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Abstract

Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-
individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-
state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To
address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals.
Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap
lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across
genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii)
genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii)
genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay
across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in
10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay
rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses.
Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across
individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (‘‘rdQTLs’’). All the observed rdQTLs
are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of
known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in
mRNA decay rates.
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Introduction

Substantial variation in gene expression levels exists in natural

populations [1–5]. Over the past decade, we have learned that

much of this inter-individual regulatory variation is associated with

specific genetic polymorphisms, which can be identified by

mapping expression quantitative trait loci (eQTLs) [6–10].

Expression QTL mapping studies in different organisms have

led to important insights into the genetic basis for gene regulation

and, in a number of cases, into the mechanistic basis for complex

phenotypes. In particular, recent eQTL mapping studies in

humans have identified thousands of genetic variants affecting

gene expression levels [11–14], some of which are loci that are also

associated with complex diseases [15–18]. Nearly all human

eQTLs, regardless of the tissue in which they were found, have

been identified near the regulated genes and hence are assumed to

act in cis. A partial explanation for the relatively small number of

trans eQTLs that have been identified is the low power to map

such loci compared to cis acting eQTLs (due to the stringent

significance criteria required to avoid false positives when mapping

across the entire genome, and generally small effect sizes of trans-

QTLs [8,19–25]).

Despite the recent success in mapping gene expression

phenotypes, we still know little about the specific regulatory

mechanisms that underlie eQTLs [26–29]. Partly, this gap is being

addressed by a growing number of large-scale mapping studies of

inter-individual variation in genetic and epigenetic regulatory

mechanisms (which complement studies of gene expression

variation [13,30–34]). Yet, even by incorporating such studies,

the processes underlying regulatory variation and their relative

importance remain difficult to infer, because all eQTL studies to

date – regardless of the model system or species - have relied on

measures of steady-state gene expression levels.
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Steady-state gene expression levels are generally the result of

two opposing biological processes: mRNA transcription, which

includes transcript initiation, elongation, and processing, and

mRNA decay, which includes spontaneous and targeted degrada-

tion of transcripts, as well as dilution [35,36]. Using only

measurements of steady-state gene expression levels, it is

impossible to determine the relative contribution of variation in

transcription rates and mRNA decay rates to overall regulatory

variation. In other words, without additional data, the particular

mechanisms underlying steady-state expression level QTLs cannot

be inferred with confidence.

To better understand the basis for variation in steady-state gene

expression levels requires data on specific aspects of gene

regulatory mechanisms. Most recent studies that have done so

(though only rarely in the context of QTL mapping), have focused

on understanding transcriptional processes contributing to gene

expression variation, such as splicing, DNA methylation, histone

modification, chromatin accessibility, and transcription factor

binding. Results from this emerging body of work indicate that

although transcriptional processes contribute substantially to

steady-state measurements of gene expression, neither the

independent or combinatorial effects of these mechanisms can

completely account for variation in steady-state gene expression

levels [28,29,37,38]. It is likely that a better account of regulatory

variation can be obtained once transcription initiation and RNA

decay mechanisms are considered together.

While the details of transcriptional regulation are becoming

increasingly understood, the mechanisms influencing variation in

mRNA decay rates have thus far received less attention,

particularly in mammalian systems [11,37–39]. This bias may

reflect the prevalent assumption that transcription initiation rates

are the major determinants of overall gene expression levels [40–

43]. Yet, a few recent studies of mRNA decay mechanisms have

challenged this historical view [3,33,44–47]. In particular, it has

been argued that the regulation of mRNA decay processes might

be a key determinant of the expression patterns of a large subset of

genes. Recent studies in eukaryotic cells have revealed a wide

variability of mRNA decay rates across transcripts – with

individual mRNA half-lives ranging from a few minutes to several

hours – which can often be tied to differences in the functional role

of the regulated genes [44,48–50]. For example, studies in yeast,

worms, plants, and human primary cells have all found that genes

involved in the regulation of transcription tend to produce mRNA

that decays faster than mRNA from genes involved in cell cycle or

metabolic pathways [1,3,41,48,51,52]. Furthermore, the steady-

state mRNA levels of the lowest or highest expressed genes are

strongly correlated with mRNA decay rates [41,44,49,50],

suggesting that in these cases, regulation of mRNA decay is likely

an important determinant of gene expression levels.

A number of mechanisms are known to contribute to variation

in mRNA decay rates among genes. These include the roles of

certain RNA-binding factors such as small RNAs, RNA-binding

proteins, and larger RNA-binding complexes, all of which have

been shown to bind to both general (such as the AU-rich 39

untranslated region elements; AREs [15,26,53]) and specific RNA

motifs [11,37,54]. For example, many RNA-binding small RNAs,

including miRNAs, have been shown to expedite decay of specific

transcripts by creating double stranded RNA that is targeted for

degradation by endonuclease enzymes [11,38,47]. Similarly,

certain interactions between RNA binding proteins and mRNA

have been shown to contribute to either higher (‘‘destabilizing

proteins’’) or lower decay rates (‘‘stabilizing proteins’’), though the

mechanisms by which they act are not yet fully understood

[11,54,55]. More generally, we now appreciate that, much like

transcription rates, mRNA decay rates are regulated by a

combination of trans elements (such as proteins, complexes, or

small RNAs) binding to a collection of cis binding motifs (typically

included within the transcript itself) [6,56,57]. However, despite

increasing understanding about mechanistic details of mRNA

decay processes, we still know little about inter-individual variation

in mRNA decay rates, in any species.

Results

We characterized mRNA decay in 70 Yoruba lymphoblastoid

cell lines (LCLs) from the HapMap project [36,58]. These cell lines

have been extensively genotyped and/or sequenced at high-depth

[40,59,60], making them ideal for genetic mapping studies. To

determine decay rates, we measured changes in mRNA abun-

dance levels in each cell line at different times after treatment with

the RNA elongation complex inhibitor Actinomycin D (ActD),

which arrests transcriptional processes. We measured mRNA

abundance before treatment (time point 0) and at four time points

after treatment (at 0.5 hours, 1 hour, 2 hours, and 4 hours). To

account for the decrease in total RNA caused by the ActD

treatment over the timecourse experiment, we increased the

number of cells from which we extracted RNA as the experiment

progressed (Figure S1). We thus were able to hybridize the same

amount of mRNA from each time point to an Illumina HT-12

expression microarray. We processed a total of 350 samples over

the five time points and seventy cell lines (see Table S1). Our

experimental design allowed us to normalize transcript abundance

across all 350 arrays using standard approaches (see Methods for

more details).

