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Abstract

Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During
development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate
transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications
such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently
unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for
induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a
selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of
the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional
deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress
the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression,
showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in
normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural
differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-
20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with
these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4
protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation,
when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between
amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions,
when embryonic cells exit the pluripotent state.
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Introduction

Embryonic development is controlled by fine-tuned differen-

tial gene expression. A succession of regulatory protein networks

unfolds the zygotic gene expression program along a hierarchy of

decisions, leading from the embryonic ground state to the

epiblast and then to germ layers, which become patterned into

cell type and organ precursor territories. The pluripotent trait,

key feature of embryonic stem (ES) cells [1], is progressively

restricted and finally lost as soon as embryonic cells become

specified to germ layer fates. Recent studies have revealed that

alterations in chromatin structure, dynamics and composition

represent fundamental processes, which define the epigenetic

landscape that directs cell type specification along this hierarchy

[2,3].

Besides important contributions from ATP dependent chroma-

tin remodelling factors [4,5] and histone variants [6] in

modulating nucleosome dynamics, histone post-translational

modifications (PTMs) have been linked to gene expression [3,7].

The transition from pluripotent to differentiated cells is charac-

terized by a progressive increase in heterochromatin formation, in

a process that changes the hyperdynamic open chromatin

structure into a less accessible architecture [1,8]. At the same

time transcriptional silencing of non-lineage specific genes is

achieved via acquisition of repressive histone marks. In vivo studies

have shown that dynamic alterations in the levels of histone

modifications characterize early stages of development both in

mammals [9–11] and other vertebrates [12–14].

Lysine methylation of histones is catalyzed by SET domain-

containing histone methyltransferases (HMTases), and can be
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linked both to transcriptional activation and repression [15,16].

In particular, repressive histone methyl marks are found on

lysine residues at position 9 and 27 on histone H3 and in

position 20 on histone H4. H3K27 trimethylation is catalyzed

by polycomb repression complex (PRC) 2, which predominantly

represses developmental regulatory genes [17–19]. Trimethyla-

tion of H3K9 and H4K20 relies on Suv39h and Suv4-20h

enzyme activities, respectively [20,21], and predominantly

marks repetitive genomic DNA at pericentromeric and telo-

meric heterochromatin [16,21]. While H3K9-specific HMTases

have been characterized in significant depth [20,22,23], we

know little about the functions of Suv4-20h1 and Suv4-20h2

enzymes with regard to gene regulation. In vivo analysis of

H4K20 methylation states in mouse embryos reveals specific

patterns both in cellular or subnuclear abundance [9,24]. Suv4-

20h DKO pups die perinatally, indicating an essential function

of the two enzymes during embryogenesis [24]. Moreover,

quantitative analysis of histone PTMs in X. laevis revealed a

progressive and significant accumulation of H4K20me3 levels

during embryogenesis, suggesting developmental functions for

these enzymes [13].

To characterize the functional role of H4K20me2/3 during

vertebrate development we have investigated the consequences of

both morpholino-mediated protein knockdown and mRNA-born

overexpression of the Xenopus Suv4-20h1 and h2 homologs in

frog embryos. Our data reveal a specific and selective requirement

for Suv4-20h enzyme acitivities in neuroectodermal differentia-

tion, in a process which involves transcriptional repression of

pluripotency associated POU-V genes, both in Xenopus embryos

and in murine ES cells.

Results

Characterization of Xenopus Suv4-20h1 and h2 enzymes
We initially identified X. laevis Suv4-20h1 and h2 ESTs via

database mining. Mouse and frog Suv4-20h1 and h2 protein

sequences are well conserved, particularly within the SET

domains ($88% identity), even though the xSuv4-20h2 open

reading frame is longer than its mouse homolog due to C-

terminal insertions (supplementary data, Figure S1). XSuv4-

20h1/h2 genes are both maternally and zygotically expressed in a

ubiquitous manner, as shown by RNA in situ hybridisation and

RT-PCR analysis (Figure S2A–S2D). XSuv4-20h1 mRNA

abundance decreases during the initial stages of development

and subsequently rises from mid-gastrula on, reflecting the switch

from maternal-to-zygotic transcription at midblastula. In con-

trast, the initially high xSuv4-20h2 mRNA level falls and stays

low at late stages (Figure S2D).

To test the acivities of these Xenopus HMTases, we first

analyzed their ability to rescue H4K20me3 levels in Suv4-20h1/

h2 DKO mouse embryonic fibroblasts (MEF Suv4-20h DKO;

[24]), which lack this modification. Both frog cDNAs re-

established a proper H4K20me3 pattern, which was strongly

enriched at heterochromatic regions that were identified as

DAPI-dense chromocenters within nuclei (Figure 1A). Thus,

Xenopus laevis Suv4-20h homologs are biologically active and

can direct H4K20 trimethylation. To test, whether they generate

this histone mark in frog embryos, we designed antisense

Morpholino oligonucleotides (MO) to reduce synthesis of

xSuv4-20h1 and h2 proteins from endogenous mRNAs (Figure

S3A, S3B). These MOs specifically inhibited translation of their

cognate templates in vitro (Figure S3C). To avoid possible

functional complementation between the xSuv4-20h enzymes in

vivo, we decided to inject the two MOs simultaneously into both

blastomeres of 2-cell stage embryos and performed western blots

with nuclear protein extracts from these double-morphant

embryos at the tadpole stage (NF30-33). Compared to uninjected

controls or embryos injected with an unrelated control MO

(control-morphants), the double morphants contained significant-

ly less H4K20me2 (p = 0.0011) and H4K20me3 (p = 0.0164),

which was coupled to an increase in H4K20me1 (p = 0.0034)

(Figure 1B and 1C).

This result was confirmed by MALDI-TOF mass spectrom-

etry (Figure S4A). As described in Schneider et al. [13], the

relative abundance of histone modifications was calculated by

quantifying the amount of a specific modification relative to the

amount of all modification states determined for the same

histone peptide. As reported before [13], the H4K20me3 mark

could not be quantitated reproducibly for technical reasons.

Compared to control embryos, however, xSuv4-20h double

morphants contained approximately 2.5-fold less of H4K20me2

(p = 0.0153) and three-fold more H4K20me1 (p = 0.0185), while

the abundance of the unmodified peptide state remained

unaffected. Importantly, the levels of histone H3 methylation

on two tryptic peptides, covering the K9, K27 and K36

positions, were indistinguishable between control and double-

morphant embryos (Figure S4B and S4C). Western blot analysis

with antibodies against trimethylated H3K9 or H3K27 also

showed no difference in the abundance of these two marks

between control embryos and xSuv4-20h double morphants

(Figure S4D).

To further characterize the effects of xSuv4-20h enzyme

depletion on the cellular level, we performed immunohistochem-

istry on sections from tailbud stage embryos (NF30), which were

injected with the xSuv4-20h MO-mix into one of two blastomeres

at 2-cell stage together with fluorescently labelled dextranes as

lineage tracer. While H3 staining was comparable between

injected and uninjected sides under all conditions (Figure S5A),

staining for H4K20me2 and –me3 was clearly reduced on the

double-morphant side of the neural tube (Figure 1D). In

Author Summary

The quest of modern developmental biology is a detailed
molecular description of the process that leads from the
fertilized egg to the complex and highly differentiated
adult organism. This process is controlled largely on the
level of gene expression. While early embryonic cells are
pluripotent and capable of transcribing most of their
genome, older cells have become committed to the germ
layer and differentiation programs during gastrulation.
They express then a subset of genes compatible with their
future physiological function. Young, pluripotent cells and
post-gastrula, committed cells express different networks
of transcription factors and contain chromatin of different
structure and composition. How these two regulatory
layers are interconnected during development is incom-
pletely understood. We describe a novel and unexpected
link between the pluripotency-associated POU-V gene Oct-
25 and xSuv4-20h histone methyltransferases. XSuv4-20h
enzymes are required to repress the Oct-25 gene, a
homolog of mammalian Oct4, in the neuroectoderm of
frog embryos as a prerequisite for neural differentiation.
Consistently, murine Suv4-20h double-null ES cells show
increased Oct4 protein levels before and during in vitro
differentiation and display compromised differentiation in
comparison to wild-type ES cells. Thus, Suv4-20h enzymes
control specific POU-V genes and are involved in germ-
layer specific differentiation.

Suv4-20h Enzymes Promote Neurogenesis
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agreement with our western blot and mass spec results, the

reduction in the di- and tri-methyl mark was coupled to an

increase in H4K20me1 staining. Altogether these results indicate

that xSuv4-20h1 and h2 downregulation leads to a quantitative

reduction of H4K20 di- and trimethyl marks in the frog embryo,

without affecting the bulk abundance of other repressive histone

marks such as H3 K9/K27 methylation.

RNA-based overexpression of Suv4-20h HMTases had the

opposite effect. When injected singly, xSuv4-20h1 or h2 mRNAs

increased both di- and trimethylated H4K20 in a dose-dependent

manner (Figure S8A). A comparable result was achieved by

injection of either mouse Suv4-20h1 or h2 mRNAs (Figure S9A).

Together, these results identify the frog cDNAs as orthologs of

mammalian Suv4-20h enzymes. Loss and gain of function

experiments also indicate that the bulk abundance of di- and

trimethylated H4K20 can be manipulated over a wide range

without compromising embryonic viability.

