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Abstract

Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have
been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps.
Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of
genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily
in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it
has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In
this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to
quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions,
we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps
of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa,
Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes
and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once
highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the
geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in
giving rise to human population structure.
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Introduction

The geographic structure of human genetic variation has

long been of interest for its implications for studying human

evolutionary history [1,2,3,4,5]. In recent years, the expansion

of population-genetic datasets has contributed to an increase in

geographic investigations of human genetic variation, often on

the basis of classic multivariate statistical techniques such as

PCA and MDS [6,7,8,9,10]. In PCA, samples are projected

onto a series of orthogonal axes (principal components or PCs)

that are constructed from a linear combination of genotypic

values across genetic markers, such that each PC sequentially

maximizes the variance among samples projected on it [11,12].

Classic MDS analyzes a genetic distance matrix between pairs

of samples and places the samples in a low-dimensional space in

such a way that pairwise Euclidean distances among samples in

the low-dimensional space approximate their relative genetic

distances [13]. The population structure of genetic variation is

often summarized in easily visualized two-dimensional statisti-

cal maps obtained from the first two components of PCA or

MDS. Especially for large-scale single-nucleotide polymor-

phism (SNP) data, PCA and MDS are popular because of their

computational efficiency and high level of resolution in

decomposing the complex structure of human genetic variation

[12,14]. Generally, results produced by PCA and MDS are very

similar to each other [15].

Several recent studies have reported detectable similarity

between statistical maps of genetic variation and geographic maps

of population locations. Such observations are particularly pro-

minent within Europe, where striking similarity between genes and

geography is observed both at a continental level [9,16,17] and in

more localized studies such as in Finland [18,19], Iceland [20],

and Sweden [21]. Analogous but visually less striking observations

have also been reported in studies of other geographic regions,

including in worldwide samples [6,7,8,10,22,23] and in samples

from Asia [23,24,25], Africa [26,27], China [28,29], and Japan

[30]. However, this similarity of genes and geography is in many

cases reported in a qualitative sense and has not been assessed

systematically across different studies, so that it has been difficult to

compare levels of agreement between genes and geography in

different regions. Further, different studies have used different sets

of genetic markers and different statistical techniques (e.g. PCA

and MDS), further complicating comparisons across datasets.

Even for studies that used PCA, several versions of this technique

have been employed in different studies. For example, some

studies have performed PCA on genotypic matrices [9,10,12,20],

whereas others have applied PCA on pairwise genetic distance

matrices [7,22,23].
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A formal comparison of genes and geography in different

regions using a single technique and a common marker set can

provide a systematic basis for evaluating the role of geography in

explaining the genetic similarity of individuals or populations in

different locations. We have previously developed a Procrustes

analysis approach to quantify the similarity between statistical

maps of genetic variation and geographic maps [15]. This

approach identifies data transformations that minimize the sum

of squared Euclidean distances between two sets of coordinates

while preserving relative pairwise distances among points within

each set. The statistical significance of the similarity between

genetic coordinates and geographic coordinates is then examined

using a permutation test.

In this study, we apply the Procrustes approach together with

PCA to systematically study the geographic structure of human

genetic variation across different geographic regions. By compiling

data from a variety of published sources [9,23,26,31,32], we have

assembled genome-wide SNP data and geographic coordinates for

149 populations worldwide. Based on a common set of autosomal

SNP markers shared by datasets collected from different studies,

we evaluate the similarity between genes and geography in

examples from Europe, Sub-Saharan Africa, Asia, East Asia, and

Central/South Asia, as well as in a worldwide sample. We

compare the level of similarity across the various datasets, finding

that all show a high level of similarity, and that the highest

similarity score appears in Asia. We also examine the dependence

of the similarity on the choice of populations included in the

analysis and on the number of markers studied. Our results

provide information about the importance of geography in human

evolutionary history, and can facilitate statistical methods for

inferring the ancestral origin of human individuals from their

genotypes.

Results

We integrated published genome-wide SNP data on 4,257

individuals from 149 worldwide populations, taking data from the

Human Genome Diversity Project (HGDP) [7,31], International

Haplotype Map Project Phase III (HapMap Phase III) [31,33],

and POPRES [9] samples, as well as from several other

publications [23,26,32]. In our analyses, we focused on the data

from 128 populations (Tables S1, S2, S3). We constructed six

datasets for evaluating the geographic structure of genetic

variation in different geographic regions: a worldwide sample,

continental samples from Europe, Sub-Saharan Africa, and Asia,

and subcontinental samples from East Asia and Central/South

Asia (Table 1).

Our analyses were based on 32,991 autosomal SNP markers

that were shared among datasets obtained from different

genotyping platforms. We applied PCA on datasets after quality

control and removal of PCA outliers (see Materials and Methods), and

we then used Procrustes analysis to compute the similarity score,

denoted as t0, between the first two PCs of genetic variation and

the geographic coordinates of the populations.

We evaluated the statistical significance of the similarity score by

permutation. We further examined the robustness of our results

using a leave-one-out approach, in which we repeated PCA and

Procrustes analysis on datasets with a single population excluded.

PCA coordinates obtained from these new datasets were

compared to the original PCA coordinates obtained from the

whole dataset and to the geographic coordinates, with the

respective Procrustes similarity scores denoted as t’ and t’’ (see

Materials and Methods). These analyses were applied systematically

on all datasets.

