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Abstract

Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine
with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-
environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were
pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated
with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche,
parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol
consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models
stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All
statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity
(Pinteraction = 24x1076) and between CASP8-rs17468277 and alcohol consumption (Pinteraction=3.1x10"*%). Overall, the per-
allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01-1.16) in nulliparous women and ranged from
1.03 (0.96-1.10) in parous women with one birth to 1.26 (1.16-1.37) in women with at least four births. For CASP8-
rs17468277, the per-allele OR was 0.91 (0.85-0.98) in those with an alcohol intake of <20 g/day and 1.45 (1.14-1.85) in
those who drank =20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous
(Pinteraction = 5.3 x107>), with a per-allele OR of 1.14 (1.11-1.17) in parous women and 0.98 (0.92-1.05) in nulliparous women.
These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may
vary with environmental risk factors.
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Introduction

Both genetic and non-genetic factors are involved in the etiology
of breast cancer. Known susceptibility variants include rare high-
risk mutations, principally in BRCAI and BRCAZ2, more moderate
susceptibility variants in genes such as PALB2, CHER? and ATM,
and more than 20 common genetic susceptibility variants conferring
modest increased risks, principally identified through genome-wide
association studies. Taken together, the known susceptibility
variants have been estimated to explain about 20-25% of the
observed familial breast cancer risk [1]. There is still limited
knowledge about how the relative risks of common susceptibility loci
might be modified by the established reproductive and lifestyle risk
factors (referred to as environmental risk factors) for breast cancer.
Such knowledge could provide insights into common biological
pathways for cancer development and further our understanding of
breast cancer etiology for specific tumor subtypes. Previous reports
of a possible interaction between variants in FGFR2 and use of
menopausal hormone therapy (MHT) were not confirmed [2-6].
All recent large studies found no statistically significant evidence of
multiplicative gene-environment interaction between several com-
mon susceptibility loci and established risk factors for breast cancer
after allowing for multiple comparisons [2,6,7]. The strongest
previously reported findings were for an interaction between LSPI-
rs3817198 and number of births (P-value = 0.002), between CASPS-
rs104585 and alcohol consumption (P-value = 0.003), and between
5p12-rs10941679 and use of estrogen-only MHT (P-value = 0.007)
[2,6,7]. This lack of statistical evidence of interaction beyond that
expected by chance may be partly due to limited power to detect
weak gene-environment interactions and not having considered
specific subtypes of breast cancer. We used pooled data from 24
studies participating in the Breast Cancer Association Consortium
(BCAC) to evaluate whether the relative risks of single nucleotide
polymorphisms (SNPs) at 23 published loci vary according to levels
of 10 established environmental risk factors [8]. Since there is
etiologic heterogeneity by subtypes of breast cancer, we also carried
out these assessments for breast cancer with positive and negative
estrogen receptor (ER) status [9].

Results

Up to 34,793 invasive cases and 41,099 controls of self-reported
European ancestry were included in these analyses (Table 1).

PLOS Genetics | www.plosgenetics.org

Based on 18,532 cases and 25,341 controls from 16 population-
based studies, we found the expected associations between the
environmental risk factors and breast cancer risk (Table 2). As
expected, significant effect heterogeneity by age (as a surrogate for
menopausal status) was observed only for body mass index (BMI)
(P-value =0.007).

Except for TGFBI1-rs1982073, all SNPs showed highly signifi-
cant associations with breast cancer overall (Table 3). Eleven SNPs
showed evidence of heterogeneity in the OR by ER status at
p<<0.01. The per-allele OR overall and for subsets of women with
information available for the risk factors considered were very
similar to those previously published and provided no evidence of
bias in OR estimates related to data availability (data not shown).

The strongest evidence was found for modification of the
association with LSP/-rs3817198 by number of births in parous
women  (Picracion per birth increase in parous wom-
en=2.4x10"% (Table 4; Figure 1 showing individual study
results). Since this interaction was previously assessed in BCAC,
we reassessed the interaction in 6266 cases and 3899 controls not
included in the previous report [7]. The SNP association still
varied significantly with number of births in parous women
(Pinteraction = 1.6 X 1073), thus independently replicating the previ-
ous finding. The results were consistent across studies (Pheerogencity
=0.37) (Figure 1B). In the overall dataset, the per-allele OR (95%
confidence interval) for rs3817198 ranged from 1.03 (0.96-1.10) in
parous women with one birth to 1.26 (1.16-1.37) in women with
four or more births (Figure 2) and in comparison was 1.08 (1.01—
1.16) in nulliparous women (Table S4).