XSuv4-20h HMTases depletion inhibits eye and
melanocyte formation

We next tested, whether depletion of xSuv4-20h HMTases

affects embryonic development. We injected xSuv4-20h1/h2 MO-

mix into one blastomere of two-cell stage embryos and scored

phenotypic alterations by comparing injected with uninjected

sides. No obvious differences were observed during early

development, including gastrulation, axial extension and dorso-

ventral patterning. From tailbud stages on, two main phenotypes

became manifest. First, in the injected side of xSuv4-20h double

morphants the eye formation was strongly compromised. The eye

rudiments contained no or barely visible retinal pigment and

Figure 1. Functional analysis of xSuv4-20h HMTases. (A) Transiently transfected eGFP-tagged Suv4-20h1 and h2 enzymes from frog or mouse
re-establish H4K20me3 marks in heterochromatic foci of Suv4-20h1/h2 DKO MEFs. (B–D) Bulk histones from tadpoles (NF30-33) injected with
morpholinos targeting translation of endogenous xSuv4-20h1 and h2 mRNA show a strong reduction in H4K20me2 and H4K20me3 levels and a
concomitant increase in the H4K20me1 mark. (B) Western Blot analysis of uninjected embryos, control morphants (ctrl-MO), and double morphants
with antibodies against H4K20 mono-, di- and trimethylation. PanH3 antibody was used as loading control. (C) Western Blot quantification of three
independent biological experiments; data represent mean values, error bars indicate SEM. (D) Immuno-histochemistry on xSuv4-20h double
morphant tadpoles. Panels show details from neural tubes stained with antibodies against the histone epitopes indicated on the side. Whole sections
shown in Figure S5A.
doi:10.1371/journal.pgen.1003188.g001
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typically had no lens (Figure 2A). Secondly, melanophores that are

found on the dorsal part of the head and the lateral portion of the

trunk, were severely reduced in numbers or completely lost from

the double-morphant side (Figure 2A). Both phenotypes had a

penetrance between 80–90% in xSuv4–20h double morphants

(p,0.0001, Fisher’s exact test) in several independent experiments

(Figure 2B). Control-morphant embryos had normal eyes and

melanocytes (Figure 2A) and were indistinguishable from unin-

jected siblings in most cases (Figure 2B).

The distinct eye phenotype prompted us to investigate the

underlying molecular changes. RNA in situ hybridization exper-

iments revealed a clearly reduced expression of the homeobox

transcription factor Rx-1 (Figure 2C) and the paired box

transcription factor Pax-6 (Figure S5D) in xSuv4-20h double

morphants. The reduction of these two master regulators of eye

differentiation explains the morphological eye phenotype, but we

noticed that embryonic transcription was already misregulated

upstream of these factors. The pan-neural markers Nrp1

(Figure 2C) and N-CAM (Figure S5E), which are induced during

gastrula stages, were also strongly reduced in double morphants.

However, several key markers of embryonic patterning were not

perturbed, such as the organizer genes Chordin, Goosecoid and

Xnr-3 at gastrula stages (Figure S5B). The anteroposterior

patterning of the central nervous system (CNS) appeared also to

Figure 2. xSuv4-20h1/h2 double morphants lack eyes and melanophores. (A) Morphological phenotypes of representative tadpoles (NF30-
33) from embryo cohorts injected into one of two blastomeres at two-cell stage with ctrl-MO, xSuv4-20h1/h2 MOs (double morphants), and double
morphants coinjected with 3 ng mouse Suv4-20h1/h2 mRNAs (rescued). Injected body halves were identified by green fluorescence of the coinjected
lineage tracer Fluor 488 Dextran. (B) Penetrance of the eye phenotype. Data from three to five independent experiments; n = total number of
embryos scored. (C) RNA in situ hybridization analysis for Rx-1 in tadpoles (NF30-33), and CNS markers Nrp1 at neural tube stage (NF19-20). For each
condition, numbers refer to embryos showing the displayed morphology or staining, in comparison to the total number of analysed embryos.
doi:10.1371/journal.pgen.1003188.g002
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be normal given the wild-type-like expression patterns of Otx2 and

Krox20 in fore- and hindbrain territories, respectively (Figure

S5C). These results provide first evidence that H4K20 di- and

trimethylation serves to regulate distinct developmental genes in a

selective manner.

Xenopus Suv4-20h activity is required for normal
development

The specificity of the developmental phenotypes arising from

xSuv4-20h enzyme depletion was validated by rescue experiments,

in which we coinjected increasing doses of murine Suv4-20h1/h2

mRNAs together with the xSuv4-20h MO-mix. Due to sequence

divergence, transcripts of the murine orthologs escape inhibition

by the MOs targeting the frog mRNAs. Already 2 ng of murine

Suv4-20h transcripts were sufficient to rescue the eye defect in two

thirds of the double morphant embryos (p,0.0001, Fisher’s exact

test). In most cases, the retinal neuroepithelium regained its

circular structure and near normal size, as well as a central lens

(Figure 2A). The rescue efficiency did not increase with higher

concentrations of mouse transcripts (Figure 2B, columns 4–6). The

number of melanophores was also increased at their proper sites

under rescue conditions (Figure 2A). Furthermore, the expression

domains of Rx-1 and Nrp1 (Figure 2C), as well as Pax-6 and N-

CAM (Figure S5D and S5E) were efficiently restored.

To test, whether this phenotypic rescue requires Suv4-20h

proteins or their enzymatic activity, we generated catalytically

inactive murine Suv4-20h protein variants (Figure S6A), based on

structural predictions [25,26]. Unlike the wild-type proteins,

neither variant restored the H4K20me3 mark at heterochromatic

foci in Suv4-20h DKO MEFs (Figure S6B). When tested side by

side with the wild-type enzymes, the mutants did neither increase

the abundance of the H4K20me2 and -me3 marks in wild-type

frog embryos (Figure S6C, compare lanes 1, 3 and 5), nor rescue

H4K20 methylation levels in xSuv4-20h double morphants

(Figure S6C compare lanes 1, 4 and 6), although being expressed

at similar levels (Figure S6D). Consequently, the inactive variants

also failed to rescue the eye and melanophore phenotype (Figure

S7A–S7C and S7D, compare columns 2–4).

In the course of these experiments we noticed that overexpres-

sion of either frog or mouse Suv4-20h1 and h2 proteins never

caused any obvious morphological or molecular changes in the

embryos (Figures S8B, S8C and S9B, S9C), despite strongly

enhanced H4K20me3 levels in bulk chromatin (Figures S8A and

S9A). In particular, morphological landmarks such as eyes and

melanophores formed normal in size, number and location under

overexpression conditions. Expression domains of marker genes

such as Rx-1 and Pax-6 were unaffected (Figures S8D and S9D).

Thus, H4K20 di- and trimethylation is required for normal

development, but excess deposition of these marks has no apparent

phenotypic consequences.

XSuv4-20h enzymes are required for ectoderm formation
The apparent functional selectivity of the ubiquitously expressed

enzymes encouraged us to test, whether xSuv4-20h HMTases

control additional aspects of germ layer formation and patterning.

Therefore, we compared the expression of key developmental

regulatory genes in uni-laterally injected control-morphants versus

xSuv4-20h double morphants by RNA in situ hybridisation (listed

in Figure 3A).

Based on our previous results, we continued with genes involved

in neurogenesis (Figure 3B). At the open plate stage, primary

neurons are specified in three stripes next to the dorsal midline on

each side. At this time, each stripe expresses the neural specific

regulatory genes Neurogenin-related 1a (Ngnr-1a) and Delta-like

1, as well as the differentiation marker N-tubulin. The expression

of these three genes was extinguished in almost all of the xSuv4-

20h MO-injected sides, while being unaffected by control-MO

(Figure 3B). In addition to these stripes, Delta-like 1 mRNA

delineates the anterior border of the neural plate, and this domain

was also extinguished (Figure 3B). In contrast, mesodermal

expression of Delta-like 1 around the blastoporus remained

unaffected in morphant condition (Figure 3B, arrow). Delta-like

1 and N-tubulin stripes were effectively rescued by coinjection of

wild-type mSuv4-20h1/h2 mRNAs, while Ngnr-1a was restored in

a broad, diffuse manner (Figure 3B, right column). Notably,

inactive mouse Suv4-20h HMTases could not rescue N-tubulin

expression (Figure S7E, middle column). At the same time,

mesodermal control genes like MyoD were unaffected (Figure

S7E, right column) Together, these results implicate xSuv4-20h

enzymes in neuronal fate selection.

Next, we extented our analysis to marker genes expressed in

other germlayers and territories (Figure 3C and Figure S5). The

epidermal keratin gene XK81 demarcates non-neural ectoderm

and was expressed normally on the surface of morphant epidermis;

however, due to a slight retardation in neural tube closure on the

injected side, its expression appears asymmetric in anterior views.

This may indicate an involvement of xSuv4-20h enzymes in

morphogenetic processes during neurulation and/or neural crest

specification. This phenotype led to a mild broadening of the

neural plate markers Sox2 (Figure 3C), Sox3 and Sox11 (Figure

S5F) at apparently normal mRNA levels. Prior to these neural

plate markers, a group of genes including FoxD5, Geminin, Zic1,

Zic2, Zic3 and members of the Iroquois family are induced in the

prospective neuroectoderm and stabilize the neural fate by their

regulatory interactions (reviewed in ref [27]). At midgastrula

(NF11), FoxD5 and Geminin did not respond to xSuv4-20h

enzyme depletion (Figure S5F), but Xiro1, Zic1 (Figure 3C), Zic2

and Zic3 (Figure S5F) mRNAs were strongly reduced. In contrast,

key mesodermal factors such as Xbra, MyoD (Figure 3C) and

VegT (Figure S5F), as well as regulators of endodermal

differentiation like Sox17 a and Endodermin (Figure 3C) were

expressed normally in both morphants and in embryos overex-

pressing frog xSuv4-20h proteins (Figure S8E). Taken together

these results demonstrate that xSuv4-20h HMTases are critical for

neural development, but apparently dispensable for mesoderm

and endoderm formation in X. laevis.

To further verify the specific role of Xenopus Suv4-20h

enzymes in neural development, we considered two different

approaches; in a first series of experiments we performed injections

at 8-cell stage in the animal or vegetal pole blastomeres, selectively

labelling cells predominantly belonging either to mesendoderm

(vegetal injections, Figure 4A) or ectoderm (animal injections,

Figure 4D). Vegetal pole blastomere injections led to no evident

morphological and molecular phenotypes (Figure 4B and 4C).