Worldwide sample
Our worldwide example was based on 938 unrelated individuals

from 53 worldwide populations (Figure 1A), taken from the study

of Li et al. [7]. None of these individuals was found to have w5%

missing data or to appear as a PCA outlier.

A PCA plot finds that as in previous studies [7,8,10], samples

from the same geographic region (indicated by colors in Figure 1)

generally cluster together, and that different clusters align on the

PCA plot in a way that qualitatively resembles the geographic map

of sampling locations. The first two PCs of our PCA explain 6.22%

and 4.72% of the total genetic variation, respectively. These values

are considerably less than the values reported by Li et al. [7] in

their Figure S3B, which were 52.3% for PC1 and 27.8% for PC2.

The difference can be attributed primarily to the different versions

of PCA used in the analyses. We applied PCA on the N|L

genotypic matrix for N individuals and L loci, whereas Li et al.

applied PCA on an N|N matrix recording levels of identity-by-

state for pairs of individuals [7]. Although the two approaches

provide visually similar PCA plots, the values and the interpre-

tation of the proportions of variance explained by each PC differ,

as they are based on quite distinct computations.

Using Procrustes analysis, we identified an optimal alignment of

the genetic coordinates to the (Gall-Peters-projected) geographic

coordinates that involved a rotation of the PCA plot by 31.910

counterclockwise. The genetic coordinates were then superim-

posed on the geographic map by applying the optimal transfor-

mation, thereby highlighting the similarity between genes and

geography (Figure 1). This qualitative resemblance is demonstrat-

ed by the Procrustes similarity score of t0~0:705, which is highly

significant in 100,000 permutations (Pv10{5). Applying the

leave-one-out approach with populations excluded individually,

the similarity score between genes and geography ranges from

0.697 to 0.715, with mean 0.705 and standard deviation 0.003

(Table S4). Some populations, such as Native American and

Oceanian populations, align in Figure 1B distantly from their

geographic locations. In most but not all cases, excluding one of

Author Summary

The spatial pattern of human genetic variation provides a
basis for investigating the history of human migrations.
Statistical techniques such as principal components ana-
lysis (PCA) and multidimensional scaling (MDS) have been
used to summarize spatial patterns of genetic variation,
typically by placing individuals on a two-dimensional map
in such a way that pairwise Euclidean distances between
individuals on the map approximately reflect correspond-
ing genetic relationships. Although similarity between
these statistical maps of genetic variation and the
geographic maps of sampling locations is often observed,
it has not been assessed systematically across different
parts of the world. In this study, we combine genome-wide
SNP data from more than 100 populations worldwide to
perform a formal comparison between genes and geog-
raphy in different regions. By examining a worldwide
sample and samples from Europe, Sub-Saharan Africa, Asia,
East Asia, and Central/South Asia, we find that significant
similarity between genes and geography exists in general
in different geographic regions and at different geographic
levels. Surprisingly, the highest similarity is found in Asia,
even though the geographic barrier of the Himalaya
Mountains has created a discontinuity on the PCA map of
genetic variation.

Quantitative Comparison of Genes and Geography
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these populations leads to an increase in the Procrustes similarity

score.

Europe
Visually striking similarity betweeen PCA plots of genetic

variation and a geographic map of Europe has been reported by

several studies [9,16,17]. Our analysis was based on nearly the

same sample studied by Novembre et al. [9], containing 1,385

individuals from 37 populations widely spread across Europe

(Figure 2A). After excluding five individuals with w5% missing

data and two PCA outliers, our final analysis examined 1,378

individuals.

Our PCA plot is very similar to the plot of Novembre et al. [9],

with a close correspondence of genes and geography (Figure 2B).

One difference is that in the PCA plot of Novembre et al. [9],

individuals are more widely spread along PC2 than in our plot. As

we applied PCA in the same way as Novembre et al. [9], the

difference arises primarily because they employed coordinates

given directly by the eigenvectors in PCA, such that PC1 and PC2

were scaled to have the same variance (J. Novembre, personal

communication). To simplify the standardization of analyses

across datasets, we chose not to scale the PC axes in our analyses,

so that the relative amounts of genetic variation explained by each

PC are reflected in the PCA plot (see Materials and Methods). Our

PC1 and PC2 explain 0.30% and 0.16% of the total genetic

variation respectively, in close agreement with the values of 0.30%

and 0.15% reported by Novembre et al. [9].

We used Procrustes analysis to superimpose the PCA plot on the

geographic map, rotating the PCA coordinates 72.660 clockwise

(Figure 2). The rotated genetic coordinates of the European

samples are spread over a larger distance along longitudinal lines

than along latitudinal lines, although the geographic locations of

the samples are distributed in the opposite way. This observation

reflects the result that the genetic differentiation among Europeans

is larger in a north-south direction than in an east-west direction

[34]. The Procrustes similarity between the genetic coordinates

and the geographic coordinates is t0~0:780 (Pv10{5). Excluding

populations from the analysis individually, the Procrustes similarity

between genes and geography ranges from 0.764 for the analysis

without the United Kingdom to 0.810 for the analysis without

Italy, with a mean of 0.780 across populations and a standard

deviation of 0.007 (Table S5). Populations that have a relatively

large effect on the similarity score are mostly those with large

sample sizes (e.g., Italy, Portugal, Spain and United Kingdom).

The Russian population is an exception; its sample size is small

(n~6), but the genetic coordinates of the Russian sample align

poorly with the geographic coordinates [9] (Figure 2). Thus, this

population has a relatively large effect on the similarity with

geography (t’’~0:788 when excluding Russians, Table S5).