To estimate mRNA decay rates, we fit an exponential decay

model to the normalized expression data to obtain estimated gene-

specific decay rates for each cell line. Due to our choice of

hybridization study design and normalization procedure, all

estimated decay rates are relative to the mean cellular mRNA

decay rate in the sample, which itself can be estimated by taking

into account the number of cells used to extract RNA across the

Author Summary

Recent studies of functional genetic variation in humans
have identified numerous loci that are associated with
variation in gene expression levels, called expression
quantitative trait loci (eQTLs). The mechanisms by which
these loci affect gene expression, however, are still largely
unknown. Specifically, since most studies rely on measures
of steady-state gene expression levels, they are unable to
distinguish between the relative influences of either
transcriptional- or decay-related processes. To address this
gap, we examined the specific impact of mRNA decay
processes on steady-state gene expression levels for over
16,000 genes in human lymphoblastoid cell lines. By
characterizing decay rates in 70 individuals, we show that
steady-state expression levels are significantly influenced
by variation in decay rates for 10% of genes. Yet, for
roughly half of these genes, we find that individuals with
higher expression levels also have faster decay rates. This
pattern points to a non-simple mechanistic interplay
between transcriptional and decay processes, especially
for genes involved in rapid cellular responses. Finally, we
identify 195 genetic variants that are significantly associ-
ated with both gene expression variation and variation in
mRNA decay rates. Using these data, we estimate that that
a substantial fraction of eQTLs are associated with inter-
individual variation in mRNA decay rates.

Inter-Individual Variation in RNA Decay
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time points (see Methods for more details). We excluded from all

further analyses genes that were not detected as expressed even

before the arrest of transcription (time point zero) in at least 80%

of individuals (see Methods). Overall, we obtained individual-

specific estimates of mRNA decay rates for 16,823 Ensembl genes

(see Table S1).

Characterization of genome-wide decay rates
As a first step of our analysis, we characterized the genome-wide

distribution of mRNA decay rates. To do so, for each gene we

used the median decay rate across individuals as a measure of the

gene-specific mRNA decay rate. We observed a wide range of

mRNA decay rates across genes (Figure 1A), consistent with

findings of previous studies. We also observed a substantial

amount of variation in decay rates across individuals within each

gene (Figure 1B), consistent with expectations from previous

studies in human cells [1,35,40]. We classified genes as either

consistently slow or fast decaying when their decay rates in at least

80% of individuals in our study were classified as slow or fast

relative to the individual-mean decay rate (see Methods). We thus

identified 146 genes that consistently decayed slower than average

across individuals and 716 genes that consistently decayed faster

than average.

In agreement with previous observations, we found that genes

with related biological functions often decayed at similar rates

[1,52,52]. Genes with slower decay rates tend to be involved in

cellular and organelle-related housekeeping processes, such as

cytoplasmic and mitochondrial processes (Table S2). Genes with

faster decay rates are enriched for gene regulatory functions that

might require rapid mRNA decay to ensure rapid turnover of

expression levels in response to changing cellular conditions (Table

S3). This includes enrichments for functional annotations such as

metabolic processes, regulation of gene expression, and regulation

of transcription.

We next investigated possible mechanisms that could account

for variation in mRNA decay rates across genes. Previous studies

have suggested that increased transcript length [3,41], and

specifically 39UTR length [1,3], might significantly influence

mRNA decay rates. Indeed, we find that both are slightly but

significantly positively correlated with decay rates across genes

(Spearman r= 0.17, P,10216 for gene length and Spearman

r= 0.09, P,10216 for 39UTR length). This association is also

evident when we limit this analysis only to genes classified as

decaying slower or faster than the mean decay rate (Figure 2A;

Figure S4; Spearman r= 0.15; P,10216 for gene length and

Spearman r= 0.09; P,1028 for 39UTR length). The increased 39

UTR length in faster decaying genes is thought to indicate an

increase in potential regulatory space that could harbor RNA-

decay regulatory elements (reviewed in [6]).

Studies of mRNA decay of individual genes have previously

identified two main classes of cis regulatory elements that might

play roles in decay processes: microRNA (miRNA) binding sites

[11] and AU-rich elements [15,17]. To determine the possible

influence of miRNA binding on decay rates in the LCLs, we

curated several miRNA databases [19,20,22–25] to create a list of

confident miRNA target binding sites (see Methods S1). To

account for the confounding effect of transcript length (more

binding sites in longer 39UTRs), we standardized the number of

miRNA target binding sites by the 39UTR length (see Methods).

Using this approach, we found a slightly positive correlation

between the density of miRNA target sites and decay rates. Again,

when we focused exclusively on the genes classified as decaying

slower or faster than the mean decay rate, we observed a stronger

association (Figure 2B, Spearman r= 0.16; P,0.003). We then

considered the presence of AU-rich elements (AREs) in slower

versus faster decaying genes. To do so, we used the AREScore

algorithm [26], which searches within 39UTRs for features

associated with typical type-II AREs, to assign an AREScore to

each gene. A larger AREScore essentially implies increased

potential for binding by an ARE-recognizing RNA binding

protein to regulate the decay processes of the gene. We found

that there is a significantly increased median AREScore in faster

decaying genes compared to slower decaying genes (Figure 2C,

Spearman r= 0.14; P,10216).

As our findings support the general notion that cis regulatory

elements, such as miRNA bindings sites or AU-rich elements, are

important determinants of mRNA decay rates, we next searched

for additional sequence motifs that might represent novel binding

sites for specific decay factors in LCLs. To do so, we used the

FIRE algorithm [30] to search for motifs in the 146 slow decaying

genes and 716 fast decaying genes. We identified three

Figure 1. Profiles of decay rates. A. Distribution of genome-wide decay profiles across the timecourse experiment (x-axis), where each decay
curve shows the decrease in gene expression level (y-axis) relative to the untreated time point. Each line represents the gene-specific median decay
profile, while the darkness of the lines indicates the number of genes sharing that decay profile (darker indicates more genes). B. Representative
examples of individual-specific decay profiles (dotted lines) for two genes: NFKBIE (in red), which decays faster than average and DCTN2 (in blue),
which decays slower than average. Solid lines indicate the gene-specific median decay profile across all 70 individuals.
doi:10.1371/journal.pgen.1003000.g001

Inter-Individual Variation in RNA Decay
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significantly enriched motifs – one enriched in the fast decaying

genes, and two enriched in the slow decaying genes (Figure 2D).

We performed the motif search across the entire promoter and

transcript region for each gene, yet all three enriched motifs are

located in 39UTRs. The motif enriched in fast decaying genes

closely resembles a typical AU-rich element sequence. The two

motifs enriched in slow decaying genes could not be linked to any

currently known miRNA seed sequence or RNA-binding protein

motif and hence might be novel regulatory elements.

Relationship between decay rates and steady-state
expression levels

We are specifically interested in the effect that mRNA decay has

on steady-state expression levels (in these analyses, we defined

‘‘steady-state expression’’ as the mean expression across all time

points so that our estimates of steady-state expression levels would

be statistically independent of the estimated decay rates when the

null hypothesis of no association between steady-state levels and

decay rates is true; see Methods). Considering this relationship

across all genes (Figure 3A), we found little or no correlation

between decay rates and gene expression levels. However, we

observed a significant difference in expression levels between genes

classified as decaying significantly slower or faster than the mean

decay rate (as defined above; P,661026, Figure 3B; Figure S5).