Conversely, animal injections reproduced the eye and melano-

phore phenotypes from half-injected embryos, while mesodermal

and endodermal structures developed normally (Figure 4E).

Consistent with the morphological defects, Delta-like 1 expression

in the neural plate was suppressed, while MyoD and Sox17 a
genes were unaffected (Figure 4F). These results provide strong

evidence that the neural and melanocyte phenotypes originate in

the ectoderm.

As second approach we took advantage of animal cap (AC)

explants, which form epidermis in isolation but can be neuralized

by the BMP-inhibitor Noggin. Specifically, we tested whether the

downregulation of xSuv4-20h HMTases prevented neural induc-

tion by Noggin. Without Noggin, wt and double morphant

explants were positive for XK81 and negative for Nrp1

Suv4-20h Enzymes Promote Neurogenesis
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(Figure 5A). They were also negative for Xbra, indicating absence

of contaminating mesoderm. Noggin-mediated Nrp1 expression

was clearly visible in wt caps, but strongly reduced upon co-

injection of xSuv4-20h morpholinos, while XK81 expression was

downregulated in both the samples (Figure 5A). Thus, double

morphant caps are both refractory to neural induction and

restrained in epidermal differentiation. However, they differentiate

into mesoderm upon stimulation with Activin A just like control

explants, as shown by immunostaining for muscle myosin heavy

chain (Figure 5B). These results confirm the crucial role of xSuv4-

20h enzymes in coordinating the formation of ectodermal tissues,

and show that in the absence of the two enzymes neural induction

is impaired.

XSuv4-20h enzymes are required for cell survival and
proliferation

Loss of H4K20 di- and trimethylation is known to compromise

DNA damage repair in mice and to partially block G1/S

transition [24]. This prompted us to test, whether xSuv4-20h

depletion affects apoptosis and cell proliferation in frog embryos.

Immunostaining for activated Caspase3 revealed an increase in

apoptotic cells on the injected side of double morphant embryos

(Figure S10A). Coinjection of xBcl-2 mRNA, an anti-apoptotic

factor, reduced the Caspase3 positive cells to levels of the

uninjected control side, however, without re-establishing a proper

Delta-like 1 and N-tubulin pattern in the double-morphant side.

Overexpression of xBcl-2 mRNA alone had no effect on the

expression of the tested markers (Figure S10A). Thus, although

embryonic frog cells depleted for the H4K20me2/me3 marks

become apoptotic at higher rate than wt cells, the absence of

neurons in the double-morphant neural plate cannot be explained

by selective cell death.

Double morphant embryos stained for the mitotic marker

H3S10P, showed a two-fold reduction (p = 0.0058) in the number

of proliferating cells at midneurula stage, compared to control

morphant embryos (Figure S10B). This mild phenotype might be

correlated with the observed increase in apoptosis. Since neural

induction continues in frogs, even when cell proliferation is

blocked from gastrulation onwards [28], it is unlikely that the

nearly complete loss of N-tubulin positive neurons is brought

about by this mild reduction in cell proliferation. Taken together,

the main xSuv4-20h morphant phenotype represents not a

selective loss of neuroblasts, but a block in neural differentiation.

XSuv4-20h double morphant frog embryos fail to silence
Oct-25 transcription in sensorial ectoderm

So far, our analysis in xSuv4-20h morphant embryos has

indicated a specific and selective loss of gene expression in

ectodermally derived tissues. The earliest affected markers - Zic

and Xiro genes - become induced at early gastrula stage and help

establish the neural plate state [27]. At this time in frog

development, embryonic cells in the animal hemisphere are still

plastic and express members of the POU-V gene family – i.e. Oct-

25, Oct-60 and Oct-91 - that encode paralogs of the mammalian

pluripotency regulator Oct4 [29,30]. Because Oct-25 and Oct-91

regulate germ layer differentiation in Xenopus [31–34], we

investigated their expression (Figure 6A). Oct-25 is initially

expressed throughout the animal hemisphere at early gastrula,

but gets restricted to the presumptive floor plate (notoplate) by

midneurula [31]. On the injected side of the vast majority of

double morphants, however, Oct-25 expression was expanded

from the notoplate down to the ventral midline. Interestingly,

ectopic Oct-25 expression was restricted to the sensorial cell layer

of the ectoderm, which contains neural and epidermal precursor

cells, respectively (Figure 6A, sections). The Oct-60 gene, which is

expressed during oogenesis, was not activated under these

conditions. Oct-91 staining appeared normal in the majority of

the embryos, although some showed a mild upregulation in double

morphants as well (data not shown). The ectopic expression of

Oct-25 is a specific consequence of xSuv4-20h enzyme depletion,

because its normal pattern was re-established in morphants upon

coinjection of mRNAs encoding wild-type, but not inactive, mouse

Suv4-20h proteins (Figure S7E, left column). Notably, the selective

derepression of the Oct-25 gene was also observed in double-

morphant AC explants (Figure 6B), excluding indirect effects from

non-ectodermal tissues.

We then performed qRT-PCR analysis to quantitate the

relative changes in gene expression. It is frequently observed that

embryo cohorts develop in slight asynchrony as a non-specific

consequence of Morpholino injection, possibly obscuring tran-

scriptional responses. To minimize this potential artifact, we

analysed the RNAs of matching pairs of wt and xSuv4-20h

depleted samples by dissecting embryos at early neurula stage

(NF14) into uninjected and injected halves, based on the

coinjected fluorescent lineage tracer (Figure S11A). As shown in

Figure 6C, the Oct-25 mRNA is about three-fold higher in xSuv4-

20h double-morphant halves (p = 0.0123), while being similar

between control-morphant and uninjected halves. In the same

sample, Oct-91 expression was unaffected (Figure 6C). We used

this assay also to confirm the diminished expression of neural plate

marker genes detected earlier by RNA in situ hybridisation. With

the exception of Ngnr 1a, Nrp1 and N-tubulin, mRNA levels were

clearly reduced in the morphant halves (p = 0.0122 and 0.0163,

respectively; Figure S11B).

To gain further information about the complexity of the

underlying transcriptional misregulation, we performed transcrip-

tome analysis in wild-type and double-morphant embryos, again

dissecting embryos in corresponding pairs of injected and

uninjected halves (Figure S12A). Six percent of the 11639

annotated probe sets present on the microarray were significantly

altered in their expression as a consequence of xSuv4-20h enzyme

depletion, about equally split into upregulated (n = 319) and

downregulated (n = 404) probes (Figure S12B and S12C; for a

complete list of the responding probesets see NCBI’s GEO Series

accession number GSE41256). This result suggests that the

observed phenotypes in the double morphants originate from

transcriptional misregulation of distinct genes, rather than from

global, pleiotropic effects. Indeed, Oct-25 mRNA is also specif-

ically upregulated in the microarray data set, where it is among the

Figure 3. xSuv4-20h enzymes are required for differentiation of the neuroectoderm. (A) Schematic illustration of analysed markers of the
different germ layers (germ layer colour code extended to in situ panels). Downregulated genes upon xSuv4-20h depletion are labelled in red. (B)
Expression pattern of the neuroectodermal markers Ngnr 1a (NF12.5), Delta-like 1 (NF13), and N-tubulin (NF15). The pictures show dorsal views of the
open neural plate with anterior to the left. (C) Expression patterns of XK81 (ectoderm), Sox2, Xiro1, Zic1 (neuroectoderm), Xbra, MyoD (mesoderm),
Sox17 a, Endodermin (endoderm) in ctrl-MO injected or double morphant embryos. XK81 - anterior views with dorsal side to the top. Sox2 and MyoD
- dorsal views, anterior to the left. Xiro1 and Zic1 - dorsal views; injected halves are lineage-traced by coinjection of LacZ mRNA and subsequent b–Gal
staining (light blue). Xbra - vegetal view. Sox-17 a - internal stain from the injected side in bisected embryos, animal pole up. Endodermin – internal
stain from the injected side in bisected embryos; anterior to the left.
doi:10.1371/journal.pgen.1003188.g003
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ten most upregulated mRNAs in the double-morphant condition

(Figure S12D).

The sustained expression of Oct-25 in xSuv4-20h morphant

embryos fits the prediction of Oct-25 being a direct target of

H4K20me3 mediated transcriptional silencing. To test this

assumption directly, we carried out chromatin-immunoprecipita-

tion (ChIP) experiments with H4K20me3-specific antibodies at the

neurula stage (NF15-16). For ChIP experiments we used X.