Excluding Russians has minimal effect on the PCA coordinates

for the remaining samples, however, as reflected in the high

similarity score between the PCA coordinates before and after

excluding the Russian sample (t’~1:000, Table S5). Reducing the

sizes of large samples also has a relatively small impact; when

repeating our analyses on a subset of the data in which 50

individuals are selected randomly from populations with larger

samples, t0 changes slightly to 0.777, and both FST and the

proportions of variance explained by PC1 and PC2 undergo slight

increases (Figure S1).

Sub-Saharan Africa
Sub-Saharan Africa is the location of the origin of modern

humans and has the highest genetic variation among all continents

[7,22,35,36,37]. Previous studies have found that when isolated
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hunter-gatherer populations are included in the analysis, PCA

plots of genetic variation in Sub-Saharan Africa display low

qualitative similarity to the geographic map of sampling locations

[7,22,38]. Bryc et al. recently studied 12 populations in West

Africa, and revealed a high similarity between a SNP-based PCA

map and the corresponding geographic map, when Mbororo

Fulani, a nomadic pastoralist population, was excluded from the

analysis [26]. By integrating SNP data from multiple sources

[23,26,31], we investigated Sub-Saharan African populations in a

broader region than in the analysis of Bryc et al. [26]. We first

excluded four hunter-gatherer populations (!Kung, San, Biaka

Pygmy, and Mbuti Pygmy) and Mbororo Fulani. After further

excluding six individuals with w5% missing data and two PCA

outliers, our analyses examined 348 individuals from 23 popula-

tions in Sub-Saharan Africa (Figure 3A).

Applying PCA on this combined Sub-Saharan African dataset,

we found that PC1 accounts for 1.34% of the total genetic

variation, largely separating populations from west to east. PC2

accounts for 0.69% of the total genetic variation and largely

separates populations from north to south (Figure 3B). Generally,

populations along the west coast of Africa cluster closely with each

other, while interior populations form relatively isolated clusters.

Bantu-speaking populations tend to cluster with each other, and

can be divided into three groups according to their geographic

locations: two populations in the west (Fang and Kongo), two in

the east (Kenyan Bantus from the HGDP and Luhya), and five in

the south (Southern African Bantus from the HGDP, Nguni, Pedi,

Sotho/Tswana, and Xhosa). Despite the large geographic

separation among these three groups, their genetic separation in

the PCA plot is relatively small (Figure 3B). In particular, Luhya

and Kenyan Bantus from the HGDP align between the western

Bantu populations and the eastern non-Bantu populations such as

Alur and Hema. The Maasai sample, consisting of 30 unrelated

individuals randomly selected from the HapMap Phase III

[31,33], forms a cluster distant from the other populations along

PC1 (and PC3, results not shown).

Procrustes analysis identifies a rotation angle of 16.110

counterclockwise for the genetic coordinates (Figure 3B), and the

similarity score between genes and geography is t0~0:790

(Pv10{5). Among all populations, Maasai has the largest impact

on both the PCA and Procrustes analysis (Table S6); as shown in

Figure S2, when analyzed without Maasai, the other 22

populations align more closely with geography, and the Procrustes

similarity score increases to 0.832 (Pv10{5). Excluding any of the

populations in South Africa leads to a decrease of the similarity

between genes and geography, and the lowest similarity is

obtained when excluding the combined Sotho/Tswana sample

(t’’~0:768, Table S6). This result suggests that the genetic map of

Sub-Saharan Africans might look more similar to the geographic

map if additional populations from the undersampled southern

region of Africa were included.

When hunter-gatherer populations (!Kung, San, Biaka Pygmy,

and Mbuti Pygmy) and Mbororo Fulani were included in the

analysis, they appeared as isolated clusters on the PCA plots and

greatly reduced the similarity between PCA maps and geographic

maps (Figure S3, Table S7). The similarity score decreased from

Figure 1. Procrustes analysis of genetic and geographic coordinates of worldwide populations. (A) Geographic coordinates of 53
populations. (B) Procrustes-transformed PCA plot of genetic variation. The Procrustes analysis is based on the Gall-Peters projected coordinates of
geographic locations and PC1-PC2 coordinates of 938 individuals. The figures are plotted according to the Gall-Peters projection. PC1 and PC2 are
indicated by dotted lines, crossing over the centroid of all individuals. PC1 and PC2 account for 6.22% and 4.72% of the total variance, respectively.
The Procrustes similarity is t0~0:705 (Pv10{5). The rotation angle of the PCA map is h~31:910 .
doi:10.1371/journal.pgen.1002886.g001
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0.790 to 0.548 after including all five of these populations in the

analysis. This value, however, is still statistically significant, with a

P-value of 4:0|10{4; further, if we disregard the hunter-gatherer

populations and Mbororo Fulani in Figure S3B and only examine

the relative locations of the original 23 populations, we can still

find a clear resemblance between genetic and geographic

coordinates. Compared to the other 23 populations, the four

hunter-gatherer populations appear as isolated groups at the

south, and Mbororo Fulani appears at the north. These

observations are clearer in plots with only one among the five

outlier populations included at a time (Figure S3C–S3G), each of

which also produces significant similarity scores between genetic

and geographic coordinates (Figure S4, Table S7).

Asia
Our Asian example included 760 individuals from 44 popula-

tions distributed widely across Asia (Figure 4A). Previous studies

based on largely overlapping datasets have reported correlations

between genetic and geographic distances across Eurasia [22,23].