This difference in expression levels is in the expected direction –

that is, genes with slower decay rates have higher steady-state

expression levels than genes with faster decay rates.

We also observed a small number of cases in which genes with

faster decay rates are highly expressed (we refer to this as a

‘discordant’ relationship between gene expression levels and decay

rates). One example is the BTG1 gene, which is involved in

regulating the glucocorticoid receptor autoregulatory pathway

[35], and has both a significantly increased decay rate and a high

expression level (Figure S5). Interestingly, seven of the top nine

genes with discordant patterns (both the expression levels and

decay rates of these nine genes are within the top 5% of the

genome-wide distributions of gene expression and decay rates

respectively; Figure 3C; see Methods) have been experimentally

shown to be involved in auto-regulatory or regulatory feedback

pathways (Table 1) [61–69]. More broadly, the top 49 genes with

discordant patterns (constituting the top 10% of both the genome-

wide distributions of gene expression levels and decay rates;

Figure 3C) are enriched for genes with functions related to

signaling pathways, stress response, and immune function (when

genes expressed in LCLs are used as the background for the

analysis; Table S4).

We next examined the extent to which variation in decay rates

might contribute to overall variation in steady-state expression

levels across individuals. For each gene, we calculated the

correlation between gene expression levels and mRNA decay

Figure 2. Genomic features influencing variation in decay rates across genes. A. Distributions of gene length (left) and 39UTR length (right)
for genes decaying slower (blue) or faster (red) than average. B. Distributions of the number of miRNA binding sites (normalized by 39UTR length; y-
axis) for genes decaying slower (blue) or faster (red) than average. C. Distributions of AREScores (y-axis) for genes decaying slower (blue) or faster (red)
than average. D. Motifs that are significantly over- (yellow) or under-represented (blue) in fast or slow decaying genes. The MI refers to the mutual
information score from the FIRE algorithm.
doi:10.1371/journal.pgen.1003000.g002
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rates across individuals and focused on genes with a significant

(FDR = 10%) correlation between the two measurements

(Figure 4A). We found a significant negative correlation between

expression levels and decay rates for 695 genes. It is reasonable to

assume that inter-individual variation in steady-state expression

levels of these 695 genes is driven by corresponding variation in

decay rates. Based on gene ontology functional annotations, these

695 genes are enriched for genes involved in endopeptidase

inhibitor and regulator activity (Table S5).

On the other hand, we also found a discordant relationship

between gene expression levels and decay rates across individuals

for 989 genes (10% FDR; Figure 4A). This finding may seem

counter-intuitive as it contradicts our expectation that higher

decay rates should result in lower steady-state gene expression

levels. However, genes with a discordant relationship between

expression and decay are enriched for processes involved in the

regulation of cellular, metabolic, and transcriptional activities

(Table S6). A similar observation of discordant relationships

between decay rates and expression levels that are enriched for

genes in the same functional categories (metabolic, and transcrip-

tional activities) has been previously reported in yeast [37,38]. Put

together, these results suggest a role for mRNA decay in complex

regulatory circuits that have the property of fast response time, for

instance auto-regulation by negative feedback loops.

Studies across yeast species [37,38] have further suggested that

positive correlations between gene expression levels and decay

rates are often coupled with correspondingly increased transcrip-

tion rates – presumably to increase response speed [40]. To test

this notion in our system, we used a combination of previously

published [33] and newly generated PolII occupancy ChIP-seq

data from seven of the same Yoruba LCLs as a proxy

measurement of gene-specific transcription rate (Table S7). Our

hypothesis, based on the observations from the yeast studies, was

that transcription and decay rates are often positively correlated in

genes with discordant relationship between expression levels and

RNA decay rates across individuals. Indeed, we found a significant

Figure 3. Relationship between gene expression levels and mRNA decay rates across genes. A. Genome-wide scatterplot of median
decay rates (x-axis) versus median steady-state expression levels (y-axis) for all genes (black dots, where higher densities are in dark colors), slow
decaying genes (blue dots), and fast decaying genes (red dots). B. Genes that are within the top 5% (yellow) or top 10% (blue) of both the decay rate
and steady-state gene expression. C. Boxplots of the distribution of steady-state expression levels (y-axis) in genes decaying slower (blue) or faster
(red) than average.
doi:10.1371/journal.pgen.1003000.g003

Table 1. Genes with discordant decay rates and steady-state gene expression levels.

Gene Name(s) Ensembl ID Function
Evidence for Negative Feedback Function
(ref[s].)

Dec1, Stra13, BHLHE40 ENSG00000134107 control of cell differentiation and signaling pathways Autoregulation of gene expression ([53,54])

BTG1 ENSG00000133639 Regulates cell growth and differentiation Involved in GR autoregulatory pathway ([44])

CCR7 ENSG00000126353 Mediator of EBV effects on B lymphocytes; activates
B and T lymphocytes

None

DDIT4 ENSG00000168209 Inhibits cell growth Negative feedback control of mTOR signaling
pathway ([55])

HCP5 ENSG00000206337 Regulates cellular response to stress None

PPP1R15A ENSG00000087074 Regulates cellular response to stress Negative feedback loop promoting basal cellular
activity ([56])

XBP1 ENSG00000100219 ER stress response element Autoregulates gene expression ([57,58])

ZFAND5, ZNF216 ENSG00000107372 Involved in regulation of TNF-induced NF-kB activation Overexpression leads to apoptosis ([59])

ZFP26 ENSG00000128016 Regulates response to growth factors Autoregulates mRNA stability ([60,61])

A list of the 9 genes that are in the top 5% of both the decay rate and steady-state gene expression distributions, thus showing evidence of both fast decay and high
expression. The table lists the gene name (column 1), the Ensembl ID (column 2), the function of the gene (column 3), and evidence from the literature pointing towards
negative feedback or autoregulatory functions for the gene (column 4).
doi:10.1371/journal.pgen.1003000.t001

Inter-Individual Variation in RNA Decay
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increase in positive correlations between transcription and mRNA

decay rates for genes with discordant compared to genes with a

concordant relationship between expression and decay (P,1023;

Figure 4B; Figure S6) and compared to the distribution of

correlations between transcription and mRNA decay rates of all

genes in the data set (P,10216).

Mapping mRNA decay QTLs
Finally, we investigated the genetic basis for inter-individual

variation in mRNA decay rates. To do so, we treated the mRNA

decay rates as a quantitative trait and mapped genetic loci

influencing variation in this trait. We tested for association

between individual-specific estimates of mRNA decay rates and

genotypes in a cis candidate region of 25 kb centered around the

target transcript boundaries. Using this procedure, we found 31

genes with significant RNA decay quantitative trait loci (rdQTLs)

at a 15% FDR (Figure 5A). Expanding our mapping procedure to

include genome-wide polymorphisms, we found no evidence for

significant trans-acting rdQTLs, likely because our experiment is

underpowered to detect trans effects (see Methods S1).