Figure 4. xSuv4-20h1/h2 enzymatic activity is required in the ectodermal germ layer. (A, D) Schematic illustrations of targeting
microinjections into mesendodermal or ectodermal territories at 8-cell stage. (B) Injecting xSuv4-20h MOs into the mesendoderm causes no apparent
morphological phenotype in the embryo. (C) Neural, mesodermal and endodermal marker genes are expressed normally. (E) xSuv4-20h MOs reduce
eyes, cranial and trunk melanophores, when injected into the ectoderm. (F) Expression of all tested markers in mesoderm and endoderm is normal,
except for Delta-like 1, whose expression specifically in the open neural plate is strongly reduced on the injected side. Global morphology was
assessed at hatching stage (NF36), molecular markers at indicated stages during neurulation. Top row images in (B) and (E) depict whole embryos for
overview.
doi:10.1371/journal.pgen.1003188.g004
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tropicalis embryos, since the available genome sequence of this

closely related frog species [35] allowed us to design primer

amplicons for non-exon derived DNA sequences. RNA in situ

hybridization performed on neurula stage X. tropicalis embryos,

confirmed that the expression patterns of Oct-25 and N-tubulin

were up- and down-regulated, respectively, to the same extend as

observed for X. laevis (Figure S13). We retrived the pericentro-

meric major satellite repeat sequence (MSAT3) as positive control

amplicon for the experiment. Genic regions, which are

H4K20me3-free and, thus, could be used as negative controls,

are difficult to predict, since genome-wide analysis in mammalian

cells reported only enrichment of this modification on pericen-

tromeric and subtelomeric heterochromatin [36,37]. As negative

controls we considered: GAPDH, a constitutively expressed

housekeeping gene; thyroid hormone receptor a (thra), a gene

whose expression can be detected at neurula; and thra-induced

bzip protein (thibz) that is expressed from metamorphosis on

(Figure S14A). Statistical analysis of qRT/PCR data indicates that

expression of GAPDH and thra was not significantly altered under

the double-morphant condition (Figure S14B). Therefore, the

relative H4K20me3 levels at these genes were defined as

background, and compared to the levels on other loci (Figure

S14A). The modification strongly decorated the pericentromeric

MSAT3 repeat region (Figure 6D), as expected from the analysis

in murine cells [21]. At the 59UTR amplicon of the Oct-25 gene,

H4K20me3 was significantly enriched compared to the control

genes GAPDH (p = 0.0155), thra (p = 0.0103) and thibz

(p = 0.0128) (Figure S14A and Figure 6D). In a second set of

experiments, we compared the abundance of H4K20me3 between

wild-type and xSuv4-20h double-morphant embryos (Figure 6E).

In morphants, the modification was selectively reduced at the

59UTR amplicon of Oct-25 (p = 0.004). Together, these ChIP

experiments validate the 59 end of the Oct-25 gene as direct target

of xSuv4-20h mediated transcriptional silencing.

Xenopus Oct-25 has been implicated in germ layer formation

[32,34]. We wanted to know, whether the sustained expression of

Oct-25 in xSuv4-20h morphants could cause the observed

downregulation of early neural plate and neural differentiation

markers. This question is difficult to address, since the role of Oct-25

in neural induction is ambiguous - both overexpression and

morpholino knockdown inhibit neural differentiation [32,34]. Thus,

Oct-25 acts in pleiotropic fashion, perhaps switching target genes or

protein interaction partners. In a previous report [38], human Oct4

protein was shown by ChIP analysis to bind to promoters of early

neural markers, including Zic and Sox genes. In order to link

Xenopus Oct-25 mechanistically to these genes, we have mis-

expressed constitutively activating and repressing Oct-25 fusion

proteins in animal caps (Figure S15A). Zic1, Zic3 and Sox2

responded to the Oct-25 variants in a manner consistent with direct

regulator/target gene interaction, i.e. they were hyperactivated by

Oct-25-VP16 (p = 0.0143; 0.0456; 0.01622, respectively) and

suppressed by Oct-25-EnR (p = 0.0236; 0.0167; 0.0231, respective-

ly) compared to the uninjected sample. In line with this assumption,

inspection of the X. tropicalis gene sequences detailed the presence of

multiple Oct-25 DNA binding motifs within 2.0 Kb distance from

the transcriptional start site for each of these genes (Figure S16). For

the two Zic genes, which are misregulated in the forming neural

plate of morphant embryos (Figure 3C and Figure S5F), we

confirmed the misregulation by Oct-25 variants via RNA in situ

hybridisation (Figure S15B).

Interestingly, Sox2 expression was affected only in AC explants,

but not in the double morphant embryos. This can be explained

by considering two points: First, in animal caps levels and activities

of the injected Oct-25 protein variants most likely exceed

endogenous Oct-25 protein activity and regulate Sox2 expression

in a dominant fashion. Secondly, formation of neural tissue in the

embryo requires inductive influences including FGF signalling

[39],and Sox2 transcription is stimulated by FGF8 [27], which is

normally expressed in the mesoderm. Thus, the stimulating

influence of FGF signalling on Sox2 transcription in the embryo

may neutralize the repressive influence from deregulated Oct-25

expression, while the repressive activity of the deregulated Oct-25

levels prevails in animal caps in the absence of FGF signalling.

The remaining genes either failed to respond to one of the two

Oct-25 protein variants (Zic2, Xiro1), or did not respond (Ngnr 1a,

N-tubulin). These observations suggest an indirect effect. While it is

possible that additional factors that are misregulated in xSuv4-20h

Figure 5. In vitro induction of xSuv4-20h double-morphant
animal cap explants. (A) Noggin-dependent neuralisation. XK81,
Nrp1 and Xbra expression is monitored in uninjected control caps and
double-morphant caps with or without Noggin mRNA. Note that
explants coinjected with xSuv4-20h MOs together with Noggin mRNA
show reduced Nrp1 expression, but normal downregulation of XK81
mRNA. (B) Muscle induction by Activin A in uninjected, ctrl-MO injected,
and xSuv4-20h double morphant animal caps. Top row demonstrates
comparable expression of myosin heavy chain (MHC-a) in non-dissected
sibling embryos.
doi:10.1371/journal.pgen.1003188.g005
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Figure 6. xSuv4-20h double morphants fail to silence Oct-25 expression in deep-layer ectoderm due to reduced H4K20me3
enrichment at Oct-25 promoter. RNA in situ hybridization analysis for Oct-25, Oct-60 and Oct-91 in embryos (A) and animal caps (B) for ctrl-
morphants or xSuv4-20h double-morphant embryos, injected unilaterally at two-cell stage and fixed at midneurula stage (NF15). Injected sides were
defined by coinjected Alexa-fluorescence prior to in situ hybridisation. (A) Dorsal views of stained embryos with anterior to the left. For Oct-25
Vibratome cross-sections, ctrl-MO and double-morphant embryos are shown. (B) Comparative expression analysis for Oct-25, Oct-60 and Oct-91 in
animal caps from bilaterally injected embryos, fixed at midneurula stage (NF15). (C) qRT-PCR profiles for Oct-25 and Oct-91 in ctrl-MO and xSuv4-20h
double-morphant embryos. Data represent normalized ratios of mRNA levels as means of four independent experiments, error bars indicate SEM. (D,
E) Chromatin immunoprecipitation (ChIP) analysis on Oct-25, GAPDH, thra, thibz genes and major satellite repeat region 3 (MSAT3). (D) H4K20me3
levels on the indicated genes in normal embryos, and (E) in uninjected versus double-morphant embryos. Fold enrichment was calculated as the ratio
between H4K20me3 precipitated material over negative control (No antibody sample). Data represent mean values of three to five independent
experiments, error bars indicate SEM.
doi:10.1371/journal.pgen.1003188.g006
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morphants contribute to the neural phenotype, the combined results

from ChIP experiments and Oct-25 variants define a pathway, in

which xSuv4-20h enzyme dependent repression of Oct-25 is needed

during gastrulation for proper neuroectoderm differentiation.

Deregulated Oct-25 expression in xSuv4-20h double
morphants inhibits neural differentiation

To further analyse the mechanistic interaction between xSuv4-

20h enzymes and Oct-25, we performed rescue experiments with

triple-morphant embryos, in which synthesis of Oct-25 and xSuv4-

20h proteins was simultanously blocked (Figure 7). The Oct-25

morpholino that we used has been shown before to inhibit

efficiently Oct-25 translation from both non-allelic gene copies

[40]. Because global Oct-25 depletion inhibits the formation of

anterior neural structures [40], we employed two different

strategies for the triple-knockdown to circumvent this problem.

In a first series of analysis we injected a single A1 blastomere of 32-

cell stage embryos to target cells that predominantly contribute to

the retina and brain. Also in this experimental series, the

morphology of double morphant eyes was strongly affected

(Figure 7A). 71% of the injected embryos showed a clear reduction

of retinal pigment, the remainders often restricted to the dorsal-

most portion of the eyecup. The majority of the eyes contained no

lens (Figure 7C). When the downregulation of xSuv4-20h enzymes

was coupled to a concomitant knockdown of Oct-25 (triple

morphants), the percentage of embryos showing this defect was

reduced to 49% (p = 0.0188, Fisher’s exact test). The retinal

pigment was rescued in the triple morphants, whose eyes also

regained a properly structured lens (Figure 7C). To confirm the

morphological phenotypes, we investigated the basal neural gene

expression in AC explants. The expression of a subset of genes

involved in the establishment of the neural plate state (Zic1, Zic2,

Xiro1, Sox2 and Sox3) was strongly reduced upon downregulation

of xSuv4-20h enzymes at early neurula (NF14-15), compared to

uninjected animal caps (p = 0.0068; p = 0.0127; p = 0.0113;

p = 0.0321; p = 0.0037, respectively). With the exception of

Sox2, the simultaneous downregulation of xSuv4-20h enzymes

and Oct-25, rescued neural gene expression. In fact, under the

triple morphant condition most of these genes were expressed at

higher levels than normal, suggesting that they are partly repressed

by Oct-25 in unmanipulated explants (Figure 7D). Most impor-

tantly, the combined results of the two triple-knockdown

experiments indicate that both morphological and molecular

features of the xSuv4-20h double morphant phenotype can be

rescued to a significant extent by reducing Oct-25 protein levels.

This result firmly establishes that the sustained and elevated

expression of Oct-25 protein is responsible for the neural

differentiation defect of xSuv4-20h double-morphant embryos.