Our dataset combined data from these studies as well as from Li et

al. [7] and Simonson et al. [32], and after excluding 11 PCA

outliers, our final dataset for Asia contains 749 individuals.

In our PCA plot (Figure 4B), PC1 largely separates populations

on different sides of the Himalayas, accounting for genetic

variation in an east-west direction. PC2, on the other hand,

distinguishes northern and southern populations. PC1 accounts for

5.42% of the total genetic variation, a much larger value than the

0.85% captured by PC2, reflecting large genetic distances between

populations separated by the Himalayas. Interestingly, populations

around the Himalayas form a ring shape on the PCA plot, with the

Nepalese population from the Himalaya region aligning in the

middle. As noted by Xing et al. [23], the Nepalese samples were

collected from different subgroups that have different levels of

ancestry shared with Central/South Asians and East Asians, and

the dispersion of the Nepalese sample is therefore not unexpected.

Tibetans, on the northern side of the Himalayas, do not spread

over a large area in the plot and are well clustered with other East

Asian populations.

One interesting result concerns the Uygur and Kyrgyzstani

populations, both of which lie along ancient trade routes between

Europe and East Asia. Compared to the Uygur population, which

lies farther to the east, the Kyrgyzstani population clusters closer to

East Asian populations, especially to the Yakut and Buryat

populations, supporting a view that the Kyrgyzstani group has a

proportion of its ancestry in Siberia [39]. A third population

sampled from near the Uygur and Kyrgyzstani populations is the

Xibo population, which clusters clearly with East Asians from

northeastern China. This pattern matches the expectation given

documentation that this Xibo group moved in 1764 from

northeastern China to Xinjiang province [40,41].

The PCA map of genetic variation in Asia is rotated 5.050

counterclockwise in the Procrustes superposition on the geograph-

ic map (Figure 4B). Despite the discontinuity caused by the

Himalayas, most populations align in a way that is highly

concordant with their geographic locations. This observation is

confirmed by a Procrustes similarity score of t0~0:849 (Pv10{5).

Among all populations, the tribal population Irula, which appears

south of India as an isolated cluster in Figure 4B, has the largest

impact among all populations on the Procrustes similarity with

geography (Table S8). When excluding Irula, the PCA map aligns

more closely with geography, with the Procrustes similarity

increasing to 0.871 (Pv10{5, Figure S5). This exclusion generates

Figure 2. Procrustes analysis of genetic and geographic coordinates of European populations. (A) Geographic coordinates of 37
populations. (B) Procrustes-transformed PCA plot of genetic variation. The Procrustes analysis is based on the unprojected latitude-longitude
coordinates and PC1-PC2 coordinates of 1378 individuals. PC1 and PC2 are indicated by dotted lines, crossing over the centroid of all individuals.
Abbreviations are as follows: AL, Albania; AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH-F, Swiss-French; CH-G, Swiss-German; CH-
I, Swiss-Italian; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark; ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,
Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK, Macedonia; NL, Netherlands; NO, Norway; PL, Poland; PT, Portugal; RO, Romania;
RU, Russia; Sct, Scotland; SE, Sweden; SI, Slovenia; TR, Turkey; UA, Ukraine; YG, Serbia and Montenegro. Population labels follow the color scheme of
Novembre et al. [9]. PC1 and PC2 account for 0.30% and 0.16% of the total variance, respectively. The Procrustes similarity is t0~0:780 (Pv10{5). The
rotation angle of the PCA map is h~{72:660.
doi:10.1371/journal.pgen.1002886.g002
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increased separation on the PCA map for some populations. For

example, in Figure S5, Iban from Sarawak is more clearly

distinguished from other Southeast Asian populations. Overall, the

similarity score between genes and geography in Asia is robust to

the exclusion of any one population, with the lowest Procrustes

similarity score of t’’~0:839 occurring when the Buryat popula-

tion is excluded (Table S8).

East Asia
To further examine populations on either side of the Himalaya

Moutains, we performed additional analyses of East Asia and

Central/South Asia. We first considered the East Asian popula-

tions in our Asian example. This dataset consists of 341 individuals

from 23 populations. After excluding seven PCA outliers, our

analyses were based on 334 individuals from 23 East Asian

populations (Figure 5A).

Individuals in this East Asian dataset generally align along a

curve on the PCA plot. PC1 explains 1.58% of the total genetic

variation and largely accounts for a north-south genetic gradient;

PC2 explains 0.98% of the genetic variation and mainly separates

two Siberian populations (Buryat and Yakut) and three Southeast

Asian populations (Cambodians, Iban, and Thai) from the other

East Asian populations (Figure 5B). The Tibetan population is also

separated by PC2, but on the opposite side to the Siberians and

Southeast Asians. Overall, PC1 largely matches geography in the

north-south direction, and PC2 shows only a partial similarity to

the east-west direction.

The imperfect match between PCA coordinates and geography

is reflected by a relatively low Procrustes similarity score of

t0~0:640, which, however, is still statistically significant with

P~0:00038. The optimal transformation rotates the PCA map

67.270 counterclockwise prior to superposition on the geographic

map (Figure 5B). Interestingly, excluding populations one at a

time, we found that the PCA coordinates were reflected over PC1

when Procrustes-transformed to match the geographic coordinates

if either the Iban, Tibetan, or Yakut population was excluded

(Figure S6). Such abrupt changes of the Procrustes transformation

are consistent with the fact that PC2 matches less closely with

geography; a reflection over PC1 has a small effect on the

similarity score. The Procrustes similarity score with geography

can be substantially increased by excluding Japanese (t’’~0:755,

Pv10{5); other than the Japanese population, Iban, Thai, and

Yakut have the largest effect on the similarity scores both with

geography and with the original PCA (Table S9).