Given the observed significant correlation between steady-state

gene expression levels and decay rates across individuals, we

hypothesized that we might have better power to detect more

rdQTLs at a given FDR if we focused on SNPs already identified

as steady-state expression QTLs. To do so, we first mapped

eQTLs using the mean expression data across time points. We

identified 1,257 eQTLs (at 15% FDR; see Methods), most of

which were previously observed in these cell lines. Within this set,

195 (16%) of the eQTLs were also significantly (at 15% FDR)

associated with variation in mRNA decay rates (Figure 5B, Table

S8). In other words, 195 of the steady-state gene expression QTLs

are also classified as rdQTLs using our approach; a significant

enrichment of decay effects compared to that expected by chance

(P,0.001). Using the method of Storey et al. to conservatively

estimate the proportion of tests where the null hypothesis is false

(while accounting for incomplete power [48]), we estimate that

35% of the most significant eQTL SNPs are also associated with

decay rates (Figure S7).

We asked whether SNPs that are identified as rdQTLs are

enriched in particular genomic annotations, especially when

compared to eQTL SNPs. Since our mapping approach does

not allow us to identify with confidence the causal site, we

proceeded by considering and comparing the strength of

association with decay rates across SNPs in different genomic

annotations. Using this approach we found that, in general, the

same functional annotations that were previously found to be

enriched for eQTLs are also enriched for rdQTLs (e.g., exons,

UTRs, and promoter regions; Figure S8A). Yet, while eQTL are

generally enriched in 39 UTRs (Figure S8B), rdQTLs are

specifically enriched in predicted miRNA binding sites within 39

UTRs (Figure 6). This observation is consistent with the

hypothesized importance of miRNA-mediated regulation of

mRNA decay.

Explaining variation in gene expression levels
We next examined the relationship between eQTLs and

rdQTLs in more detail. We found that in the majority of the

joint QTLs (55%), the allele that is associated with lower steady-

state expression level is also associated with faster mRNA decay

rate, as expected if differences in decay rates drive differences in

expression levels across individuals (Figure 5C). However, in the

remaining 45% of cases, the allele that is associated with lower

gene expression levels is associated with slower mRNA decay rates

(Figure 5D). This implies a more complicated regulatory

Figure 4. Relationship between gene expression levels and
mRNA decay rates across individuals. A. QQ-plot of the t-statistics
for association between steady-state expression levels and decay rates
across individuals (y-axis) compared to the null distribution of t-
statistics assessed by permutations (x-axis). The sign of the t-statistic
indicates the direction of correlation. Genes with concordant relation-
ships (orange) have negative t-statistics and genes with discordant
relationships (purple) have positive t-statistics. B. Density distributions
of the Pearson correlations (x-axis) between mRNA decay rates and PolII
reads for genes with either concordant (orange) or discordant (purple)
relationships between decay rates and steady-state expression levels
across individuals.
doi:10.1371/journal.pgen.1003000.g004
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mechanism, which counters the effect of decay at these loci to drive

opposite patterns of gene expression across individuals (see

Discussion). We thus focused only on the 55% of eQTLs-rdQTL

sites with concordant genotypic effects, for which a more intuitive

and simple mechanistic explanation is likely. We again used the

method of Storey et al. [48] and estimated that as many as 19%

(95% CI by bootstrapping: 15%–21%) of eQTLs might be

regulated, at least in part, by differences in decay rates. We

acknowledge that (as with any comparison and combination of

results from genome-wide mapping studies) any factor that affects

the power to find associations may result in a biased estimate of the

proportion of eQTLs that are also classified as rdQTLs. It is unclear

how one could identify and test for all possible relevant factors. In

our analysis, we have taken into account the possible effect of overall

gene expression levels on eQTL/rdQTL mapping (see Methods),

and confirmed that the distributions of the number of SNPs in the

proximal window are similar whether one considers sites classified

as either eQTLs only or as eQTLs/rdQTLs (Figure S9). On the

other hand, we did find a difference in the distribution of minor

allele frequency, and the distributions of the number of individuals

that are homozygote to the minor allele, between eQTLs and

eQTLs/rdQTLs (Figure S9), but this would be conservative with

respect to the estimated proportion of eQTLs that are also rdQTLs

(namely, the true overlap might be higher than 19%).

Using a similar approach, we have previously found that up to

55% of eQTLs might be explained by variation in DNase

sensitivity (these eQTLs were also classified as dsQTLs [32]). We

expected that the combination of RNA decay data and DNase

sensitivity profiles might explain a larger proportion of inter-

individual variation in gene expression levels. To test this using

LCLs from the 66 individuals used in both the DNase sensitivity

[32] and the current study, we first examined the overlap between

SNPs identified as either eQTLs, rdQTLs or dsQTLs. In order to

standardize the analyses, we re-mapped eQTLs, rdQTLs, and

dsQTLs using only the set of 66 YRI LCLs used in both our study

and Degner et al. [32]. We identified 1,147 eQTLs (15% FDR), of

which 171 were also classified as rdQTLs (15% FDR) and 168 as

dsQTLs (15% FDR; Figure S10). There is a slight enrichment in

the overlap of eQTLs classified as both rdQTLs and dsQTLs (33

SNPs; 25 are expected by chance along; P = 0.03). This might

reflect variation that affects gene expression levels through coupled

transcription and decay processes.

Put together, 26.7% eQTLs are also classified as either rdQTLs

and/or dsQTLs. Combining all three annotations (see Methods;

Figure S11) we estimated (by using the Storey method [48])that up

to 63% of eQTLs could be driven, at least in part, by either decay

or chromatin accessibility-related mechanisms. We note that for

this comparison we are including both concordant and discordant

Figure 5. Genome-wide identification of rdQTLs and representative examples. A. QQ-plot for all tests of association between mRNA decay
rates and variants within a cis region of 25 kb around the target gene (y-axis) compared to a null distribution of p-values based on permutations (x-
axis). B. QQ-plot for all tests of association between the most significant eQTL SNP for a gene and the mRNA decay rate for the same gene (y-axis)
compared to a null distribution of p-values based on permutations (x-axis). C. Example of an rdQTL with concordant eQTL-rdQTL effects (for the gene
DDX55). D. Example of an rdQTL with discordant e-QTL-rdQTL effects (for the gene C17orf97).
doi:10.1371/journal.pgen.1003000.g005
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rdQTLs, since both patterns could be representative of either

simpler or complex mechanisms underlying gene expression

variation.

Discussion

We conducted a genome-wide study of inter-individual varia-

tion in mRNA decay levels in 70 human LCLs to investigate the

extent to which variation in mRNA decay might account for

overall gene expression variation. Our observations, both across

genes as well as across individuals, lend support to the notion that

regulation by decay processes is a significant mechanism by which

steady-state transcript levels are modulated.

