

with significantly high correlations. We found that local pre-mRNA

folding energy at two specific locations spanning the 59 splice site (+
3 nt and 212 nt) as well as several sequence motifs are the principal

expression determining features (Figure 4A). Our model yielded

correlations of more than 0.7 with the expression measurements using

a combination of 8 features, and more than 0.76 using 13 features

(Figure 4B & 4C; r = 0.766; p,2.22e-016; empirical p,5e-03; see

also Materials and methods and table S7). In contrast, any individual

intron feature was only able to explain up to 25% of the observed

variation. Despite the detachment of introns from their native context,

multiple regulatory mechanisms are still in play ‘‘out of context’’,

emphasizing the significance of analyzing and quantifying multiple

intronic features when designing the integration of introns into

synthetic expression systems. Notably, our model exhibited similar

results when modeling was done for the major subgroups of intron-

containing genes (RPGs and non-RPGs, table S7).

To estimate the lower bound of our model’s predictive power and

account for any potential over-fitting we built new regression functions

(including the re-building of the feature database) using a training set

composed of 80% of the introns and calculated the correlation between

the models’ prediction and expression measurements of the remaining

20% (Figure 4D). Our results demonstrated our ability to predict and

design the effect of introns on expression in a specific location along a

synthetic gene. The bioengineering value of the rules we uncovered

and the model we devised as both prediction and design tools for

synthetic biology depend, to a large extent, on whether they ‘‘transfer’’

reliably to other exonic contexts. To answer this, we tested our model

experimentally on 40 strains placed at four different locations

throughout the YFP gene (10 introns at each location, as previously

mentioned). We then calculated the correlation between the measured

expression and the model predictions using the same set of features for

each intron in each location. Surprisingly, despite completely altering

the introns exonic context four times, a combination of the eight top

intron features maintained 80% of our original model’s predictive

power (Figure 4E). The ability to maintain predictive power in the face

of variable exonic context of introns highlights its gene expression

engineering potential, especially in light of the significant and seemingly

unpredictable change in gene expression of identical introns in different

exonic contexts (Figures S7 & S8).

Discussion

Synthetic biology aims to create new, finely tuned gene

expression systems. A growing repertoire of genetic elements is

continuously facilitating the design and construction of more

complex synthetic biological systems. In order to enable

engineering-level precision in the synthetic control of genetic

circuits we must be able to control gene expression at all its levels

of regulation – from transcription through splicing and translation.

Here we use a combined experimental and computational

approach to uncover and formulate rules for using introns in

synthetic expression systems. We show that introns can be used to

finely control gene expression in a wide dynamic range of

expression levels (Figure 1D), and that this tuning can be predicted

and designed using a model that integrates several major intronic

Figure 2. Sequence motifs function ‘‘out of context’’. A) Motifs
associated with splicing efficiency were revealed by comparing intron
sequences of high and low expressing YiFP strains. Examples of five
enhancers (enrichment p,3.4e-4) and silencers (p,4e-4) are shown. B)
The novel motifs were enriched in proximity to intron ends. Enrichment
of motifs in introns compared to a randomized/permutated version of
the motifs that maintain their properties (blue line, Materials and
methods) is presented in respect to distance from 59- or 39 Splice Site
(SS) (top and bottom, respectively). Positions significantly enriched or
deprived of motifs are marked in red and green, respectively. C)
Reporter YFP expression is decreased upon exchange of an enhancer to
a silencer motif in two independent intron strains. Mean YFP expression
was calculated for triplicates of the two intron library strains (YGL076C-
p = 0.02, and YDL064W- p = 0.2). Average expression of each mutated
motif strain is shown in comparison to that of the natural intron
harboring YiFP strain (100%). Numbers inset in bars indicate the mean
YFP expression level (non-relative).
doi:10.1371/journal.pgen.1004407.g002
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regulatory determinants (Figure 4B). Our model for assessing the

effect of introns on synthetic gene expression based on transcript

sequence and structure remained predictive across several exonic

contexts (Figure 4E), suggesting that the rules we uncovered reflect

genuine rules for intron-mediated tuning of gene expression in

synthetic gene expression systems. Our finding that introns lose

their environmental responsiveness when placed ‘‘out of context’’

can be utilized in the design of genetic systems tailored to be robust

to changes in environmental conditions, in contrast to other

genetic elements controlling transcription and translation, which

are highly responsive to environmental conditions.