Central/South Asia
Our last example focused on Central/South Asia, using an

initial sample of 372 individuals from 18 populations. Ten

individuals were excluded as PCA outliers, leaving 362 individuals

from 18 populations for the final analysis (Figure 6A).

The first two components of the PCA anlaysis account for

1.59% and 1.31% of the total genetic variation, respectively.

Overall, the PCA pattern for the separate anlaysis of Central/

South Asian populations is similar to the pattern for the same set of

Figure 3. Procrustes analysis of genetic and geographic coordinates of Sub-Saharan African populations, excluding hunter-
gatherer populations and Mbororo Fulani. (A) Geographic coordinates of 23 populations. (B) Procrustes-transformed PCA plot of genetic
variation. The Procrustes analysis is based on the unprojected latitude-longitude coordinates and PC1-PC2 coordinates of 348 individuals. PC1 and
PC2 are indicated by dotted lines, crossing over the centroid of all individuals. PC1 and PC2 account for 1.34% and 0.69% of the total variance,
respectively. The Procrustes similarity is t0~0:790 (Pv10{5). The rotation angle of the PCA map is h~16:110 .
doi:10.1371/journal.pgen.1002886.g003
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populations in our analysis of all of Asia (Figure 4). After rotating

the PCA coordinates 11.780 counterclockwise, we obtained a

Procrustes similarity score of 0.737 (Pv10{5) when comparing

PCA coordinates to geography (Figure 6B). Most populations from

Pakistan cluster closely on the first two PCs except for the Hazara

population, which clusters with the Uygur population and aligns

distantly from its sampling location. When excluding Hazara, the

Procrustes similarity score to geography increases from 0.737 to

t’’~0:769, larger than for any other exclusion (Table S10).

Excluding Irula has the second largest effect on the similarity score

to geography, but more interestingly, this exclusion has the largest

effect on the PCA coordinates (smallest value for t’ in Table S10).

A closer examination of the PCA results reveals that when Irula is

excluded, the Kalash population in Pakistan is separated from the

other Pakistani populations and appears as an isolated group in the

north (results not shown). This result accords with the identifica-

tion of this isolated group as distinct in previous studies [8,36].

Comparison across geographic regions
We have found that significant similarity between genes and

geography exists in general at different geographic levels (Table 2).

The highest similarity score was found in the data from Asia,

followed by Sub-Saharan Africa when five outlier populations

were excluded, and by Europe. Five of the six analyses had P-

values smaller than 10{5, and only the data from East Asia had a

nonzero P-value in 100,000 permutations. When comparing the

permutation distributions of the similarity score (Figure 7),

however, a difference in the significance levels is evident for the

five examples with Pv10{5. The worldwide and Asian datasets

have similarity scores t0 considerably exceeding the similarity

scores from all 100,000 permutations (Figure 7A and 7D). By

contrast, although the European, Sub-Saharan African, and

Central/South Asian datasets have similarity scores higher than

that of the worldwide dataset, their similarity scores are closer to

the corresponding permutation distributions (Figure 7B, 7C, and

7F), indicating relatively high P-values compared to the worldwide

data.

To examine the robustness of our results to the number of

SNPs analyzed, we repeated our analyses with subsets of

randomly selected loci. We found that our Procrustes similarity

scores between genes and geography are quite robust as long as

enough SNPs (w10,000) are used (Figure 8). Indeed, for the

worldwide and Asian datasets, *1,000 SNPs are sufficient to

obtain a similarity score between genes and geography close to

the score obtained using all 32,991 SNPs. For the African, East

Asian, and Central/South Asian datasets, the number of SNPs

needed increases to *4,000. Interestingly, many more SNPs

are required for the European dataset to reach a high similarity

score between genes and geography. Although the increase of

the similarity score for the European dataset becomes slow

Figure 4. Procrustes analysis of genetic and geographic coordinates of Asian populations. (A) Geographic coordinates of 44 populations.
(B) Procrustes-transformed PCA plot of genetic variation. The Procrustes analysis is based on the unprojected latitude-longitude coordinates and PC1-
PC2 coordinates of 749 individuals. PC1 and PC2 are indicated by dotted lines, crossing over the centroid of all individuals. PC1 and PC2 account for
5.42% and 0.85% of the total variance, respectively. The Procrustes similarity is t0~0:849 (Pv10{5). The rotation angle of the PCA map is h~5:050 .
doi:10.1371/journal.pgen.1002886.g004
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when the number of SNPs exceeds 10,000, it continues even

when the number of SNPs is as high as *30,000 (Figure 8). If

we use the same 197,146 SNPs as used by Novembre et al. [9],

the similarity score between genes and geography for the

European example would become 0.799, slightly higher than

the value for our Sub-Saharan African example based on

32,991 SNPs. This larger number of SNPs required might

reflect a relatively homogeneous population structure in Europe

that requires more genetic markers to characterize subtle

differentiation.