Consistent with previous studies, we found substantial variation

in mRNA decay rates across genes [44,49,50]. We caution that the

experiments to obtain decay rates involve treatment with an

antibiotic (ActD), which is toxic to cells and may therefore be

associated with certain artifacts. That said, ActD is a well-

established reagent for studies of this type and the conditions we

used here closely reflect those of earlier studies of mammalian

mRNA decay. One inherent limitation of our study design is the

inability to calculate absolute decay rates and thus mRNA half-

lives. Instead, we were only able to estimate decay rates relative to

the mean cellular mRNA decay rate. Using data collected using

commercial microarrays (rather than, for example, RNA sequenc-

ing data), this was the only way we were able to normalize the data

across time points without making explicit assumptions regarding

the distribution of decay rates. Our normalization approach

allowed us to maintain the relative order of genome-wide decay

rates across genes and individuals. Yet, it also likely resulted in a

limited range of the estimated variance of decay rates across genes

compared to the true underlying distribution of absolute decay

rates. Thus, the results and analyses presented here may

underestimate the magnitude of variation in mRNA decay rates

across genes.

The relationship between RNA decay and steady-state
gene expression levels

In many cases, our observations across genes were consistent

with the intuitive model whereby faster mRNA decay rates are

associated with lower steady-state gene expression levels. Accord-

ingly, we observed lower and higher steady-state gene expression

levels for the most rapidly and slowly decaying genes, respectively.

Focusing only on these intuitively simple regulatory interactions

across QTLs, we estimated that up to 19% of eQTLs might

influence gene expression variation through an effect on mRNA

decay rates. Incorporating rdQTLs with data on DNase sensitivity

QTLs (dsQTLs), we estimated that a combination of variation in

RNA decay rates and chromatin accessibility might explain the

majority (63%) of eQTL effects. In addition, we find that SNPs

within miRNA binding sites show an enrichment for association

with variation in decay rates compared to all 39UTR SNPs,

leading to a hypothesis that variation in miRNA binding plays a

particularly important role in regulating decay rate variation.

Interestingly, however, we observed many instances of the

opposite (discordant) relationship between mRNA decay rates and

steady-state gene expression levels. Overall, 59% of genes with a

significant correlation between decay rates and expression levels

across individuals show a discordant relationship (though only

45% of eQTL/rdQTL pairs). The frequency of this phenomenon

seems somewhat unexpected especially given the stronger overall

concordant relationship between decay and expression when all

genes are considered. It may also cast doubt on the mechanistic

explanation we offered for the more intuitive – concordant –

relationship between RNA decay and gene expression levels. On

the other hand, prevalent discordant decay rates and expression

levels across genes have been previously observed in yeast. We

speculate that these discordant patterns are the result of complex

regulatory circuits, which have evolved to address the need for

shorter response time or to stabilize steady-state gene expression

levels within the cell. Indeed, the majority of genes with discordant

decay and expression patterns are known to be involved in

biological processes that require fast response time (Table S3). In a

subset of these cases, an auto-regulatory or regulatory feedback

circuit has been demonstrated (Table 1). Since many stress and

immune response pathways are activated (namely, these genes are

highly expressed [53]) in LCLs due to the EBV infection which

causes immortalization, we hypothesize that we were able to

identify discordant patterns of decay and gene expression at a

higher frequency than otherwise expected in resting cells.

Discordant differences in the rates of transcription and mRNA

decay could be achieved by a coupling of decay and transcrip-

tional regulatory mechanisms. Dori-Bachash and colleagues

suggested that discordant patterns between two closely related

yeast species might be due to such coupling whereby the same cis

elements may regulate both processes [37]. Supporting these

findings, Shalem et al. found that PolII binding in yeast could

regulate coordinated mRNA synthesis and degradation processes

[38], building on work from Harel-Sharvit et al. that implicated

PolII as a factor linking both transcription and mRNA decay to

translation in yeast [55]. Additional evidence has pointed to an

intrinsic role for the same promoter binding elements promoting

both mRNA synthesis in the nucleus and mRNA degradation in

the cytoplasm [56,57]. Our observations also lend support to an

explanation based on coupling of the transcription and RNA

decay processes.

Figure 6. miRNA binding sites are enriched with rdQTLs. The
QQ-plots of expected versus observed quantiles of the –log10(p-values)
testing the null hypothesis that there is no association between the SNP
and RNA decay, for all 39UTR SNPs (red) and in two known 39UTR
functional annotations – predicted miRNA binding sites (dark blue) and
AU-rich element pentamers (light blue).
doi:10.1371/journal.pgen.1003000.g006
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Such mechanistic coordination implies complex regulatory

circuitry, which suggests that decay processes might be playing

an important role in maintaining an upper limit of steady-state

gene expression, while allowing for rapid transcriptional response -

a classical auto-regulatory feedback loop motif [36]. Coupling

different regulatory mechanisms to cause such regulatory motifs

has been suggested as a way by which cells optimize systems-level

functionalities [40]. This is especially important in the context of

transcriptional responses to external stimuli or stress. In these

situations, coupling of transcription and mRNA decay might be an

efficient strategy that allows rapid and precise control of cellular

response to external perturbations [40].

Previous studies provided evidence for the important role of

mRNA decay in regulating cellular response. For instance,

Raghavan et al. found that activation-induced genes in human

T-lymphocytes cells, which are enriched for transcriptional

regulatory functions, tend to have fast decay rates [52]. Shalem

and colleagues evaluated changes in mRNA decay and transcrip-

tion rates in yeast subjected to either transient or enduring stresses

[70]. Yeast subjected to the enduring stress displayed an expected

behavior whereby most induced genes were stabilized, while under

the transient stress, most induced genes exhibited faster decay rates

regardless of their increased steady-state expression levels [70].

Our rdQTL data suggest that variation in regulatory elements that

affect mRNA decay rates may play an important role in the

individual-specific efficiency of response regulatory circuitry.

Summary
We have taken some of the first steps towards characterizing the

impact of variation in mRNA decay rates on variation in gene

expression levels. Our results indicate that decay processes might

play a crucial role in fine-tuned genome-wide regulation of gene

expression variation in humans. In particular, we found that a

moderate proportion of eQTLs might be due to variation in decay

rates, and that negative feedback regulatory circuits involving

mRNA decay processes may be common in humans. Further

study of the mechanisms underlying variation in mRNA decay

rates is needed to increase our understanding of the genetic basis

of steady-state gene expression levels and the underlying regula-

tory circuits.

Methods

Cell culture, Actinomycin D treatment, RNA isolation
Cell lines were grown using standard procedures (as recom-

mended by Coriell) by culturing cells in RPMI 1640 (supplement-

ed with 2 mM L-glutamine and 15% fetal bovine serum). Each of

the cell lines was treated with Actinomycin D (ActD) to inhibit

transcription, with one biological replicate from each cell line.

Because ActD terminates active transcript elongation by binding

directly to DNA in a reversible manner [12–14,71,72], it is

generally thought to be the most effective transcriptional inhibitor

[16,18,72–74]. ActD treatment was performed by culturing cells at

a concentration of 750,000 cell/ml with 7.5 ug/ml of ActD.