The inability to accurately predict the effect of creating new

combinations of genetic elements hinders synthetic biology’s ability to

streamline the design of novel genetic systems. Our findings and model

enables the reliable and robust integration of natural introns,

fundamental regulators of gene expression, into synthetic gene

expression systems and should be useful for the accurate design and

fine tuning of synthetic gene expression systems in general. Finally, our

ability to predict the effect of introns through identification of the

functional regulatory elements they encode opens the possibility to

design synthetic introns with tailored splicing functions in synthetic

gene expression systems.

Materials and Methods

Yeast endogenous intron information and sequences (including

GC Content and more) were taken from the Ares Lab database [2]

and the Saccharomyces Genome Database (SGD) [27].

YiFP Library construction
A master strain containing a promoter-less YFP coding

sequence (CDS) as well as a Cherry fluorescent protein driven

by an independent TEF2 promoter, both inserted at the his3D1

locus was used. The master strain was transformed with a library

of cassettes, each containing a URA3 selection marker under its

own promoter and the YFP splicing reporter with a unique intron.

YiFP library array
240 YiFP strains were arrayed on SD-URA+NAT agar plates in

384 colony format using a robotic colony arrayer (RoToR, Singer

instruments) along with 10 replicates each of various control wells

(Text S1).

Growth and fluorescence measurements
The aforementioned colony arrayer was used to inoculate the

library into SD-URA in 384 well microplates (Greiner bio-one,

781162). Following over-night incubation, strains were diluted and

cultured in the desired media to a starting O.D600 of ,0.1–0.2

using a robotic liquid handler (Perkin Elmer). A microplate reader

(Tecan Infinite M200 monochromator) was used to measure

growth (Absorbance at 600 nm), mCherry (E.x. 570 E.m. 630) and

YFP expression (E.x. 500 E.m. 540).

Single cell fluorescence measurements
Single cell fluorescence measurements were performed using

an automated microscope system as described in Cohen and

Schuldiner, Methods Mol. Biol. 781, 127–59 (2011). Briefly,

strains were cultured over-night and diluted in the same

manner as in the microplate reader measurements. Following

an incubation of four hours in 30uc in a shaking incubator

(LiCONiC Instruments), cells were then transferred onto glass

bottom 384-well microscope plates (Matrical Bioscience)

coated with Concanavalin A (Sigma-Aldrich). The microscope

plates were conveyed to an automated inverted fluorescent

Figure 3. The exonic context of introns is a major regulatory determinant of gene expression. A) Profiles of the correlation of GC content
(top) and local mRNA folding energy (bottom) around the 59SS and 39SS with YiFP expression levels identified these features as determinants
affecting gene expression. Sliding window sizes are 50 nt for GC content and 40 nt for folding energy. B) Ten introns were inserted into a stronger
folding location in the YFP to test this feature’s effect on gene expression. C) Introns inserted into a location within the YFP reporter with stronger
folding (blue) confer lower expression levels. Averages of three independent experiments are presented (paired t test p = 8.3e-03).
doi:10.1371/journal.pgen.1004407.g003

Engineering Yeast Gene Expression with Splicing
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microscopic ScanR system (Olympus), equipped with a cooled

CCD camera. Images were acquired using a 606air lens using

YFP (E.x. 490/20 nm, E.m 535/50 nm), mCherry (E.x. 572/

35 nm, E.m 632/60 nm), and bright-field channels. After

acquisition images were analyzed using the ScanR Analysis

software (Olympus), and single cells were recognized based on

the mCherry channel. Measures of cell size, shape and

fluorescent signals were extracted. The top and bottom scoring

single cells in terms of cell size and shape within each strain

were gated out of further analysis to ensure homogenous and

Figure 4. Modeling intron features uncovers design principles and allows the prediction of gene expression in a synthetic system.
A) Sequence based predictor of gene expression assembly process: In every iteration the feature contributing the highest correlation to the reporter
expression measurements was added. The first eight features and their description are presented. B) Bar diagram of the predictor’s cumulative
correlation with expression levels of YiFP variants as a function of the number of added features. C) A predictor function based on 3, 13, or 38 features
was able to explain 49%, 77% and 90% of gene expression variation, respectively. (for 13 features: p,2.2e-16; empirical p,5e-03); D) Cross validation
of the predictor assembly method using training and test sets, with 80% and 20% of introns respectively, demonstrated a predictive power of 50%
(for .15 features: 0.37,r,0.5; p,3.6e-02). E) A new predictor assembled using strains with introns inserted to several locations in the YFP maintains
80% of the model’s predictive power (r = 0.38; p = 0.036), suggesting that although some of the regulatory splicing information is not located in
intronic regions, our methodology is able to predict intron regulation under several exon contexts.
doi:10.1371/journal.pgen.1004407.g004