Murine Suv4-20h1/h2 double-knockout ES cells have
elevated Oct4 levels in undifferentiating and
differentiating conditions

Oct-25 plays multiple roles during early frog development,

including interference with Activin/BMP-dependent mesendo-

derm formation before gastrulation, and with neural induction

during gastrulation [32,34]. A similar role is considered for its

mammalian paralog Oct4, which is required for the pluripotent

state of ES cells, but antagonizes ectodermal differentiation as soon

as these cells exit pluripotency [30,41,42]. Although previous

genome-wide studies of histone modifications in mammalian cells

have not detected H4K20me3 on the Oct4 gene [36,37], this

apparent similarity made us investigate Oct4 protein expression in

wild-type and Suv4-20h1/h2 DKO murine ES cells. We tested

two independently derived DKO cell lines (B4-2 and B7-1), and

compared them with two wild-type controls, i.e. wt26, an isogenic

ES cell line, and the well-characterized GSES-1 cell line [43]. All

four cell lines formed comparable ES cell colonies in LIF-

containing medium (Figure 8A and Figure S17B), although the

two DKO lines grew slightly slower. Upon aggregation they

formed embryoid bodies, which were clearly smaller than those of

the wild-type lines, both at day 2 and day 6 of differentiation

(Figure 8A and Figure S17). After replating the differentiated cells

for one day, the two DKO lines frequently formed again colonies

resembling undifferentiated ES-cells (day 7 in Figure 8A and

Figure S17B). To obtain a quantitative measure of Oct4 gene

expression, we fixed and stained the four cell lines before (day 0)

and during (day 6) differentiation for Oct4 protein and subjected

equal cell numbers to FACS-analysis. The Oct4 signals were quite

similar between wt26 and GSES-1 cells, as they were between the

two DKO lines. In contrast to the wild-type cell lines, however, the

signals of the DKO lines were reproducibly shifted to the right

(Figure 8B and Figure S17C). Based on normalized median

fluorescence intensity, the two DKO lines contained approxi-

mately three-fold higher Oct4 protein amounts than the wild-type

lines at day 0 (p = 0.00604), and still two-fold more at day 6

(p = 0.01266) (n = 3; Figure 8C and Figure S17B). We conclude

that Oct4 expression is being reduced during differentiation in

Suv4-20h1/h2 DKO cells. However, these cells have higher Oct4

levels in the undifferentiated state, and maintain higher levels

during differentiation in comparison to wild-type cells.

Oct4 protein levels are known to be tightly regulated [1] and to

influence lineage decisions during ES cell differentiation [41,42].

We therefore investigated the biological significance of the

elevated Oct4 protein levels in Suv4-20h DKO ES cell lines.

Unfortunately, the applied EB differentiation protocol promotes

predominantly mesendodermal differentiation, which prevented

the analysis of neural markers. Nevertheless, we performed FACS

analysis on wt and Suv4-20h DKO cell lines stained for the

chemokine receptor 4 (CXCR4) protein, whose expression

indicates mesendoderm induction in embryoid bodies. At day 6

of differentiation, wt cell lines showed a robust increase in CXCR4

positive cells compared to day 0 (Figure 8D and data not shown).

In contrast, both Suv4-20h DKO cell lines contained a

significantly lower percentage of CXCR4 positive cells at day 6

when compared to the wild type cell lines (p = 0.03255; Figure 8).

We also noted that replated wt cells frequently formed autono-

mously beating areas at differentiation day 14 (see Video S1),

indicating functional cardiomyocyte formation, while contracting

areas were never observed in the Suv4-20h DKO cells (Video S2;

n = 4 experiments). Finally, qRT-PCR analysis indicated a

reproducible and statistically significant shift in mesendoderm

gene expression in the DKO ES cells, which show enhanced

induction of FoxA2 (p = 0.00706) and reduced levels of Gata4

(p = 0.00037), compared to the wt ES cell lines (Figure S17D).

Together, these results reveal a compromised and biased

differentiation capacity for Suv4-20h DKO ES cell lines, and

provide an entrypoint for further experimentation in the murine

system.

Discussion

In this study, we have investigated the developmental functions

of the histone- methyltransferases Suv4-20h1 and h2 during frog

embryogenesis, which are responsible for the establishment of the

H4K20 di- and trimethylated states. These modifications have

been implicated in heterochromatin formation, DNA damage

repair and G1/S-transition [21,24] and are also involved in
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Figure 7. Oct-25 knockdown in double-morphant embryos rescues xSuv4-20h phenotypes. (A) Schematic illustration of targeting
microinjections of tadpoles injected into the A1 blastomere at 32-cell stage, and morphological phenotypes of representative embryos (NF35-37)
from cohorts injected with Alexa, xSuv4-20h MOs (double morphants) and double morphants plus Oct-25 MO. (B) Penetrance of the eye phenotype.
Data from three independent experiments; n = total number of embryos scored. (C) Vibratome cross-sections of representative embryos injected as in
panel (A). (D) qRT-PCR profiles for the indicated genes in double morphants and double morphants plus Oct-25 MO animal cap explants at NF 14–15.
Data represent normalized mRNA levels as mean of three to four independent experiments; error bars indicate SEM. (E) Model for Xenopus Suv4-
20h1/h2 enzyme function during neuroectoderm differentiation. A global increase in H4K20me3 reduces widespread Oct-25 expression in the animal
emisphere during gastrulation as a prerequisite for neural induction. In H4K20me3 depleted morphant embryos, Oct-25 expression persists in the
ectodermal stem cell compartment (sensorial cell layer), interfering with the transcriptional activation or activities of key regulators of the neural plate
state and neurogenesis. Additional genes that are deregulated like Oct-25 in xSuv4-20h morphant embryos, may also contribute to impaired
ectoderm differentiation.
doi:10.1371/journal.pgen.1003188.g007
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transcriptional regulation [44,45]. Our experiments identify a

specific and selective role of xSuv4-20h HMTases in the formation

of the ectodermal germlayer through control of mRNA expression

of key regulators of the neural plate state and neuronal

differentiation circuits. Indeed, our results indicate for the first

time that H4K20me3 controls transcription in a rather gene-

specific manner. The mRNA profile of double morphant embryos

shows appr. 6% of the annotated probesets to be misregulated,

when H4K20me3 levels have been reduced to appr. 25%. About

half of the responding mRNAs are transcriptionally upregulated

and, thus, their genes may qualify as being directly controlled by

H4K20me3 deposition. Surprisingly, our molecular analysis

revealed that xSuv4-20h enzymes are required to restrict the

expression of the pluripotency-associated Oct-25 gene during

gastrula and neurula stages. In the absence of proper H4K20me3

deposition, the Oct-25 gene becomes transcriptionally derepressed

and interferes with neural differentiation. The successful rescue of

key morphological and molecular aspects of the neural defect in

double-morphant embryos by the simultanous inhibition of Oct-

25 translation establishes this pathway formally. At least in

Xenopus, the regulatory interaction between xSuv4-20h enzymes

and Oct-25 is needed for embryonic cells to exit the pluripotent

state and differentiate as neuroectoderm.

The genetic interaction between Suv4-20h enzymes and POU-

V genes appears also to be conserved in mouse ES cells, although

the H4K20me3 mark has not yet been detected on the Oct4 gene

locus. To this point, we have shown that Suv4-20h DKO ES cells

contain significantly elevated Oct4 protein levels, compared to wt

ES cells. During ES cell differentiation the mammalian Oct4 gene

is known to become repressed by a battery of epigenetic

mechanisms including DNA methylation, incorporation of somatic

linker histones and repressive histone modifications (H3K9me3/

H3K27me3), which cooperate to achieve chromatin compaction

of the Oct4 gene locus [46]. Our finding that Oct4 protein levels

are increased in the DKO ES cells both before and during

differentiation actually suggests that Suv4-20h enzymes regulate

mammalian Oct4 transcription in a way that is at least partly

independent from the other repressive mechanisms targetting this

locus.

Our results in Xenopus rest predominantly on loss of function

analysis, achieved by morpholino-mediated knockdown of endog-

enous xSuv4-20h protein translation. Specifically, we have shown

that our antisense oligonucleotides block translation of xSuv4-

20h1 and h2 isoforms in vitro, and significantly decrease

H4K20me2 and –me3 levels in vivo, without altering the bulk

Figure 8. Suv4-20h double-null ES cells have elevated Oct4 and
lower CXCR4 protein levels before and during differentiation.
Wild-type and Suv4-20h DKO ES cells were grown undifferentiated in

LIF-containing medium, or differentiated in vitro by embryoid body
formation. Wt26 - isogenic wild-type ES cell line; B4-2, B7-1 –
independent Suv4-20h DKO ES cell lines. (A) Morphological appearance
(scale bar 100 mm). Top row: undifferentiated ES cells (day 0); middle:
embryoid bodies at day 6; bottom: cells from embryoid bodies, replated
for 24h. (B) Before (day 0) and during (day 6) differentiation, cell lines
were stained for Oct4 protein and 26104 cells from each condition were
subjected to FACS analysis. Red graph: fluorescence of non-specific
isotype control; black and green graphs represent the Oct4 protein
levels in wild-type and Suv4-20h DKO ES cell lines, respectively. (C)
Suv4-20h DKO cells have higher Oct4 protein levels compared to wild-
type ES cells and maintain these during differentiation. Median
fluorescence intensity was calculated from data in panel (B), error bars
indicate SEM. (D) Suv4-20h DKO cells show a reduction in the
percentage of CXCR4 + cells at differentiation day 6. Data represent
normalized values of percentage of CXCR4+ cells as means of three
independent experiments, error bars indicate SEM.
doi:10.1371/journal.pgen.1003188.g008
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abundance of other repressive histone marks such as H3K9me3

and H3K27me3. The morpholinos produced specific phenotypes,

which were rescued on the morphological and molecular level by

RNA-born co-expression of heterologous xSuv4-20h enzymes and,

thus, originate from deficient H4K20me2/me3 states.