Based on the results from a pilot experiment (see Methods S1,

Figure S1, Figure S2, Figure S3), we extracted RNA at a total of

five timepoints: before the treatment with ActD (0 hours) and after

treatment (0.5 hours, 1 hour, 2 hours, and 4 hours). To account

for the decrease in total RNA resulting from the treatment and to

obtain enough RNA from each timepoint for subsequent

microarray hybridization, we increased the number of cells from

which we extracted RNA over the timecourse (Figure S1). Total

RNA was extracted using an RNeasy Mini Kit (Qiagen) and RNA

quality was assessed using an Agilent Bioanalyzer.

Microarray analysis and normalization
We estimated gene expression levels in all samples (350 total

samples across all 5 time points and 70 cell lines) by hybridizing

RNA to the Illumina HT-12 v4. Expression BeadChip arrays. As

RNA yield is expected to change across samples from different

time points (due to RNA decay), previous microarray based studies

of RNA decay have typically normalized their data using spiked-in

samples [3,8,21]. The Illumina HT-12 arrays, however, do not

include non-human probes that would allow us to use spike-ins.

Instead, we hybridized the same quantity of RNA from each time

point to the microarrays using standard Illumina hybridization

protocols. Subsequently, we normalized the array data using

standard approaches across all the arrays [27–29,75,76].

All low-level microarray analyses were performed in R using the

Bioconductor software package lumi [13,31–34,77]. Specifically,

we performed a log2 variance stabilizing transformation and

robust spline normalization (RSN). Following normalization, we

removed probes with intensities indistinguishable from back-

ground noise in either the 0 and/or 4 hour time points on the

array (as measured by the negative controls present on each array).

In addition, we mapped the Illumina 50 bp probe sequences using

BWA v.0.4.6 [36,78] and retained only probes that mapped

uniquely with 100% identity to an exon within an annotated gene

from the Ensembl database (2009-12-31 version). Following

filtering based on detection and probe mapping (see Supplemental

Materials), data from 23,065 probes corresponding to 16,823

genes were used for all further analyses. For gene-based analyses,

we considered the mean expression across the set of probes

corresponding to a single gene as the expression level of that gene.

For all genotype analyses, SNPs located within probes could bias

probe hybridization and downstream measures of steady-state

gene expression across individuals. For the 3,327 probes overlap-

ping one or more SNPs, we aimed to remove the effect of SNPs on

probe hybridization by regressing steady-state expression levels on

the genotype of the SNP located within the probe. In cases where

this regression was significant (P,0.05), we used the residual of the

regression as the steady-state expression measurement [28,29,79].

After all normalization and filtering steps, genes whose

transcripts decayed at an ‘‘average’’ rate appeared to be expressed

at a constant level through the timecourse measurements (Figure

S2). For ease of visualization, the expression levels across time

points in all decay profiles plotted throughout this manuscript have

been standardized by the total number of cells from which RNA

was extracted (Figure S1).

Calculation of mRNA decay rates (and fast/slow decaying
genes)

Because mRNA decay has been shown to exhibit properties of

first-order decay [11,39,80,81], we estimated gene-specific RNA

decay rates in each cell line by using a regression equation of the

form (a linear transform of the first-order exponential decay

model):

ln(y(t))~B0{ktze ð1Þ

where y(t) is the mRNA abundance at time t, B0 is the mRNA

abundance at the untreated time point (time point ‘0’), k is a gene-

specific decay rate constant, and variance e,N(0,s2). For

subsequent analyses, we used the gene-specific decay rate constant

k as an estimate of a decay rate. Under these conditions, genes with

decay rates close or equivalent to the mean cellular decay rate are

represented by k = 0. To identify genes that decay significantly

faster or significantly slower than the mean mRNA decay rate in
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LCLs, we identified genes for which k significantly differed from

zero (mean decay rate). We fit gene-wise decay rates for each cell

line and identified genes for which least 80% of individuals had

estimated values of k that differed significantly from 0 (P,0.1) in

the same direction (either faster or slower decay than the mean

decay rate).

To rank genes by their combined gene expression and decay

values, we examined the genome-wide distributions. For example,

genes with discordant patterns are those with high (or low)

expression levels and whose mRNA decays rapidly (or slowly). To

classify such patterns, we independently identified genes within the

top 5% and 10% tails of the decay rate and steady-state gene

expression distributions and then considered the overlaps across

the two data sets (Figure S5B). We identified 9 and 49 genes at the

top 5% and 10%, respectively, of both the gene expression and

decay rate distributions.

Determination of genomic annotations
To determine the effect of gene length and 39UTR length on

mRNA decay rates, gene lengths and 39UTR lengths were

calculated using information extracted from the Ensembl gene

database (2009-12-31 version). [41–43,82]. Total gene length was

defined as the distance between the upstream most TSS and the

downstream most transcription end site (inclusive of both exons

and introns). Total 39UTR length was calculated as the number of

bases annotated as being within a 39UTR in any isoform of the

given gene.

In order to create a comprehensive set of microRNA (miRNA)

binding site predictions, we downloaded the miRNA binding

predictions from three databases: microRNA.org, PicTar, and

targetScan [3,19,20,22–25,44–47]. By parsing the predictions for

all miRNAs in these three databases, we obtained a combined set

of miRNA predictions that were present in one, two, or all three

databases. Because each of these databases uses different sets of

annotations and identifiers, we applied a series of conversion and

filtering steps for each database (see Methods S1 for details). We

used the AREScore algorithm (http://arescore.dkfz.de/arescore.pl)

[26,44,49,50] to calculate an AREScore as a proxy for the number

of AU-rich elements present in 39UTRs. The program was run

with default parameters on RefSeq defined 39UTR regions for all

genes in our dataset [1,3,41,51,52,83].

To identify significantly over- or under-represented motifs in

either fast or slow decaying genes, we used the FIRE algorithm

(https://tavazoielab.c2b2.columbia.edu/FIRE/) [30,41]. We test-

ed for motif enrichment in promoter regions and full gene bodies

of both fast and slow decaying genes, using default FIRE

parameters. In all tests, we compared against a background set

of all genes that were present in our study.

Gene Ontology analyses
We used GeneTrail (http://genetrail.bioinfo.uni-sb.de)

[15,26,84] to test for enrichments of functional annotations

among different classes of genes: (a) genes consistently decaying

faster or slower than the mean cellular decay rate, (b) genes at the

top 10% of both the gene expression and decay rate genome-wide

distributions, and (c) genes showing either concordant or

discordant relationships between decay rates and gene expression

levels. In all tests, we used a background set of all genes that were

present in our study and detected as expressed in either the zero or

four hour timepoints. The tests were performed using all GO

categories and KEGG pathways. We calculated p-values using a

hyper-geometric distribution and report false discovery rates for

each p-value.