The polymorphism 1pl11.2-rs11249433 was associated with
breast cancer in parous (1.14, 1.11-1.17) but not nulliparous
women (0.98, 0.92-1.05) (Pineraction = 5.3><1075). The interaction
was non-significantly stronger for risk of ER-positive than ER-
negative tumours  (Ppeerogeneiy = 0.13, Table S5, Table S6),
corresponding to this SNP being more strongly associated with
ER-positive disease (Table 3). When restricted to ER-positive
breast cancer, the per-allele OR for rs11249433 was 1.16 (1.13—
1.20) in parous women and 0.97 (0.90—-1.04) in nulliparous women
(Pinteraction = l.6><1075) (Table 4). There was no significant
heterogeneity in the interaction ORs by study (Figure 1C).

For the previously reported potential interaction between
CASP8-rs1045485 (in complete LD with rs17468277) and alcohol
consumption (<1 versus =1 drink/day) [6], we found moderate
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Author Summary

Breast cancer involves combined effects of numerous
genetic, environmental, and behavioral risk factors that are
unique to each individual. High risk genes, such as BRCAT
and BRCA2, account for only a small proportion of disease
occurrence. Recent genome-wide research has identified
more than 20 common genetic variants, which individually
alter breast cancer risk very moderately. We undertook an
international collaborative study to determine whether the
effect of these genetic variants vary with environmental
factors, such as parity, body mass index (BMI), height, oral
contraceptive use, menopausal hormone therapy use,
alcohol consumption, cigarette smoking, and physical
activity, which are known to affect risk of developing
breast cancer. Using pooled data from 24 studies of the
Breast Cancer Association Consortium (BCAC), we provide
first convincing evidence that the breast cancer risk
associated with a genetic variant in LSP1 differs with the
number of births and that the risk associated with a CASP8
variant is altered by high alcohol consumption. The effect
of an additional genetic variant might also be modified by
reproductive factors. This knowledge will stimulate new
research towards a better understanding of breast cancer
development.

evidence when assessing effect modification by alcohol intake per
10 g/day increase (Piyeracion per 10 g/day = 3.O><1073) (Table
S4). However, when alcohol intake was dichotomized at 20 g/day
(approximately 2 drinks/day), the estimated per-allele OR for
CASP8-rs17468277 was 0.91 (0.84-0.98) in those who drank
<20 g/day and 1.45 (1.14-1.85) in those who drank =20 g/day
(Pinteraction = 3.1 X10™% (Table 4, Figure 1D).

We observed weaker evidence of differences in the associations
with breast cancer for three further SNPs according to use of
MHT and for one SNP according to age at first birth. These
included rs13387042 and current use of combined estrogen/
progestagen MHT (yes/no) (Piyeraction = 2.4><10_3), rs2823093
and current use of estrogen only MHT (yes/no) (Pineraction
=6.6x1077), 15999737 and duration of estrogen only MHT
among current users (Pinmmctim=4.O><1073), and rs614367 and
age at first birth among parous women (Piyeraction =9-1 ><1073)
(Table S4).

The observed SNP-environmental interaction ORs were not
altered substantially (less than 8% change in the interaction ORs)
when adjusting for additional covariates. These additional
covariates included (when not the potentially effect-modifying
variable of interest) ever parous (yes/no), number of births, BMI,
age surrogate for postmenopausal status (=54 years), interaction of
BMI and postmenopausal status (=54 years), current use of MHT,
past use of MHT, duration of oral contraceptives (OC) use,
lifetime alcohol intake, smoking (pack-years) (Table S7). Subjects
with missing covariable information were excluded from these
analyses, leading to considerably reduced sample sizes. Restricting
the analyses to only 16 population-based studies did not change
the results substantially (i.e., less than 3%) (Table S8).