While xSuv4-20h double morphant embryos showed consistent

phenotypes at high penetrance, we were surprised to see that

H4K20me2 and –me3 states could be quantitatively increased in

frog embryos without any obvious morphological or molecular

consequences (Figures S8 and S9). This result can be explained

considering first of all the higher stability of the knockdown by

non-degradable morpholinos compared to the transient protein

upregulation by RNA injection; secondly, demethylation of

higher-methylated states may occur rather rapidly through

H4K20me2 and me3 demethylases at specific sites, where

H4K20me1 is required, e.g. Wnt/b-Catenin inducible genes

[47]. However, we did not observe evidence for compromised

transcription of Wnt target genes under overexpression (Figures S8

and S9) or morphant condition (Figure S5). Since mono- and

dimethylated H4K20 states are quite abundant modifications in

Xenopus embryos (30–40% each; see ref. [13]), it is most likely the

loss of H4K20 trimethylation, which interferes with normal

development.

XSuv4-20h double-morphant embryos were frequently defec-

tive for eye and melanocyte differentiation, indicating a prominent

impairment of neuroectodermal differentiation. This selectivity is

surprising, given that the two HMTases are expressed throughout

the entire embryo (Figure S2). As a matter of fact, the phenotypes

originate in the neuroectoderm, as shown by targeted injection

into animal or vegetal blastomeres of 8-cell stage embryos

(Figure 4). A large panel of marker genes that were investigated

by RNA in situ hybridisation indicates that mesodermal and

endodermal gene expression patterns are not perturbed by xSuv4-

20h enzyme depletion (Figure 3A). This includes markers, which

are required for specification of embryonic axes and formation

and patterning of the mesendodermal germlayers (Figure S5). We

also note that morphant animal cap explants were refractory to

Noggin-dependent neural induction, but could be induced to

differentiated skeletal muscle by a mesoderm inducing signal

(Figure 5). We therefore assume that a major function of xSuv4-

20h enzymes lies in the transcriptional control of genes that

coordinate and execute neuroectodermal differentiation. Consis-

tent with this hypothesis, many of the genes that we found

downregulated in xSuv4-20h morphants, are key regulators of eye

development (Rx-1, Pax-6), neuronal differentiation (Ngnr 1a,

Delta-like 1) or regulators of neural competence and neural plate

state (Zic-1, -2, -3, Xiro-1, Nrp1, N-CAM; [27]).

While these molecular results explain the overt morphological

phenotypes in a consistent manner, it should be noted that these

HMTases are clearly involved in additional cellular aspects. The

mild reduction in mitotic cells and the increased apoptotic rate of

morphant embryos (Figure S10) is reminiscent of findings in Suv4-

20h1/h2 DKO MEFs, which are less resistant to DNA damage

and compromised at the G1/S checkpoint [24]. The data reported

here indicates a need for deeper analysis of the regulatory impact

of Suv4-20h enzymes on transcription in both mammals and non-

mammalian vertebrates.

According to current models, xSuv4-20h enzymes mediate

transcriptional repression, based on the enrichment of the

H4K20me3 mark on heterochromatic foci. Genes that are

regulated by these enzymes should therefore become derepressed

under loss of function condition. Following this logic, many of the

genes, which are misregulated in morphant frog embryos, would

be classified as indirect targets, since they were downregulated.

One very notable exception, which we have validated as direct

target, is Oct-25 (Figure 6). Oct-25 is induced broadly in the

animal hemisphere at the blastula/gastrula transition, before it

becomes restricted to the notoplate at neurula stages [31]. Oct-25

plays multiple roles during early frog development, including

interference with Activin/BMP-dependent mesendoderm forma-

tion before gastrulation, and with neural induction during

gastrulation [31,32,34]. Our study reveals now a new function

for Oct-25, namely to control the transit from a pluripotent cell to

a neural cell that differentiates, when Oct-25 expression has faded.

As depicted in our model (Figure 7E), this function depends on the

precise dose and duration of Oct-25 transcription, which is

controlled by the level of H4K20me3 deposition on the first exon

of the Oct-25 gene through xSuv4-20h enzymes. As we have

shown here, deregulated transcription of Oct-25 in double-

morphant embryos elicits massive consequences on the differen-

tiation of neuroectodermal organs and cell types. We have traced

back the origin of the malformations to the gastrula stage, when a

gene network, defining the neural state, become perturbed by Oct-

25. Some members of this network are good candidates for direct

regulation through Oct-25 (e.g. Zic and Sox genes). However,

since Oct-25 transcription persists ectopically at least until the

mid-neural fold stage in the ectoderm, subsequent gene cascades

involved in regional differentiation of the neuroectoderm could

also be directly misregulated by Oct-25.

The specific and selective deregulation of Oct-25 transcription

in a precise spatial domain, i.e. the sensorial cell layer of the

ectoderm, implies a very intriguing role for xSuv4-20h enzymes.

This domain contains not only the uncommitted precursors of

neuronal and epidermal cell types, but – with regard to the

involuting marginal zone – includes also mesodermal and

endodermal precursor cells. The observed derepression of Oct-

25 in this domain may thus reflect a conserved mechanism, by

which Suv4-20h enzymes control pluripotency in the embryo. As

discussed above, we have found Oct4 protein to be increased in

two independent Suv4-20h double knockout ES cell lines under

LIF-maintained self-renewal conditions, when compared to wt ES

cells (Figure 8 and Figure S17). The DKO cell lines also maintain

higher Oct4 levels during differentiation than wt ES cells, although

their Oct4 levels get diminished in the course of 6 days. Recent

data from several labs suggest that the pluripotency regulators

Sox2 and Oct4 guide ES cells towards specific germ layer

differentiation programs, when they exit the pluripotent state

[41,42]. Indeed, our findings are in agreement with Thomson and

colleagues, who describe Oct4 to antagonize ectodermal specifi-

cation and to direct mesendodermal cell fate decisions. The

conserved Suv4-20h-dependent restriction of Oct4 expression may

thus contribute to the germ-layer specification of embryonic cells,

when they exit the pluripotent state.

Materials and Methods

Ethics statement
Animal work has been conducted in accordance with Deutsches

Tierschutzgesetz; experimental use of Xenopus embryos has been

licensed by the Government of Oberbayern (Projekt/AK ROB:

55.2.1.54-2532.6-3-11).

Expression constructs and in vitro transcription
Full length X. laevis Suv4-20h1a (NM_001092308) and Suv4-

20h2a (NM_001097050) cDNAs in pCMV-SPORT6 were

provided by ImaGenes. Capped mRNAs were synthesized in vitro

with SP6 RNA-Polymerase after HpaI linearization. Both cDNAs

were subcloned via XhoI/EcoRI sites into pBluescript II KS to
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generate digoxygenin-labelled antisense probes with T3 RNA-

Polymerase. Xenopus Bcl-2, Oct-25-VP16 and –EnR constructs

were transcribed with SP6 RNA-Polymerase from NotI- (Bcl-2

and Oct-25-VP16) and SacII- (Oct-25-EnR) linearized pCS2+
plasmids, respectively. Mouse Suv4-20h1 and h2 enzymes were

transcribed with SP6 from PvuI-linearized pCMVmyc-constructs

[24]. Enzymatically inactive mouse Suv4-20h HMTases were

generated via PCR-mutagenesis (see Text S1, Table S1 for

primers). Synthetic mRNAs were injected in the animal pole of

two-cell stage embryos at 2, 3 or 4ng per embryo. Rescue

experiments with wt and mutated mRNAs were performed with

3ng of a 1:1 mix of wt or mutated Suv4-20h1 and h2 mRNAs,

injected into the animal pole of a single blastomere at two-cell

stage. Xenopus Bcl-2 mRNA was injected unilaterally in the

animal pole of two-cell stage embryos at 800 pg per embryo.

Xenopus Oct-25-VP16, -EnR mRNAs were injected in the animal

pole of two-cell stage embryos at 100 pg per embryo.

Cell culture, microscopy, and FACS analysis
Mouse embryonic fibroblasts (MEF) wild type and Suv4-20h

DKO cells [24] were cultivated in High Glucose DMEM with L-

Glutamine and sodium pyruvate, complemented with 10% FCS,

b-mercaptoethanol, non essential amino acids and penicillin/

streptomycin in a 37uC incubator at 5% CO2. Lipofectamine 2000

(Invitrogen) was used for the transfection of plasmid DNAs.

Immunofluorescence analysis was performed as described in the

Text S1.

Mouse ES cells were cultivated on gelatinized plates in High

Glucose DMEM with L-Glutamine and sodium pyruvate,

complemented with 15% FCS, 0.1 mM ß-mercaptoethanol, non

essential amino acids, penicillin/streptomycin and LIF. Cells were

maintained at 37uC in a humidified atmosphere of 5% CO2. ES in

vitro differentiation and FACS analysis were carried out as

described [43] The incubation steps with the primary Oct4 (1:250,

Abcam) or CxCR4 (1:50, BD Pharmingen) antibody and

subsequently a FITC-conjugated secondary antibody (1:250,

Invitrogen) were performed at RT for 45 min with two washing

steps after each antibody incubation. For the isotype controls

purified, IgG was used instead of the Oct4-antibody. All FACS

analyses were performed with an Epics XL (Beckman-Coulter)

using the analysis software FlowJo.

Morpholino oligonucleotides
Translation-blocking Morpholino oligonucleotides targeting

Xenopus Suv4-20h1 (X.laevis and X.tropicalis: 59-GGATTCGCC-

CAACCACTTCATGCCA-39), Xenopus Suv4-20h2 (X.laevis: 59-

TTGCCGTCAACCGATTTGAACCCAT-39: X.tropicalis: 59-

CCGTCAAGCGATTTGAACCCATAGT-39) and Xenopus

Oct-25 (X.laevis: 59-TTGGGAAGGGCTGTTGGCTGTACAT-

39) mRNAs were supplied by Gene Tools LLC. Each Morpholinos

recognizes the two non-allelic isoforms of each gene in X.laevis (see

Figure S3A, S3B). GeneTools’ standard control Morpholino was

used to monitor non-specific effects. Morpholino activity was tested

by in vitro translation (SP6-TNT Kit, Promega), adding 2 pg of

control Morpholino or 1 pg of Suv4-20h1 and/or h2 Morpholinos

per TNT reaction. Unless stated otherwise, embryos were injected

at a dose of 60–80 ng per embryo (30–40 ng each of Suv4-20h1 and

h2 Morpholinos, or 60–80 ng control Morpholino per embryo). For

8-cell stage experiments, morpholinos were injected in two

neighbouring, animal or vegetal blastomeres on one side of the

embryos, at half the dose (i.e. 40 ng total). For morphogical epistasis

experiments, Xenopus Suv4-20h1 and h2 Morpholinos (5 ng each

per embryo) and Oct-25 Morpholino (1 ng per embryo) were

injected into A1 blastomere at 32-cell stage.