Engineering Yeast Gene Expression with Splicing
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correct cell recognition, yielding a mean of 4356164 cells

analyzed per strain (minimum of 69 cells).

mRNA quantification of YFP reporter
mRNA level measurements were performed using quantitative

real-time PCR (qPCR). Strains were grown to mid-log and RNA

purification was performed using the MasterPure yeast RNA

purification kit (Epicentre). cDNA was generated using the

SuperScript III First Strand Synthesis kit (Invitrogen). qPCRs

were performed in a StepOnePlus Real-Time PCR system

(Applied Biosystems) using Fast SYBR Green Master Mix, with

ACT1 gene as reference. Relative expression results (RQ) were

calculated using the StepOne software (figure S4).

Motif mutagenesis
Intron transformation cassettes were ligated into the pGEM-T

Easy vector (Promega). Mutated transformation cassette was

transformed into the master strain as previously described and

positive clones were verified by PCR and sequencing.

Expression data analysis
YFP and O.D. information were filtered using Butterworth IIR

Low Pass Filter (LPF) with normalized cutoff frequency of 0.15.

Medium (O.D.) and background (no YFP) noise were subtracted,

and YiFP or O.D. values were ignored if close to zero or negative

(replaced with NaN). The normalized unbiased expression level

was calculated using the following equation:

Expr level(i,t)~
YiFP(i,t){YFP(i,t,Cherry)

OD(i,t){D(Blank)
,

where i is the strain number, t is the time, YFP (i, t, Cherry) is the

closet strain on plate without YFP and OD (Blank) is the O.D. level

of a control well with medium only. YFP-wt strains expression

calculations were done in the same manner.

The time Interval threshold was set to be 6 hours, after which

an Intron cannot be considered as spliced. In addition, introns

with more than half NaN values were considered to be Not

Spliced. The rest of the introns were examined based on self-

crossing Signal-to-Noise Ratio (SNR) according to the following

equation:

SNR ratio(i,t)~
YiFP(i,t){YFP(i,t,Cherry)

std YiFPfiltered (i,t){YFPnot{filtered (i,t)
� � ,

where YFP not-filtered(I,t) and YFP filtered(I,t) are raw and filtered

YFP data respectively and std is a standard deviation. Introns were

termed Spliced for SNR_ratio higher than 5 in the time interval of

the first 6 hours.

The experiments were done in duplicates. The expression levels

of n repeats were incorporated in the following manner: The

average expression level was calculated for each duplicate. The

joint expression matrix was obtained according to the following

equation:

Expr merge(i,t)~
1

n

Xn

k~1

Expr levelk(i,t)

Avg expr(k)

 !
: 1

n

Xn

k~1

Avg expr(k)

 !
,

where k is the strain number and n = 4 is the number of duplicates.

The maximal expression level merging was done in the same

manner. Introns that were considered to be spliced in the majority

of the duplicates (3 or more when n = 4), were considered to be

spliced in the incorporated database.

Splicing efficiency and maximal splicing efficiency were

calculated using the following equations respectively:

Spl eff (i)~
Avg expr(i)

YFP expr
; Max spl eff (i)~

Max expr(i)

max(YFP expr)
,

where i is the strain number.

Computational and statistical analysis
RNA secondary structure and folding energy predictions were

done using rnafold (Vienna) function [28]. 2D distance calculations

were done using RNA secondary structure predictions and the

Dijkstra minimum path algorithm [29].

De-Novo Motifs & enriched sequences were identified using the

HOMER (Hyper-geometric Optimization of Motif Enrichment)

tool [30]. Only significant motifs were later used as expression

predictors. Motifs distribution analysis was performed by gener-

ating a set of random motifs using internal motif permutation

tests that preserve original motif properties. The location and

significance level of the random motifs were calculated (Table S4).

Calculation of distance between motifs was done by comparing

their probability matrices using the following formulation:

Similarity score~
1

Motif Length

XMotif Length

i

{
Obserevedi{Expectið Þ

Expecti

Obserevedi~
XA,C,G,T

j

{ freq
i,j
1 {req

i,j
2

� �2

Expecti~
XA,C,G,T

j

XA,C,G,T

k

{ freq
i,j
1 {reqi,k

2

� �2

4
,

where freq1 and freq2 are the matrices for motif1 and motif2,

respectively. Empirically significant motifs with similarity score

higher than 0.6 were merged.