To explore the relationship between genetic differentiation and

the number of SNPs required to produce convergence in the

Procrustes similarity, we computed FST across populations, a

measurement of population differentiation, for all of our datasets,

on the basis of the 32,991 autosomal SNP markers. We found

FST~0:212% for the European dataset, much smaller than the

values of 9.704% and 4.706% for the worldwide and Asian

datasets. The values of FST for the Sub-Saharan Africans (without

outlier populations), the East Asians, and the Central/South

Asians are 1.334%, 1.874% and 2.140%, respectively. As

expected, datasets that have less population differentiation, as

indicated by smaller FST values, need more markers to reveal

geographic structure in the PCA plot, consistent with a previous

finding that the dataset size required for the population structure

to be evident in PCA is inversely related to FST [12]. Further, we

found FST and the sum of the proportions of variance explained

by PC1 and PC2 to be positively correlated (Pearson correlation

r~0:996, Figure 9). This strong linear correlation is not surprising

because of the connection between FST and the proportions of

variance: FST can be computed as the proportion of the variance

in an allelic indicator variable contributed by between-population

differences [42]. It has been shown under a two-population model

that the proportion of the total variance explained by PC1 is

approximately equal to FST [43]. Here, we have observed a

qualitatively similar relationship.

Discussion

Both simulation-based and theoretical studies have shown that

under spatial models in which migration and gene flow occur in a

homogeneous manner over short distances, a similarity between

PCA maps of genetic variation and geography is predicted [43,44].

In this study, we have systematically assessed this similarity in

different geographic regions using a shared set of autosomal SNPs

and a shared statistical approach. We have found that although

they generally explain a relatively small proportion of the total

genetic variation, the first two principal components in PCA often

produce a map that resembles the geographic distribution of

sampling locations. Our results quantitatively demonstrate the

general existence in different geographic regions of a considerable

Figure 5. Procrustes analysis of genetic and geographic coordinates of East Asian populations. (A) Geographic coordinates of 23
populations. (B) Procrustes-transformed PCA plot of genetic variation. The Procrustes analysis is based on the unprojected latitude-longitude
coordinates and PC1-PC2 coordinates of 334 individuals. PC1 and PC2 are indicated by dotted lines, crossing over the centroid of all individuals. PC1
and PC2 account for 1.58% and 0.98% of the total variance, respectively. The Procrustes similarity statistic is t0~0:640 (P~0:00038). The rotation
angle of the PCA map is h~67:270 .
doi:10.1371/journal.pgen.1002886.g005
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similarity between genes and geography, supporting the view that

geography, in the form of incremental migration and gene flow

primarily with nearby neighbors, plays a strong role in producing

human population structure.

One particularly interesting observation concerns our analysis

of the Asian dataset. Asia contains the Himalaya region, a strong

geographic barrier to gene flow that has generated noticeable

genetic differentiation between populations on opposite sides [45].

Such barrier effects can produce a distortion of PCA maps from

those expected under homogeneous isolation-by-distance models

[43,44], leading to a decrease in the similarity to geography.

However, although the concordance of a PCA plot with

geography is perhaps best known for Europe — which does not

have a barrier of comparable importance to the Himalayas — we

obtained the unexpected result that in spite of the Himalaya

barrier, the Procrustes similarity score t0 was actually highest in

Asia. When further examining the population structure on

separate sides of the Himalayas, we found lower similarity scores

between genes and geography in our East Asian and Central/

South Asian samples. Especially for the East Asian sample, our

results indicate weaker correlation between genes and geography

in the east-west direction.

To make the similarity scores between genes and geography

commensurable for different datasets, we performed our analyses

with the same markers and the same statistical approach.

However, one aspect of the analysis that is not homogeneous

across datasets is the nature of the geographic coordinates. For

example, while most of the analyses employed population

sampling locations, for the European dataset, coordinates did

not necessarily represent sampling locations. Sampling locations

may also vary in the extent to which they represent long-term

locations where groups have resided. One example that highlights

this issue is the Xibo population, which was sampled in

northwestern China, but which clusters genetically with popula-

tions in northeastern China (Figure 5). This group is known to

have migrated westward from near Shenyang in northeastern

China about 250 years ago [40,41], and if we were to use the

coordinates of Shenyang (41:80N, 123:40E) for Xibo rather than

the sampling location, t0 would increase from 0.640 to 0.654 for

the East Asian dataset, from 0.849 to 0.859 for the Asian dataset,

and from 0.705 to 0.709 for the worldwide dataset.

Additional limitations apply to our geographic analysis. In all of

the datasets, population-level rather than individual-level coordi-

nates were used, so that all individuals from the same population

were assigned to a single geographic location. This approach can

potentially obscure substructure within populations. For example,

although both the northern and southern Han Chinese groups

from the HGDP dataset were assigned to the same location, they

can be genetically distinguished from each other, with the

northern group clustering closer to the northern populations in

China (Figure 5). Use of individual-level coordinates might lead to

higher values of the similarity score t0. Another concern is that the

choice of a map projection (including the projection that consists

of using unprojected latitudes and longitudes as a rectangular

Figure 6. Procrustes analysis of genetic and geographic coordinates of Central/South Asian populations. (A) Geographic coordinates of
18 populations. (B) Procrustes-transformed PCA plot of genetic variation. The Procrustes analysis is based on the unprojected latitude-longitude
coordinates and PC1-PC2 coordinates of 362 individuals. PC1 and PC2 are indicated by dotted lines, crossing over the centroid of all individuals. PC1
and PC2 account for 1.59% and 1.31% of the total variance, respectively. The Procrustes similarity statistic is t0~0:737 (Pv10{5). The rotation angle
of the PCA map is h~11:780 .
doi:10.1371/journal.pgen.1002886.g006
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coordinate system) can have different effects in geographic regions

at different distances from the equator, as the level of distortion of

the surface of the earth varies with the choice of projection. This

issue is expected to be of greatest concern in analyses at high

latitudes or in datasets with a wide range of latitudes.