The false-positive report probability (FPRP) was below 0.2 at a
prior probability greater than 0.001 for the replicated effect
modification of LSP7-rs3817198 by number of births and 1p11.2-
rs11249433 and being ever parous. For the effect modification of
CASP8-rs17468277 by alcohol intake =20 g/day, the FPRP was
below 0.2 at a prior probability greater than 0.01. For the four
potential interactions reported above, the FPRP was only below
0.2 at a prior probability greater than 0.05. (Table S9).
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Discussion

We carried out a comprehensive evaluation of potential gene-
environment interactions between 23 established common suscep-
tibility variants for breast cancer and 10 established environmental
risk factors, using 18 variables. Compared to the previous analysis,
the present dataset from BCAC included 5 new population-based
studies as well as additional study participants from some studies
[7]. We examined additional environmental risk factors (14
variables), and 11 additional recently identified common suscep-
tibility loci.

In our previous report, the strongest evidence of effect
modification (P-value =0.002) was observed for LSPI-rs3817198
by number of births [7]. The highly consistent and significant
finding based on the present analysis of only additional cases and
controls provided clear independent replication. We also show that
the interaction holds for both ER-positive and ER-negative disease.
This lack of heterogeneity is biologically plausible since neither the
SNP nor number of births show heterogeneity by ER status in
association with breast cancer risk [9,10]. Only ever parous versus
nulliparous but not the number of births in parous women was
assessed for gene-environment interaction in two previous studies
[2,6]. Consistent with our data indicating no differential effects by
ever parous compared to never parous, they did not find evidence of
interaction between LSPI-rs3817198 and ever being parous. The
rs3817198 SNP is located on the short arm of chromosome 11 and
lies within LSPI, encoding lymphocyte-specific protein 1, an
mtracellular F-actin binding protein, although the gene underlying
the association has not been definitively identified. The SNP lies
close to the H19/IGF2 imprinted region, and the association of
breast cancer with rs3817198 has been reported to be restricted to
the paternally inherited allele [11]. The effect heterogeneity of
LSPI-rs3817198 by number of births appears to be partly due to a
significant negative correlation between number of rs3817198 C
alleles and number of births in parous women (P-value =0.002),
which was found both in the data of our previous report as well as
the additional data for the present analysis. Although not statistically
significant, the mean number of children was also reported to be
lower in women carrying the CC genotype in the Million Women
Study [6]. Also of interest is that LSPI-rs3817198 has been
associated with mammographic density, consistent with the
direction of the breast cancer association [12]. Mammographic
density has also been found to be reduced after a full-term
pregnancy, particularly with greater number of births [13,14].

We also replicated the strongest finding reported in the Million
Women Study based on 7,610 cases and 10,196 controls [6]. In
that study, the per-allele OR of CASP8-rs1045485 (or rs17468277
in our dataset) was 0.99 (0.92-1.07) in those who reported <1
drink/day and 1.23 (1.09-1.38) in those who reported =1 drink/
day (P-value =0.003). Our observation of an increased per-allele
OR of 1.45 (1.14-1.85) for those who reported high alcohol intake
=20 g/day and 0.91 (0.84-0.98) for those who consume less
provides independent replication of this SNP-environmental
interaction. Although one drink corresponds to an intake of
approximately 10 g alcohol, the Million Women study reported
the strongest risk increase in breast cancer for women consuming
at least 15 drinks per week (RR 1.29 (1.23-1.35)) [15],
corresponding to approximately to 2 drinks per day (20 g alcohol).
There is no known functional effect of CASP8-rs1045485,
however, it is associated with a risk haplotype in CASPS, which
is more strongly associated with breast cancer risk [16,17].
Caspase 8 is an important initiator of apoptosis and is activated
in response to DNA damage that can be caused by alcohol
consumption through ethanol-related oxidative stress [18].
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Studies included

p-value
0.837
0.032

OR (95% CI)
1.00 (0.98-1.03)
0.96 (0.93-1.00)

54 years

6860/8999
5452/8056

n (ca/co)

>

0.032
0.189

OR (95% CI) p-value
(1.00-1.08)

1.04
0.96

<54 years
n (ca/co)
5030/5045
1759/1996

p-value
0.447
0.005

OR (95% ClI)
1.01 (0.99-1.03)
0.92 (0.87-0.97)

n (cases/controls)
11890/14044
7211/1052

All

Physical activity in year
before reference date

10 pack-years)

Smoking amount(per

Table 2. Cont.
Variable

(0.89-1.02)

(square root of h/week)?