Linear regressor assembly
Prediction features were put into a linear regressor to assemble an

expression predictor and a feature assembly list was calculated.

Accumulation of features was done using greedy algorithm. In each

feature assembly iteration k, spearman correlation was calculated. The

adjusted correlation, which considers the number of features, value was

calculated according to the following formula:

R2
adjust(k)~R2{(1{R2)

k

n{(kz1)
,

where n is the number of measurement features, and R is the

Spearman correlation in the k-th iteration. The robustness of the

predicator results was validated using several statistical methods

including permutation tests and cross validation analysis. See Text S1

for additional methods information.

Supporting Information

Figure S1 The genomic content of the YiFP library at the

his3D1 locus. Each strain in the library contains (in order from 59
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to 39) an mCherry fluorescent protein, a URA3 selection marker,

RPS28A promoter, 195 bp of YFP (yEVenus), an intron, the

remaining 523 bp of YFP, and a NAT selection marker. The

sequence that was introduced into the master strain is marked in

green as ‘‘Transformation cassette.’’

(JPG)

Figure S2 4 duplications of the synthetic YiFP expression level

results in time for Spliced intron genes using normal growth

conditions (SD complete media).

(JPG)

Figure S3 Merged representation of the synthetic YiFP expres-

sion levels results in time for all introns (top) and Spliced intron

(bottom) using normal growth conditions (SD complete media).

(JPG)

Figure S4 YFP reporter fluorescence measurements reflect

mRNA abundance. Splicing efficiency, a relative quantification

of YFP fluorescence in YiFP strains compared to YFP-WT, is

highly correlated to relative YFP mRNA abundance as calculated

from qPCR (R2 = 0.975; p = 2.3e-04).

(JPG)

Figure S5 Single cell expression analysis confirms splicing

efficiency index and enables the assessment of cell-to-cell

variability. Representative images of five YiFP strains are shown

along with their splicing efficiency score (based on plate-reader

measurements), and single cell analysis of mean YFP and its

coefficient of variation (CV). NOG2 was found to have a

significantly higher CV than expected (see figure 1F).

(JPG)

Figure S6 Motifs location distribution analyses - Enrichment of

intronic motifs (top, blue line) compared to randomized/

permutated introns (yellow line) is presented in respect to

distance from 59 or 39 SS (left and right respectively). Motifs

difference is presented in the bottom. Positions significantly

enriched or deprived of motifs are marked in red and green

respectively: A) all introns; B) non-spliced introns; C) spliced

introns; D) spliced ribosomal introns; E) spliced non-ribosomal

introns.

(JPG)

Figure S7 All new location strains detailed expression levels over

time. For each strain, the following information is presented:

introns-less YFP expression, original YiFP expression (location

195), strong folding expression (location 165), weak folding

expression (location 461) and intermediate folding expression

(location 370).

(JPG)

Figure S8 Exonic context dramatically affects the splicing of

introns. Top left – the expression level (equivalent to splicing

efficiency) of 10 introns in one location along the YFP (195 nt

from the YFP’s ATG) are plotted against the same 10 introns

expression in duplicate experiment as a control for reproducibility

(correlation of 0.9901, p = 4.2133e-08) showing. Conversely, the

correlation between expression measurements of the same 10

introns at different exonic locations drops significantly. Specifical-

ly, on the bottom left panel we plot the same 10 introns expression

in location 195 (Y axis) against their expression in location 165

(165 nt from ATG, Strong FE) and show that intron expression is

altered significantly upon displacement to other exonic locations

(r = 0.6780, p = 0.0312). The same analysis was performed with

similar results for the two other locations, 10 introns each (461 nt

from ATG – bottom right panel, Maximal FE, r = 0.4593,

p = 0.182 (N/S) and 370 nt from ATG, Intermediate FE,

r = 0.8435, p = 2.1637e-03).

(JPG)

Figure S9 Distribution of growth rates. A histogram of the

distribution of growth rates for all YiFP library strains is shown for

the three environmental condition tested (AA starvation, KCL and

Rapamycin).