Embryo handling
Xenopus laevis eggs were collected, fertilized in vitro, and handled

following standard procedures; embryos were staged according to

Nieuwkoop and Faber (1967). The embryos were injected with

maximally 10 nl volume. When required, they were sorted into left

side or right side injected cohorts before fixation, based on the

coinjected lineage tracer Alexa Fluor-488 Dextran (Invitrogen).

Alkaline-phosphatase stained and refixed embryos were either

sectioned after embedding in paraffin (10 mm), or in gelatine/

albumin mixture supplemented with 25% glutaraldehyde before

sectioning (30–50 mm) with a Vibratome 1000 (Technical Products

International, INC.) as described [48]. Animal caps were manually

dissected at NF9 and transferred singly into wells of a 96-well

plate, coated with 1% agarose and filled with 1X Steinberg’s

solution, 0.1% BSA with or without Activin A (1:10 diluted

conditioned cell culture supernatant). For neural induction,

embryos were injected into the animal pole with Noggin mRNA

(60 pg per embryo) alone or together with xSuv4-20h1 and h2

morpholinos (40 ng each per embryo) at two- to four-cell stage.

For mesoderm induction, embryos were injected animally 4 times

with 2.5 nl of control morpholino (80 ng per embryo) or a mix of

xSuv4-20h1 and h2 morpholinos (40 ng each) at two or four cell

stage. For Oct-25-VP16 and –EnR overexpression experiments,

embryos were injected animally 4 times with 2.5 nl of each

mRNAs (100 pg per embryo). For epistasis experiments on animal

caps, embryos were injected 4 times with 2.5 nl of xSuv4-20h1 and

h2 Morpholinos (40 ng each per embryo) and Oct-25 Morpholino

(30 ng per embryo) at two or four cell stage.

Analysis of histone modifications in Xenopus embryos
Nuclei extraction from Xenopus embryos and mass spectrom-

etry analysis of histone modifications were performed as described

[13]. Histone marks were quantitated as relative abundances of a

specific modification state as a fraction of the amount of all

modifications found for this peptide (for details see ref 13).

RNA in situ hybridization and immunocytochemistry
Whole-mount RNA in situ hybridizations were performed as

described (Sive et al. 2000). Embryos were photographed under

bright light with a Leica M205FA stereomicroscope. The following

antibodies were used for immunocytochemistry: H3S10P antibody

(1:300, Upstate Biotechnology), active Caspase3 antibody (1:500,

Promega), and myosin heavy chain antibody MF20 (1:100

hybridoma cell culture supernatant), anti-mouse or anti-rabbit

alkaline phosphatase-conjugated secondary antibodies (1:1000,

Chemicon).

Western blots and immunostaining
Embryonic histones were purified via acidic extraction of nuclei

as described [13], size-separated by SDS-PAGE and blotted onto

PVDF membranes (Roth). Membranes were blocked with 3%

BSA (Roth) in PBS and subsequently incubated o/n at 4uC with

polyclonal rabbit antibodies against H4K20me1 (1:6000),

H4K20me2 (1:1000), H4K20me3 (1:500) [21,24] and pan H3

(1:25000, Abcam). Infrared (IR) 680 or 800 conjugated Goat anti

Rabbit IgG (1:5000, Li-Cor) were used as secondary antibodies

(incubation o/n at 4uC). Signals were detected with an ODYSSEY

Infrared Imaging System. To extract exogenous myc-tagged fusion

proteins embryos were treated as described in the Text S1.

Proteins were separated by SDS-PAGE, BSA-blocked PVDF

membranes were incubated o/n at 4uC with anti-myc 9E10

antibody (1:50), followed by anti-mouse HRP- conjugated

antibody (1:3000, Jackson Immunoresearch). Proteins were
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detected with ECL plus western blotting detection reagents (GE

Healthcare). Histological sections were stained with pan H3

(1:2000, Abcam), H4K20me1 (1:5000), H4K20me2 (1:2000),

H4K20me3 (1:5000) antibodies [24].

Quantitative RNA analysis
Total cellular RNA was isolated with TRizol (Qiagen) and

phenol/chloroform extraction. On-column RNA clean-up, in-

cluding a DNAse digestion step, was performed using RNeasy-

Mini-Kit (Qiagen). Samples for qRT-PCR and microarray

profiling were collected as described in the Text S1.

Microarray expression analysis
Microarray data were processed using R/Bioconductor (www.

bioconductor.org). If not indicated otherwise, we used standard

parameters in all functions calls. Expression values were calculated

using ‘gcrma’. Probe sets were kept for differential expression

analysis if there were more ‘present’ calls (calculated using

‘mas5calls’) in one of the treatment groups than non-‘present’

calls, if their expression level variance was higher than 0 across all

arrays and if the probe set had an Entrez identifier annotation

according to the Entrez database with a date stamp of 2011-

Mar16. One gene to many probe set relationships were resolved

by retaining only the probe set with the highest variance across all

arrays. Differential expression statistics were obtained using a

linear model (library ‘limma’). A significant response was defined if

the local false discovery (‘locfdr’ package) rate calculated on the

moderated t statistic was smaller than 0.2. The data discussed in

this publication have been deposited in NCBI’s Gene Expression

Omnibus and are accessible through GEO Series accession

number GSE41256 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE41256).

ChIP experiments
ChIP experiments were performed using Xenopus tropicalis as

described [49], with minor changes (see Text S1 for details).

Identification of Oct-25 binding sites
A published weight matrix (PMID:17567999) was used to scan

2 kb upstream regions of selected X. tropicalis genes (Xenbase

version 7.1) for binding site occurrence. Scanning was performed

using RSA matrix-scan (PMID:18802439) with default parame-

ters.

Supporting Information

Figure S1 Xenopus laevis versus Mus musculus Suv4-20h proteins

sequence alignment. Amino acid sequence alignment for Mus

musculus (Refseq. NM_001167885.1) versus Xenopus laevis Suv4-20h1

(Refseq. NM_001092308) (A) and Mus musculus (Refseq.

NM_146177.2) [24]versus Xenopus laevis Suv4-20h2 (Refseq

NM_001097050) proteins (B). (C) Aminoacid sequence conserva-

tion (% identity) of the SET domain between mouse and Xenopus

proteins.

(PDF)

Figure S2 Xenopus laevis Suv4-20h expression during early

development. XSuv4-20h1 (A) and xSuv4-20h2 (B) mRNA

expression was detected by RNA in situ hybridization at the

indicated developmental stages. (C) Total RNA was extracted

from animal cap (AC), marginal zone (MZ) and vegetal pole (VP)

explants of NF9 embryos; semiquantitative PCR shows relative

levels of xSuv4-20h1 and xSuv4-20h2 transcripts in the three

explants. ODC was used as loading control, -RT as negative

control. (D) qRT-PCR profiles of xSuv4-20h enzymes. The chart

shows the expression of the two enzymes relative to ODC at the

indicated developmental stages.

(PDF)

Figure S3 Morpholino specificity. 25-mer xSuv4-20h1 mor-

pholino (A) and xSuv4-20h2 morpholino (B) oligonucleotides

perfectly target to the start codon of the respective two non-

allelic isoforms. Sequence differences between the two morpho-

linos confer specificity of each oligonucleotide for either xSuv4-

20h1 or xSuv4-20h2 mRNA. (C) In vitro TNT assay performed

as described in Materials and Method section. xSuv4-20h1 and

h2 MOs specifically inhibited translation of their cognate

templates.

(PDF)

Figure S4 Quantification of histone methylation states in xSuv4-

20h morphants by MALDI-TOF mass spectrometry. Bulk histones

from NF30-33 embryos were isolated and analysed as described in

Materials and Methods. (A) H4 peptide 20–23, (B) H3 peptide 9–

17 and (C) H3 peptide 27–40 in uninjected, ctrl-MO and double

morphant embryos. The values represent mean of three

independent experiments; error bars indicate SEM. Star - for

technical reasons H4K20me3 mark was quantitated only in some

samples (star). (D) Western Blot analysis of uninjected, control

morpholino (ctrl-MO) and xSuv4-20h1, h2 morpholino injected

embryos using antibodies against H3K27me3 and H3K9me3.

PanH3 antibody was used as loading control.

(PDF)

Figure S5 Germ layer marker gene expression in xSuv4-20h

double morphants. (A) Immuno-histochemistry on ctrl-MO and

xSuv4-20h double-morphant tadpoles. Panels show representa-

tive cross-sections of neural tubes stained with antibodies against

the histone epitopes indicated on top. Inj – injected side. Squares

on double-morphant sections represent the croped pictures

shown in Figure 1D. (B-F) RNA in situ hybridization analysis of

ctrl-MO injected and double morphant embryos at the indicated

stages using probes against Chordin, Xnr-3 and Gooscoid (B),

Krox20 and Otx2 (C), Pax-6 (D), N-CAM (E), FoxD5, Geminin,

Zic2, Zic3, Sox3, Sox11 and VegT (F). Chordin, Xnr-3 and

Gooscoid – dorsal side views; animal pole is on the top. Krox20 -

dorsal views, anterior on the left. Otx2 - anterior views, dorsal on

the top. Pax-6 – head region; rescued embryos included. N-CAM

- dorsal views of stained embryos with the anterior on the left;

rescued embryos included. FoxD5, Geminin, Zic2, Zic3 - dorsal

views; injected halves are lineage-traced by coinjection of LacZ

mRNA and subsequent b–Gal staining (light blue). Sox2, Sox3 -

dorsal views, anterior to the left. VegT - internal stain in bisected

embryos.