"Model used for the assessment of epidemiologic main effects: logit(Pr(breast cancer]risk factor)) = Bo+:*study + B,*reference_age + Ps*risk_factor.

2Mean lifetime alcohol intake derived from duration and amount of alcohol intake in g/day at different age periods.

3For physical activity, square root (hours/week) was used since this model gave the highest likelihood when modeling the marginal association using fractional polynomials (Royston P, Ambler G, Sauerbrei W. The use of fractional

polynomials to model continuous risk variables in epidemiology. Int J Epidemiol 1999;28(5):964-74.) and was further adjusted for menopausal status.

doi:10.1371/journal.pgen.1003284.t002
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Ever being parous, but not number of births, was found to
modify the effect of a different SNP, 1pl1.2-rs11249433, in
particular for ER-positive breast cancer. This SNP shows
significantly stronger association with risk of ER-positive tumors
than of ER-negative tumors [19]. In nulliparous women,
rs11249433 was not associated with risk of ER-positive disease,
whereas in parous women, the per-allele OR of 1.14 was slightly
greater than the overall OR of 1.12. The Breast and Prostate
Cancer Cohort Consortium evaluated interactions between 13 of
the 23 genetic loci and 9 risk factors, including 1p11.2-rs11249433
and ever parous. They found no evidence for this interaction (P-
value = 0.79), with per-allele OR of 1.09 (1.04—1.14) in parous and
1.11 (0.99-1.24) in nulliparous women [2]. These ORs are not in
the same relative direction as our finding with respect to ever being
parous. This may be in part due to misclassification of parity if
information on parity for participants of the cohort studies was
only available at time of recruitment and therefore incomplete
with reference to the diagnosis of breast cancer. Their analysis was
based on 8,576 cases and 11,892 controls, which had considerably
lower statistical power than the present study. The SNP
rs11249433 is located on the short arm of chromosome 1 close
to the centromere, which makes it hard to map. The nearest
known genes are FCGRI1B (low-affinity Fc gamma receptor family)
and NOTCHZ? (coding a transmembrane receptor protein).
Recently, a study reported a positive association of NOTCH?2
mRNA expression with the breast cancer risk allele of rs11249433
[20]. This association was strongest with the subgroup of ER-
positive breast tumors without TP53 mutation, providing some
evidence that the increased risk of ER-positive breast cancer might
be due to differences in NOTCH2 expression [20].

The evidence for the other four potential interactions
mentioned in the results was considerably weaker and confirma-
tion of these findings in further studies is therefore required. Three
of these involved effect modification by use of MHT. The effect
modification of RAD51L1-rs999737 by duration of estrogen only
MHT in current users is particularly interesting because this
polymorphism has been associated with mammographic density in
the same direction as the breast cancer association [12].
Mammographic density has also been found to be increased in
postmenopausal women among users of MHT [21].

RADS51LI is a member of the Rad51-like proteins that play a
crucial role in homologous recombinational repair [22]. Rare
deleterious mutations in other genes of this pathway, including
BR(CAI and BRCAZ2, confer a high risk of breast cancer [1,23].
Menopausal hormone therapy has been suggested to alter breast
cancer risk in BRCAI mutation carriers although the evidence is
still limited [24]. It is thus plausible that estrogen only MHT
modifies the relative risk for genetic variants in RAD51L1 on breast
cancer risk.

NRIPI (nuclear receptor—interacting protein 1), also called
RIP140 (receptor-interacting protein 140), is known to interact
with ERa, repress ER signaling and inhibit its mitogenic effects
[25]. Exposure to exogenous estrogens through MHT, which
stimulate ER signalling, could therefore alter the association of
NRIPI rs2823093 with breast cancer.