(TIF)

Figure S10 Robustness of splicing efficiency for all three

conditions (AA starvation, KCL and Rapamycin) for all YiFP

library strains is shown on a log-log plot (in contrast to the linear

plotting in figure 1G). Top 10 strain with the highest variation

from the linear regression line are named on the graph for each

condition (see also Table S9).

(TIF)

Table S1 Intron-reporter expression database. This table

summarizes the YiFP expression analysis of the data generated

by the micro-plate reader. The splicing efficiency is shown for all

strains (spliced as well as non-spliced) including all the replications

and the merged information.

(XLSX)

Table S2 Conditions experiments raw data. The experimental

conditions raw data contains all the different duplication

information and internal condition splicing efficiency correlation

results and p-values. The growth levels of the Cherry (No-YFP)

and YiFP strains are presented as well as the YiFP strains’ growth

level standard deviation.

(XLSX)

Table S3 Conditions summary. This table summarizes the

various experimental conditions. For each condition the Cherry

and YFP average growth rate and internal splicing efficiency

correlation are presented. The condition current correlations

(Pearson) and p-value with the other condition are presented

afterwards.

(XLSX)

Table S4 Motif location analysis. This table summarizes the

frequency and position of appearance of the identified motifs along

the introns, specified as distances from the 59 and 39 of the introns.

For each of the motifs the table also describes its minimal and

maximal scores, as well as which clans each motif belongs to.

(XLSX)

Table S5 Top motifs list. This table contains the motifs that

have the highest correlation (Spearman) with the measured

average and maximal expression levels. The p-values and the

motif clan number are also presented. All the motifs have passed

FDR.

(XLSX)

Table S6 Feature summary. This table summarizes the all

features that were constructed and their correlation (Spearman)

with the measured average and maximal expression levels. Each

feature correlation p-value and empirical p-value is also presented.

Some of the features are a bundle of a singular sub-features (e.g.

FE in different intronic locations); in this case the bundle best

location is also presented. The spliced Introns are divided into 2

subgroups: ribosomal and non-ribosomal.

(XLSX)

Table S7 Regressor summary. This table summarizes the linear

predictor (regressor) assembly buildup for the average and

maximal expression levels. For each stage the additional feature

and current correlation (Spearman) are presented, as well as the p-
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value and empirical p-value. The spliced Introns are divided into 2

subgroups: ribosomal and non-ribosomal.

(XLSX)

Table S8 Growth rate outliers. This table shows intron strain

growth rate outliers strains that exhibit a growth rates that are

more than two standard deviations from the mean, per condition

(showed for Rapamycin, AA starvation and KCL).

(XLSX)

Table S9 Splicing efficiency outliers. This table shows the

distance of each intron strains splicing efficiency from the linear

regression splicing efficiency line (figure 1G and figure S9) for all

three conditions (Rapamycin, AA starvation and KCL). For each

condition, the top 10 strains with the highest distance from the

regression line are marked here and also named in figure S9.

(XLSX)

Text S1 A. Description of the methods used for the construction

and transformations of the YiFP libraries. B. Description of the

methods used for the quantification and characterization of YiFP

gene expression. C. Description of the computational methods

used for the analysis of intron sequence motifs. D. Description of

the computational methods used for the analysis of intron features,

building a regressor function and assessing their statistical

significance.

(DOCX)
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structure is required for 39 splice site recognition in yeast. Nucl. Acids Res 39:
9759–9767.

23. Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BF, et al. (2008)
Correlation between the secondary structure of pre-mRNA introns and the

efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics 9: 355.
24. Goguel V, Rosbash M (1993) Splice site choice and splicing efficiency are

positively influenced by pre-mRNA. Cell 72: 893–901.

25. Warf MB, Berglund JA (2010) Role of RNA structure in regulating pre-mRNA
splicing. Trends Biochem Sci 35: 169–178.

26. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, et al. (2010) Deciphering the
splicing code. Nature 465: 53–59.

27. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, et al. (1998) SGD:

Saccharomyces Genome Database.
28. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal

folding of RNA and the stability of secondary structures. Biopolymers 49: 145–
165.

29. Cormen CEL T H, Rivest R L, Stein C (2012) Introduction to Algorithms, ISBN

0-262-03293-7.
30. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, et al. (2010) Simple

combinations of lineage-determining transcription factors prime. Mol Cell 38:
576–589.

Engineering Yeast Gene Expression with Splicing

PLOS Genetics | www.plosgenetics.org 10 June 2014 | Volume 10 | Issue 6 | e1004407