We note that theoretical work and simulation studies have

found that results from the PCA approach can be sensitive to the

sample size distribution over geographic space [43,44,46]. In most

of our analyses excluding one population at a time, patterns in

PC1 and PC2 did not differ greatly from analyses in which all

populations were included. However, exclusions of genetically

distinctive populations, populations that were geographically

distant from the center of a dataset, or populations with large

sample sizes sometimes had sizeable effects on t0. In some

analyses, particularly in considering the Luhya and Maasai

populations from the HapMap, we therefore included only a

subset of available individuals in order to reduce the influence of

the large sample sizes for these populations. More generally, an

analysis of the role of the geographic distribution of the sample can

be performed by analysis of subsamples of a full dataset with

different levels of geographic unevenness. A previous analysis of

population structure inference using STRUCTURE for a variety of

samples with different geographic distributions did not find a

particularly strong role for the geographic dispersion of the sample

[47], but the issue has not yet been systematically investigated with

PCA.

Through a combination of PCA and Procrustes analysis, we

have investigated genes and geography using the same standard-

ized approach in different regions. The general observation of a

concordance of genes and geography in different regions and at

different geographic levels can provide a foundation for refinement

of methods for inferring local geographic origin of human

individuals from their genotypes [e.g. 9,19,48]. In addition, our

computations illustrate the use of Procrustes analysis in assisting

the interpretation of PCA, such as in comparing PCA maps to

different types of spatial maps and in assessing the impact of

certain populations or individuals on PCA results. Similar

applications of PCA and Procrustes approaches can be used to

evaluate evolutionary models by comparing PCA maps obtained

from observed data to those obtained from simulated data

generated by these models. With the incorporation of the

Procrustes similarity score for quantifying patterns in PCA, results

from PCA can potentially find new uses in additional applications

in population-genetic studies.

Materials and Methods

Genotype data
We examined genome-wide SNP datasets previously reported in

several studies [9,23,26,31,32]. The data of Pemberton et al. [31]

merged unrelated samples from earlier datasets obtained from the

HGDP [7] and HapMap Phase III [33,49]. Some of the data of

Xing et al. [23] were previously reported in an earlier paper of

Xing et al. [22].

Because the datasets were genotyped on different genotyping

platforms, including Illumina 650 K [31], Illumina Human 1 M

[31], Affymetrix 500 K [9,26], Affymetrix NspI 250 K [23], and

Affymetrix 6.0 [23,31,32], we identified a shared set of 32,991

autosomal SNPs included in all five datasets [9,23,26,31,32]. This

number was smaller than the maximum possible set of overlapping

SNPs shared among these genotyping platforms, because some

SNPs were excluded during the quality control procedures of the

studies that originally published the data [9,23,26,31,32]. At 6,549

among these 32,991 markers, the datasets from Novembre et al. [9]
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Figure 7. Histograms of the Procrustes similarity t of 100,000 permutations for analyses in Figure 1, Figure 2, Figure 3, Figure 4,
Figure 5, and Figure 6. The blue vertical lines indicate the value of t0 . (A) The worldwide dataset in Figure 1 (t0~0:705, Pv10{5). (B) The European
dataset in Figure 2 (t0~0:780, Pv10{5). (C) The Sub-Saharan African dataset in Figure 3 (t0~0:790, Pv10{5). (D) The Asian dataset in Figure 4
(t0~0:849, Pv10{5). (E) The East Asian dataset in Figure 5 (t0~0:640, P~0:00038). (F) The Central/South dataset in Figure 6 (t0~0:737, Pv10{5).
doi:10.1371/journal.pgen.1002886.g007
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and Bryc et al. [26] had genotypes given for opposite strands when

compared to the datasets of Xing et al. [23], Pemberton et al. [31],

and Simonson et al. [32]. In these instances, we converted the

genotypes from Novembre et al. [9] and Bryc et al. [26] to the

opposite strand, so that genotypes were consistent across datasets

from different sources. In total, we obtained genotype data on

32,991 autosomal SNPs for 4,257 samples from 149 populations

worldwide, with dense sampling from Asia, Europe, and Sub-

Saharan Africa. In our final dataset, the physical distance between

pairs of nearby SNPs has mean 84 kb (median 45 kb).

We next created six datasets at different geographic scales,

including a worldwide sample, continental samples for Europe,

Sub-Saharan Africa, and Asia, and subcontinental samples from

East Asia and Central/South Asia (Figure S7, Table 1). For the

worldwide example, we included 938 unrelated individuals from

53 populations in the HGDP [7,31]. For the European sample, we

used a set of individuals that was nearly identical to that analyzed

by Novembre et al. [9], containing 1,385 individuals from 37

populations defined by ancestral origins. We did not include two

French individuals (sample ID 31645 and 32480) that were

included by Novembre et al. [9] but that are not found in the

release we obtained of the POPRES dataset in the NCBI dbGaP

database [50,51]. For Sub-Saharan Africa, we integrated data on

African populations from three sources [23,26,31], including 30

unrelated Luhya (LWK) individuals and 30 unrelated Maasai

(MKK) individuals, both randomly selected from the HapMap

Phase III [31]. Because some populations in Sub-Saharan Africa

are known to be genetically distinctive when compared to most

other Sub-Saharan Africans [7,8,23,26,36,37], we created two

datasets for Sub-Saharan Africa, one including and the other

excluding these distinctive populations (!Kung, San, Biaka Pygmy,

Mbuti Pygmy, and Mbororo Fulani). When excluding all five of

these populations, we have 356 individuals from 23 Sub-Saharan

African populations. Including them, we have 422 individuals

from 28 groups. Note that both Pygmy populations that we

examined are from the HGDP [7,31], and we did not include the

Mbuti Pygmy data from Xing et al. [23]. Further, we also did not

include the Luhya individuals from Xing et al. [23]; these

individuals are a subset of those of the HapMap [31,33]. As in

Xing et al. [23], we analyzed three Sotho samples and five Tswana

samples together as a single population, labeled as ‘‘Sotho/

Tswana.’’