It is less clear how 2q35-rs13387042 might be modified by
current combined estrogen/progestagen MH'T use since the gene
involved at this locus is still unknown. The SNP is located on the
short arm of chromosome 2 and lies in a linkage disequilibrium
(LD) block containing no known gene(s) or non-coding RNAs. The
closest known genes are TNPI (transition protein 1), IGFBP5
(insulin-like growth factor binding protein 5), /GFBPZ2 (insulin-like
growth factor binding protein 2) and 7NS!/ (tensin 1/matrix-
remodelling-associated protein 6) [26]. The observed effect
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Figure 1. Odds ratios of gene-environment interaction for risk of breast cancer with p-value<10~2 by study. (A) L5P7-rs3817198 x
Number of full-term births (among parous), (B) LSP1-rs3817198 x Number of full-term births (among parous), restricted to subjects not included in
previous BCAC report, (C) 1p11-rs11249433 x Parous (yes/no), (D) CASP8-rs17468277 x mean lifetime intake of alcohol (<20 g/day versus > =20 g/

day).
doi:10.1371/journal.pgen.1003284.g001

modification would suggest that the gene involved may be
responsive to steroid hormones.

Both Campa et al. and the Million Women Study investigated
potential interactions with MHT (overall use) [2,6]. Neither study
reported evidence for interaction between 2q35-rs13387042 or
RADS1L1-rs999737 with MHT and breast cancer risk. However,
neither study considered current use of MHT even though
elevated risks for breast cancer have been clearly established for
current use and not for past use [6,27,28]. Yet Campa et al. found
differences in OR estimates for 2q35-rs13387042 by ever use of
combined estrogen/progestagen MHT in the same direction as
our results for current combined estrogen/progestagen MHT use,
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with a per-allele OR of 0.83 (0.78-0.89) in non-users and 0.77
(0.69-0.86) in ever combined estrogen/progestagen MHT users
(P-value =0.26) (in their Supplementary Table 5). We were not
able to confirm the previously suggested possible interaction of
5p12-rs10941679 or FGFRZ2 variants with MHT and other factors
[2-5]. Our data suggest that age at first birth in parous women
may modify the effect of 11q13-rs614367, which is located in a
region containing no known genes [29]. This newly identified SNP
has not been previously assessed for interaction with environmen-
tal risk factors.

One of the strengths of our study is the large sample size,
required for assessing weak to moderate gene-environment
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Figure 2. Per-allele SNP odds ratios and 95% confidence
intervals stratified by environmental risk factors of breast
cancer, and combined SNP main effect. (A) LSP7-rs3817198 x
Number of full-term births (among parous), (B) 1p11-rs11249433 x
Parous (yes/no), (C) CASP8-rs17468277 x mean lifetime intake of alcohol
(<20 g/day versus > =20 g/day).
doi:10.1371/journal.pgen.1003284.g002

interactions, particularly when marker SNPs instead of causal
variants are used [30]. We assessed gene-environment interaction
separately for ER-positive and ER-negative disease, thereby
accounting for heterogeneity by ER status in risk associated with
both genetic and environmental factors. However, statistical power
was still limited to detect interactions in susceptibility to ER-
negative disease. Although selection bias is likely to affect estimates
of environmental main effects, under reasonable assumptions, it
should not influence the assessment of multiplicative gene-
environment interactions or estimates of SNP relative risks [31].
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Furthermore, both non-differential and differential misclassifica-
tion of exposure tend to underestimate the multiplicative
interaction parameter rather than yield spurious evidence of
mnteraction [32]. To reduce potential bias due to population
stratification, we restricted our analyses to subjects of European
ancestry and stratified by study in all analyses. The robustness of
our findings to differences in study design was supported by
sensitivity analyses considering only data from population-based
studies. The interaction estimates also did not change substantially
when adjusting for further covariates: the p-values were however
higher due to the considerably reduced sample sizes. The absence
of study heterogeneity in the estimates of gene-environment
interactions provides further reassurance of the robustness of the
findings.

The effect modifications identified in our study are relatively
weak and should result in small differences in risk estimates of joint
effects compared to those based on models assuming multiplicative
effects. However, most of the SNPs investigated are only markers
of the underlying causal variants and underestimate the effects of
the causal variants if linkage disequilibrium is incomplete [33].
Thus, gene-environment interactions with the underlying causal
variant could have a greater modifying effect on the relative risk
[30]. These findings also underline the importance of investigating
interactions separately for causally distinct subtypes of breast
cancer in future assessments of gene-environment interaction.