Inter-individual correlation between decay rates and
expression levels

To investigate the contribution of variation in decay rates to

overall variation in steady-state gene expression levels across

individuals, we identified genes whose expression levels and decay

rates were significantly correlated. Specifically, for each gene, if yi

denotes the steady-state expression level (defined here as the mean

of the expression levels across all time points in order to increase

statistical independence from the estimated decay rates) for

individual i and ri denotes the corresponding decay rate estimate,

we fit a linear model of the form:

yi~mzbrizei ð2Þ

where the coefficient, b, measures the strength of the association

between decay rate and steady-state gene expression levels. In

order to identify genes where the coefficient, b, represents a

significant association, we repeated the analyses with 3 sets of

permuted decay rates, recorded the significance of b from each

permutation, and used these permuted p-values as an empirical

null distribution. We estimated the FDR by comparing the true

distribution of p-values of b to this null distribution.

Analysis of PolII ChIP–seq data
PolII ChIP-seq data on six YRI LCLs (GM18505, GM18522,

GM19141, GM19193, GM19204, and GM19238) were collected

within the context of another study within the lab. ChIP-seq

libraries were prepared as described previously [11,54,85], using

the non PolII antibody H-224 (Santa Cruz Biotechnology, sc-

9001x). In addition, raw PolII ChIP-seq reads from a seventh YRI

LCL, GM19099, was obtained from a previously published study

[11,33,47] and analyzed in a similar fashion to the PolII ChIP-seq

data generated in-house.

Raw PolII ChIP-seq reads were mapped back to human

genome (hg18) using BWA v.0.4.6 [11,54,78] and reads from

multiple lanes from the same individual were combined into a

single mapped file. For each individual, we used Samtools [6,86]

to isolate reads in genic regions (as defined in the Genomic

Annotations section above) and promoter regions (defined as 1 kb

upstream and 1 kb downstream of the transcription start site). For

genic regions, read counts were normalized by the total length of

the genic region to be able to compare across genes with varying

length. For individual-specific measures of PolII occupancy for

each gene, read counts were normalized by the total number of

mapped reads per individual.

Quantitative trait loci (QTL) association mapping
For all QTL mapping analyses, we used close to full genotype

information for each of the 70 YRI individuals, achieved by

combining available datasets and imputing missing genotypes with

the BimBam software [58,87,88] as described previously

[32,59,60]. Briefly, we built a reference panel consisting of the

largest set of all 210 YRI HapMap individuals and gathered

genotypes for any SNP or short insertion/deletion (indel) called in

either HapMap (Release 28; October 2010, [1,35,59]) or 1000

Genomes (May 2011 interim phase 1 release, [1,52,60]) datasets.

Missing genotypes in the individuals in this study were imputed

using this reference panel, resulting in a total of approximately

15.8 million variants genome-wide.

All associations between genotypes and either decay rates or

gene expression were examined using a linear regression model in

which each phenotype was regressed against genotype. For all

analyses, we only tested association under the assumption that
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SNPs affected the resulting phenotype in an additive manner (i.e.

heterozygote phenotypic mean equals the average of the two

homozygote means). For each gene, we tested for association of the

phenotype with the genotypes of SNPs and indels within a cis-

candidate region of 25 kb around the gene (25 kb upstream of the

TSS and 25 kb downstream of the TES). We chose this definition

of a cis-candidate region to map variation in mRNA decay rates in

an unbiased manner by including SNPs outside of transcript

regions. Indeed, recent reports have indicated that elements in

intergenic promoter elements [56] and RNA binding proteins

binding intronic regions [89] could regulate mRNA decay

mechanisms. To evaluate genotypic effects on decay variation

for a given gene, we tested associations with SNPs or indels with a

minimum allele frequency greater than 10%, using the following

model:

ri~mzcgijzeij ð3Þ

where ri is defined as in model (2) and gij corresponds to the

genotype of individual i at variant j, coded as 0, 1, or 2 copies of

the minor allele. In this model, the coefficient c indicates the

strength of association between the mRNA decay rate of the gene

and genotypes at variant j. To estimate the false discovery rate, we

permuted phenotypes three times, re-performed the linear

regressions, and recorded the minimum p-value (across SNPs/

indels) for each gene for each permutation. These sets of minimum

p-values were used as our empirical null distribution. We

estimated the FDR by comparing the true distribution of the

minimum p-values to this null distribution, as previously described.

Previous studies mapping cis-associations have found that statis-

tical power to detect associations can be dramatically increased by

accounting for unmeasured confounders within quantitative

measure of the phenotype [3,12,13,31,32,41,90,91]. When con-

sidering decay as the phenotype, we did so by performing principal

components analysis (PCA) on the (70 by 70) correlation matrix of

decay rate estimates. We found the strongest rdQTL signal (largest

number of findings at a fixed FDR) when 13 principal components

(PCs) were regressed out.

When considering steady-state gene expression as the pheno-

type, we performed all analyses on mean expression levels across

all time points per individual in order to reduce the variance of

expression measurements and increase the statistical independence

between the eQTL estimates and the estimates of decay rates. We

quantile normalized these measurements and performed PCA to

account for unmeasured confounders. For the eQTL analyses, we

again found the most QTL signal when 13 PCs were regressed out.

The eQTL analyses were performed by testing for association

between mean expression levels and SNPs or indels with a

minimum allele frequency greater than 10%, using the following

model:

yi~mzcgijzeij ð4Þ

where yi is defined as in model (2) and gij corresponds to the

genotype of individual i at variant j. In this model, the coefficient c
indicates the strength of association between the mean steady-state

expression level of the gene and genotypes at variant j. FDR

calculations were performed as described above.

To assess whether the enrichment of significant mRNA decay

effects among eQTL SNPs could occur by random chance, we

performed a permutation based significance test. Specifically, we

evaluated the effect of genotype on mRNA decay variation using

the most significant cis-eQTL SNP for all genes in our dataset

(regardless of the genome-wide significance of the SNP). Then, we

randomly chose 1,257 SNPs from this full set (representing the

number of genome wide significant eQTLs identified) and

calculated the number that showed significant association with

mRNA decay variation among this set. We also ensured that the

distribution of gene expression levels associated with the randomly

sampled SNPs matched the distribution of expression levels for

genes with significant eQTLs. By repeating this 1,000 times, we

were able to arrive at a permutation-based expectation for the

enrichment of significant mRNA decay effects among eQTL

SNPs.

In order to look at overlaps between the set of identified

rdQTLs and previously identified dsQTLs, we focused on the set

of 66 YRI LCLs that were used in both studies. Using mean gene

expression measures from this study, we re-mapped eQTLs as

described above in this set of 66 LCLs and identified 1,147 steady-

state eQTLs (15% FDR). Using these 1,147 eQTL SNPs, we

tested for association between each SNP and DNaseI sensitivity as

described previously [32] and between each SNP and RNA decay

rates (as described above). To obtain an estimate of the total

proportion of eQTLs we might be able to account for by either

RNA decay variation or variation in DNaseI sensitivity, we

assessed, for each SNP, the evidence for association with either

data type. We then chose the minimum p-value for the association

with decay rates or DNaseI sensitivity and compared the resulting

distribution to the following analytical transformation:

if X1, X2*U 0,1½ �

X~min X1, X2ð Þ

P Xƒxð Þ~1{ 1{xð Þ2

We then applied the Storey et al. qvalue approach to account for

incomplete power [48] to this transformed distribution of p-values.