(PDF)

Figure S6 Functional SET domains are required for proper

Suv4-20h activity. (A) Schematic of Mus musculus Suv4-20h1 and

h2 SET domain mutations. (B) Immunofluorescence of wild-type

and Suv4-20h DKO MEFs transfected with the indicated

constructs. (C) Western Blot analysis of NF11.5 uninjected

embryos (lane 1), xSuv4-20h1, h2 double morphants (lane 2),

active and inactive mouse Suv4-20h1, h2 mRNAs injected

embryos (lane 3, 5 respectively) and double morphant embryos

cojnected with active or inactive mSuv4-20h1, h2 mRNAs (lane 2,

4 respectively), using antibodies against H4K20 mono-, di- and

trimethylation. PanH3 antibody was used as loading control. (D)

Anti-myc western blot with the same samples used in B. Asterisks

indicate unspecific bands.

(PDF)
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Figure S7 A functional SET domain is required for morpho-

logical and molecular rescue of double-morphants phenotypes. (A–

C) Morphological phenotypes of NF30-33 double morphants (A),

embryos injected with xSuv4-20h1, h2 morpholinos and active

(active rescue, B), or inactive (inactive rescue, C) mouse Suv4-

20h1, h2 mRNAs. Embryos were coinjected in one half at two cell

stage with Alexa Fluor 488 Dextran as lineage tracer (green

channel) to identify the injected side and sort embryos. (D)

Penetrance of the eye phenotype in the indicated samples.

Displayed are the results from two independent experiments. (E)

RNA In situ hybridization analysis of NF15 uninjected, double

morphants, active and inactive rescue embryos using probes

against Oct-25, N-tubulin and MyoD. The pictures show dorsal

view of stained embryos, anterior is on the left.

(PDF)

Figure S8 Xenopus laevis Suv4-20h1 or h2 mRNA overexpres-

sion. (A) Overexpression of frog Suv4-20h1 and h2 enzymes causes

an upregulation of H4K20me2 and H4K20me3 marks. Bulk

histones from uninjected embryos or embryos bilaterally injected

with increasing amounts of Suv4-20h1 or h2 mRNAs were isolated

at NF11.5 and analysed by Western blot. Pan H3 antibody was

used as loading control. (B, C) Morphological phenotypes of

NF30-33 embryos injected with xSuv4-20h1 (B) or h2 (C) mRNA.

(D) RNA In situ hybridization of NF30-33 uninjected embryos (top

row) and embryos injected with Suv4-20h1 (middle row) or h2

(bottom row) mRNA using probes against Rx-1 and Pax-6.

Pictures show the head of stained embryos. (E) RNA In situ

hybridization analysis of uninjected embryos (top row) and

embryos injected with xSuv4-20h1 (middle row) or h2 (bottom

row) mRNA using probes against Ngnr-1a, Delta-like 1, N-

tubulin, Xbra, MyoD, Sox17 a and Endodermin. Pictures show

dorsal views of stained embryos, anterior is on the left; Xbra

pictures show vegetal views of NF11 embryos; MyoD pictures

show dorsal views of NF15 embryos, with the head on the left. For

Sox-17 a and Endodermin sagittal sections of NF15 embryos were

created; pictures show internal view of the injected halves, with

anterior on the left.

(PDF)

Figure S9 Mus musculus Suv4-20h1 or h2 mRNA overexpression.

(A) Western Blot analysis of uninjected embryos or embryos

injected with Mus musculus Suv4-20h1 or h2 mRNAs at different

concentrations. Bulk histones from NF11.5 embryos were isolated

and analyzed as described in Materials and Methods section. Pan

H3 antibody was used as loading control. (B, C) Morphological

phenotypes of NF30-33 embryos injected with mouse Suv4-20h1

(B) or h2 (C) mRNA. (D) RNA In situ hybridization analysis of

uninjected embryos (top row) and embryos injected with mSuv4-

20h1 (middle row) or h2 (bottom row) mRNA using probes against

Ngnr 1a, Delta-like 1 and Rx-1. Rx-1 pictures show the head of

NF30-33 stained embryos. Ngnr 1a (NF12.5) and Delta-like 1

(NF13) pictures show dorsal view of stained embryos, anterior is on

the left.

(PDF)

Figure S10 Cell proliferation and apoptosis in xSuv4-20h

double morphants. (A) Double morphants show increased number

of apoptotic cells during neurulation. Top row – immunocyto-

chemistry for active Caspase3 in unilaterally injected embryos

(NF15). Middle and bottom rows - RNA in situ hybridisation for

Delta-like 1 (NF13) and N-tubulin mRNAs (NF15). Pictures show

dorsal views, with anterior to the left. (B) Proliferation assay –

immunocytochemistry for the mitotic histone modification

H3S10P in Crtl-MO versus double morphant embryos. The chart

shows a two-fold difference in the number of H3S10P positive cells

on the injected side of double morphants. Data represent mean

values of four embryos per condition from two independent

experiments; error bars indicate SEM.

(PDF)

Figure S11 qRT-PCR analysis. (A) Schematic representation of

mRNA purification from NF14-15 embryos for qRT-PCR

experiments. (B) qRT-PCR profiles for the indicated genes in

Ctrl-MO injected and xSuv4-20h double morphant embryos.

Data represent normalized ratios of mRNA levels as means of four

independent experiments, error bars indicate SEM.

(PDF)

Figure S12 Microarray analysis. (A) Schematic representing

mRNA purification from NF 14–15 embryos for microarray

experiments. (B) Pie-chart showing number of up- (green) and

down- (red) regulated genes. (C) Histogram summarizing the fold

expression change of the analysed 9752 active genes. Indicated in red

are responder genes (153up, 169 down). (D) Table presenting the 10

most upregulated genes. For each gene, the gene name, symbol, the

log fold change (logFC) and the fold change are indicated.

(PDF)

Figure S13 Oct-25 and N-tubulin gene expression in X.

tropicalis Suv4-20h double morphant embryos. RNA in situ

hybridization analysis of ctrl-MO injected and double morphant

embryos at neurula stage (NF14-15) using probes against Oct-25

and N-tubulin. The pictures show dorsal views of the open neural

plate with anterior to the left. Dashed line: embryonic midline.

(PDF)

Figure S14 Genes analysed by ChIP. (A) Schematic represen-

tation of the genes and the amplicons analysed in ChIP

experiments. Black boxes: exons; white boxes: untranslated

regions; line connecting boxes: introns. For each gene the position

of the amplicon(s) used in the experiments is indicated below the

gene structure. (B) qRT-PCR profiles for GAPDH and thra genes

in Ctrl-MO injected and xSuv4-20h double-morphant embryos.

Data represent normalized ratios of mRNA levels as means of five

independent experiments, error bars indicate SEM.

(PDF)

Figure S15 Regulation of early neural marker genes by Oct-25-

VP16 and Oct-25-EnR fusion proteins. (A) qRT-PCR on animal

cap (AC) explants cut from uninjected embryos and embryos

overexpressing Oct-25-VP16 or Oct-25-EnR mRNAs. The chart

shows the relative expression of the indicated genes compared to

H4 gene levels. Data represent normalized ratios of mRNA levels

as means of three or four independent experiments, error bars

indicate SEM. (B) In situ hybridization on uninjected AC or

explants overexpressing Oct-25-VP16/EnR for Zic1 (upper row,

206 magnification) and Zic3 genes (lower row, 506 magnifica-

tion).

(PDF)

Figure S16 Oct-25 binding sites on Zic1, Zic3 and Sox2 genes.

Oct-25 hypothetical binding sites on Zic1, Zic3 and Sox2 have

been identified as described in the Material and Methods section.

The schematic representation of the genes shows: black boxes:

exons; white boxes: untranslated regions; line connecting boxes:

introns. For each gene the position of the binding sites, the

identified sequence and the similarity to the published weight

matrix (weight) are indicated in the underneath table. For Zic3 the

six highest identified sequences are shown.

(PDF)

Figure S17 ES cell analysis. (A) Morphological appearance of

differentiated day 2 embryoid bodies: B4-2 and B7-1 cell lines
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formed smaller bodies than those of the wild-type line wt26. (B)

GSES-1 morphology and in vitro differentiation at the indicated

days. Scale bar: 100 mm. (C) FACS profiles of GSES-1 cell line

before (day 0) and during (day 6) differentiation. Red graphs:

fluorescence of non-specific isotype control; black graphs: Oct4

protein levels in GSES-1 cells; green dashed graphs: Oct4 protein

levels in mutant B7-1 cell line. (D) qRT-PCR profiles for the

indicated genes in wild-type (wt) and Suv4-20h DKO cell lines at

differentiation day 6. FoxA2 and Gata4 expression levels are

misregulated in Suv4-20h DKO cells upon differentiation.

(PDF)

Table S1 List of oligonucleotide sequences used in this study.

(PDF)

Text S1 Supporting information on experimental procedures.

This file contains additional information on statistical analysis,

extraction of Myc-tagged fusion protein from embryos, qRT-PCR

samples preparation, Vibratome sections of Oct-25 stained

embryos, Immunostaining, Immunofluorescence microscopy of

MEF cells and ChIP (chromatin immunoprecipitation) analysis.

(DOC)

Video S1 Videorecording of wild-type ES cells at day 14 of

differentiation. The video shows several areals of autonomously

beating cardiomyocytes.

(M4V)

Video S2 Videorecording of Suv4-20h DN ES cells at day 14 of

differentiation. In contrast to differentiated wild-type ES cells,

spontanous contractions of cardiomyocytes are not observed.

(M4V)
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