In summary, we provide strong evidence of effect modification
of LSPI-rs3817198 by number of births and of CASP8-rs1045485
by alcohol consumption. For some additional common genetic
variants, the associations with breast cancer risk may vary with
environmental factors. However, there is little evidence for
multiplicative gene-environment interactions for most susceptibil-
ity loci and environmental risk factors. Understanding the
biological implications of the observed interactions could provide
further insight into the etiology of breast cancer. The potential
impact of these results on risk prediction for breast cancer needs to
be considered in future studies.

Methods

Study participants and risk factor data

We used primary data from the studies in BCAC. All studies
had approval from the relevant ethics committees and all
participants gave informed consent. A centralized BCAC database
of information about common risk factors and tumor character-
istics was constructed to facilitate studies of potential modifications
of SNP associations by other risk factors. A multi-step data
harmonization procedure was used to reconcile differences in
individual study questionnaires. The reference age for cohort
studies was calculated at time of enrollment and for case-control
studies at date of diagnosis for cases and at date of interview for
controls. All time-dependent variables were assessed at reference
age. This analysis included only subjects of European ancestry that
had genotype data for at least 3 SNPs and provided information
on at least one of the established risk factors. Relevant data were
available from 24 studies, including 16 population-based studies
(14 case-control and 2 prospective cohort studies) and 8 non-
population-based studies (Table 1, Table S1, Table S2). Subsets of
data from 19 studies (with 11 population-based) were included in a
previous report that assessed interactions between 12 susceptibility
variants, reproductive history, BMI and breast cancer risk [7].

SNP selection and genotyping

We included 21 SNPs found to be associated with overall breast
cancer risk at genome-wide statistical significance (p<5x1077)
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[10,25,34] and SNPs for TGFBI and CASP8 from candidate gene
studies [17] (Table S3). For three loci, 14q24.1/RAD51L1, 12p11,
CASP8, a surrogate SNP in high linkage disequilibrium (LD) (* = 1
in HapMap CEU) was genotyped in a subset (Table 3 footnote)
[19,25,35].

Genotyping was performed in the framework of BCAC by
Tagman and iPlex assays and underwent quality control as
described previously [10,19,25,34,36,37]. Genotype data were
excluded from analysis on a study-by-study basis according to the
following BCAC quality control (QC) guidelines: 1) any sample
that consistently failed for >20% of the SNPs within a genotyping
round, 2) all samples on any one plate that had a call rate <90%
for any one SNP, 3) all genotype data for any SNP where overall
call rate was <95%, 4) all genotype data for any SNP where
duplicate concordance was <98%. In addition, for any SNP
where the P-value for departure from Hardy-Weinberg propor-
tions for controls was <0.0053, clustering of the intensity plots was
reviewed manually and the data excluded if clustering was judged
to be poor.

Statistical methods

We used logistic regression to assess the main effects of the SNP
and environmental risk factors on invasive breast cancer risk.
Analyses were adjusted for study as a categorical variable and
reference age as a continuous variable. Odds ratios (OR) and their
95% confidence intervals (CI) were calculated for the SNP
associations assuming a log-additive model and tested for
assoclation with a one degree of freedom trend test. All statistical
tests were two-sided.

The assessment of associations with the environmental risk
factors was based on data only from the 16 population-based
studies to ensure unbiased estimates for comparison with
established effect sizes. The variables considered were analyzed
as continuous (age at menarche, number of births in parous
women, age at first birth, usual BMI, height, duration of oral
contraceptive use, duration of current use of estrogen-progestagen
combined therapy, duration of current use of estrogen-only
therapy, pack-years of cigarette smoking, mean lifetime daily
grams of alcohol intake, recent physical activity in hours per week),
or as dichotomous (ever parous, ever breastfed, ever OC use, ever
smoked, current EPT use, current ET use) (Table 2). Analyses
were performed for all women as well as separately for women
aged <54 years and =54 years, considering the age groups as
surrogates of pre- and postmenopausal status, Differential effects
by menopausal status were assessed by adding an interaction term.
For all categorical variables, the lowest level of exposure (or no use)
was used as the reference. For evaluating current use of MHT by
type, we used never use of MHT as the reference category and
additionally adjusted for former use of MHT and other MHT
type, as appropriate.