Data submission
All raw data and tables of all rdQTLs are available under GEO

accession number GSE37451.

Supporting Information

Figure S1 Distributions of the amount of total RNA extracted

across individuals from increasing cell quantities over time. In

order to account for the decrease in total RNA due to the Act-D

treatment, we increased the amount of cells from which we

extracted RNA over time (x-axis). This allowed us to obtain similar

amounts of total RNA (y-axis) for each time point, with no

significant differences in median levels of total RNA (across

individuals) for each time point.

(TIF)

Figure S2 Examples of gene-specific mRNA decay data from

pilot experiments across 5 cell lines. In every plot, time course (x-

axis) estimates of normalized (un-transformed) gene expression

levels (y-axis) from each of the five cell lines are plotted. The top

panels show examples of genes whose transcripts decay at a rate

similar to the mean decay rate in the cell lines. The observed

pattern of no apparent decay is a result of our normalization

approach. To visualize decay, we standardize (described in the

main paper) the normalized expression values by the number of

cells from which RNA was extracted at each time point. The
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bottom panels show two examples of genes decaying faster (left)

or slower (right) than average. It is evident that the later time

points (8 and 12 hours) do not provide significant additional

information to the decay fit when compared to earlier time

points.

(TIF)

Figure S3 Boxplots of distributions of pairwise correlations.

Pearson correlations (y-axis) are plotted for (from left to right on

the x-axis): biological replicates (from the pilot experiment data),

data from different time points of the same cell line (from full

dataset), data from different cell lines for the same time points

(from full dataset), and data from different cell lines across time

points (from full dataset).

(TIF)

Figure S4 Influence of gene length on decay rates after

accounting for 39UTR length. Distributions of non-39UTR region

gene lengths (y-axis) for slow decaying genes (blue) and fast

decaying genes (red).

(TIF)

Figure S5 Significant difference between expression levels of

slow decaying genes and fast decaying genes. Genome-wide

scatterplot of median decay rates (x-axis) versus median steady-

state expression levels (y-axis). Colors of the regions indicate the

density of points (higher density in darker colors). The yellow circle

indicates BTG1, an example of a gene with a high decay rate and

high expression level.

(TIF)

Figure S6 Distribution of PolII ChIP-seq tags in gene body

regions. Increase in the density (y-axis) of positive Pearson

correlations (x-axis) for genes with discordant (purple) compared

to concordant (orange) relationship between mRNA decay rates

and gene expression levels.

(TIF)

Figure S7 Estimates of the proportion of most significant eQTL

SNPs that are significantly associated with decay rates. All

analyses are done using the R package ‘qvalue’ as described in

Storey and Tibshirani 2003. A. Estimated fraction of test statistics

(p0) that are generated under the null hypothesis (no association

with decay), as a function of the tuning parameter l (solid line).

The 95% bootstrap confidence band is also shown (dashed lines).

The vertical dashed line corresponds to l for which the bootstrap

mean square error for the estimate of p̂p0 is the smallest. B.

Distribution of the p-values for tests of association with decay

rates and the distribution that would be expected if all test

statistics were generated under the null hypothesis (no association

with decay) p0 = 1 (dashed red line), and the fraction (solid red

line) of null tests estimated to be present from the observed

sample.

(TIF)

Figure S8 Evidence for association with decay and expression

for SNPs in functionally annotated regions. A. The QQ-plots of

expected versus observed quantiles of the –log10(p-values) for

association with decay for SNPs located in coding exons (green),

59UTRs (dark red), 39UTRs (red), promoter regions (5 kb

upstream of TSS; in orange), and all other intergenic and

intronic SNPs (black). B. The QQ-plots of expected versus

observed quantiles of the –log10(p-values) for association with

expression for all 39UTR SNPs (red) and in two known 39UTR

functional annotations – predicted miRNA binding sites (dark

blue) and AU-rich element pentamers (light blue).

(TIF)

Figure S9 Evaluating factors causing bias in the estimation of

the proportion of eQTLs also classified as rdQTLs. A. Boxplots of

the distribution of the total number of SNPs in all cis-candidate

windows for genes with only eQTLs (left) and genes with eQTLs

that are also rdQTLs (right). B. Boxplots of the distribution of

minor allele frequencies for SNPs identified as only eQTLs (right)

or eQTLs that are also rdQTLs (right). C. Boxplots of the

distribution of the number of minor allele homozygotes for SNPs

identified as only eQTLs (right) or eQTLs that are also rdQTLs

(right).

(TIF)

Figure S10 Numbers of eQTLs that are also classified as

rdQTLs (right), dsQTLs (left), or both (middle).

(TIF)

Figure S11 Estimates of the proportion of most significant

eQTL SNPs that are associated with either decay rates or

DNaseI sensitivity. All analyses are done using the R package

‘qvalue’ as described in Storey and Tibshirani 2003. A.

Estimated fraction of test statistics (p0) that are generated under

the null hypothesis (no association with either decay or DNaseI

sensitivity), as a function of the tuning parameter l (solid line).

The 95% bootstrap confidence band is also shown (dashed

lines). The vertical dashed line corresponds to l for which the

bootstrap mean square error for the estimate of p̂p0 is the

smallest. B. Distribution of the transformed minimum p-values

for tests of association with either decay rates or DNaseI

sensitivity and the distribution that would be expected if all test

statistics were generated under the null hypothesis (no

association with decay or DNaseI sensitivity) p0 = 1 (dashed

red line), and the fraction (solid red line) of null tests estimated

to be present from the observed sample.

(TIF)

Methods S1 Supplementary materials and methods for analyses

presented in the main text.

(DOC)

Table S1 Summary of data for expression timecourse and decay

rate calculations.

(TXT)

Table S2 Gene Ontology categories for genes decaying slower

than average (FDR,0.1%)

(XLSX)

Table S3 Gene Ontology categories for genes decaying faster

than average (FDR,0.1%).

(XLSX)

Table S4 Gene Ontology categories for the 47 genes in the top

10% of both decay and gene expression distributions (FDR,1%).

(XLSX)

Table S5 Gene Ontology categories for genes with a concordant

relationship between decay and gene expression across individuals

(FDR,0.1%).

(XLSX)

Table S6 Gene Ontology categories for genes with a discordant

relationship between decay and gene expression across individuals

(FDR,0.1%).

(XLSX)

Table S7 Summary of data for PolII ChIP-seq reads.

(XLSX)

Table S8 Information on rdQTLs identified in this study.

(TXT)
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