To test for interactions between SNPs and environmental risk
factors, we fitted for each SNP two logistic models, a model with
terms for the SNP and the risk factor of interest and another model
with additionally an interaction term for the product between the
SNP (number of risk alleles) and the risk factor variable. We
modeled the interaction based on the risk factor variable
definitions employed for the main effects. All analyses were
stratified by study and adjusted for age as a continuous variable.
The likelihood ratio test was used to compare the difference
between the two models and departure from independent
multiplicative effects of the SNP and the risk factor. BMI was
the only variable found to show differential effects by menopausal
status, which is consistent with the literature [38]. Therefore,
interaction between SNPs and BMI was assessed separately for
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pre- and postmenopausal women whereas all other risk factors
were evaluated regardless of menopausal status. To assess study
heterogeneity, we calculated odds ratios for interaction for each
individual study, adjusting for age, and reported P-values for
heterogeneity using a Q-test. Subjects with missing data for a
particular SNP or environmental factor were excluded from the
respective analysis. We also calculated stratum specific per-allele
ORs for each SNP: age at menarche (=11, 12-13, =14 years),
number of births (1,2,3, =4), age at first birth (<20, 20-24, 25-29,
=30 years), usual BMI (<25, 25-29, =30), height (<160, 160
164, 165-169, =170 cm), duration of oral contraceptive use and
of menopausal hormone use (0, >0-<5, 5-<10, =10 years),
mean lifetime alcohol intake (0, 0—<<10, 10-<20, =20 g/day),
pack-years of smoking (0, 1-<<10, 10-<<20, =20), and physical
activity (0, >0-<3.5, =3.5-<7, =7 h/week).

For SNP-environment interactions with associated P-val-
ue<10~* we also compared results after adjusting for additional
covariates. We performed a total of 414 (23 SNPs x 18 risk
variables) tests. To account for chance findings due to multiple
comparisons, we calculated the false positive report probability
(FPRP) for SNP-environment interactions with associated P-
value<10™® [39]. The FPRP depends on the prior probability
that the association between the SNP and breast cancer is
modified by the environmental risk factor, the power of the present
study, and the observed P-value. Since the prior probability of the
assessed multiplicative interactions varies depending on subjective
evaluation of existing evidence, we calculated the FPRPs for prior
probabilities ranging from 0.05 to 0.0001. We considered findings
with FPRP below 0.2 to be noteworthy results, as previously
proposed [39].

In secondary analyses, we examined associations and effect
modifications separately for women with ER-positive tumors and
ER-negative tumors, each compared to all controls. Effect
heterogeneity by ER status was tested using case-case analysis.

Data harmonization was performed using an ACCESS data-
base and transformation of the data elements was performed using
SAS (Release 9.2). All other data analyses were conducted using
SAS (Release 9.2) and the R programming language [40].

Supporting Information

Table S1 Description of BCAC studies included in the analysis
of gene—environment interaction.

(PDF)

Table 82 Description of environmental risk factors by study.

(PDF)

Table 83 SNPs previously reported to be associated with breast
cancer risk.

(PDE)
Table S4 Per-allele odds ratios (OR) and 95% confidence

intervals (CI) for SNPs by environmental risk factors of breast
cancer, overall.

(PDF)
Table S5 Per-allele odds ratios (OR) and 95% confidence

intervals (CI) for SNPs by environmental risk factors of breast
cancer, estrogen receptor positive.

(PDF)

Table S6 Per-allele odds ratios (OR) and 95% confidence

mtervals (CI) for SNPs by environmental risk factors of breast
cancer, estrogen receptor negative.

(PDF)
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Table 87 Gene-environment interactions between SNPs and
breast cancer risk factors in Caucasians with interaction p-
value<10~*, overall and by ER status, adjusted for additional
covariates.

(PDF)

Table S8 Gene-environment interactions between SNPs and
breast cancer risk factors in Caucasians with interaction p-
value<10™*, overall and by ER status, restricted to population-
based studies.

(PDF)
Table 89 False-positive reporting probability (FPRP) for inter-
actions of SNPs and environmental risk factors of breast cancer

showing interaction p-value<<10™ 2,
(PDI)
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