Our sample from Asia has 760 individuals from 44 populations

with sampling locations distributed widely across Asia. These data

include 27 populations from the HGDP dataset [7,31], 16

populations from Xing et al. [23], and one population (Tibetan)

from Simonson et al. [32]. For populations studied by both

Pemberton et al. [31] and Xing et al. [23] (Cambodian, Han

Chinese, and Japanese), we only included the HGDP samples

from Pemberton et al. [31]. Samples for East Asia and Central/

South Asia are subsets of the Asian sample. The East Asian sample

consists of 341 individuals from 23 populations: 18 populations

from the HGDP dataset [7,31], 4 populations from Xing et al. [23],

and the Tibetan population from Simonson et al. [32]. The

Central/South Asian sample has 372 individuals from 18

populations in total, including 9 populations each from the HGDP

dataset [7,31] and the Xing et al. dataset [23].

We applied two additional processing steps on each dataset to

remove samples with high missing data rates and samples that

appear to be outliers. First, we removed individuals with more

than 5% missing data in the 32,991 SNPs. Next, in each analysis,

we used an iterative PCA approach to identify and remove outlier

Figure 8. Procrustes analyses of genetic and geographic coordinates based on different numbers of loci. The same sets of L randomly
selected markers were used to generate PCA maps of genetic variation to compare with geographic maps for different regions.
L~500,1000,:::,32500.
doi:10.1371/journal.pgen.1002886.g008
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individuals, as outliers can potentially distort PCA maps of genetic

variation [52]. After applying PCA on a dataset, individuals

greater than 10 standard deviations from the mean PC position on

at least one of the top 10 PCs were considered outliers and were

removed from the dataset. This procedure was repeated iteratively

until no more outliers were detected. For all datasets, only a small

proportion of samples were identified as outliers and removed by

this procedure (Table 1). The data processing procedures are

illustrated in Figures S7, S8, S9, and are summarized in Table 1.

Individuals that were identified as PCA outliers are listed in

Table S11.

Geographic coordinates
We assigned all individuals from the same population to a single

geographic location, as listed in Tables S1, S2, S3. For the HGDP

samples [31], we used previously reported coordinates as the

geographic locations for all populations (Table 1 in [45]). The

geographic locations for the European dataset were reported in

Table S3 of Novembre et al. [9], and represent countries of origin.

The geographic coordinates for the African populations from Bryc

et al. [26] are sampling locations, and we used the values reported

by Tishkoff et al. [37] in their Table S1. Geographic coordinates

for populations from Xing et al. [23] were kindly provided by J.

Xing. For the Tibetan samples, we used the sampling location

reported by Simonson et al. [32]. For the two HapMap populations

included in this study (Luhya and Maasai), we used the sampling

locations reported by HapMap [33].

We used longitude and latitude measured in degrees as our

geographic coordinates (l,w) for all datasets except the worldwide

dataset. Latitudes in the southern hemisphere and longitudes in

the western hemisphere were denoted by negative values. For the

worldwide dataset, we shifted the Americas by adding 3600 to

longitudes smaller than {250. We then used the Gall-Peters

projection, an equal-area projection that preserves distance

along the 450N parallel, to obtain rectangular coordinates

(pl
ffiffiffi
2
p

=3600,
ffiffiffi
2
p

sin w) as our geographic coordinates. For other

datasets, we used unprojected longitude-latitude coordinates.

Principal components analysis
We coded the genotype data for each dataset by an N|L

matrix C, in which Ci‘ counts the number of copies of a reference

allele at locus ‘ of individual i, N is the number of individuals, and

L is the number of loci. For autosomal SNPs, Ci‘ is 0, 1, 2, or

missing. We first ignored missing data and estimated the reference

allele frequency among nonmissing genotypes, or p̂p‘. Following the

smartpca program [12], we standardized the nonmissing entries in

C by

Xi‘~(Ci‘{2p̂p‘)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p‘(1{p̂p‘)

p
, ð1Þ

where X is a matrix with the same dimensions as C. If a locus was

monomorphic in a dataset (p̂p‘~0 or 1), eq. 1 is undefined, and we

set all entries in the column of X for this locus to zero. Entries

representing missing data were set to zero in X as well.

Figure 9. Relationship between FST and the proportion of genetic variation explained by the first two components of the PCA. Both
the main analyses of the paper in Table 2 and the supplementary analyses of Sub-Saharan Africa, in which certain populations excluded from the
main analysis are included, are considered in obtaining the regression line. The values on the x-axis were obtained by summing the proportions of
variance explained by PC1 and PC2 (columns 2 and 3 in Table 2, columns 6 and 7 in Table S7). FST values were estimated from the same datasets as
used in the PCA (column 7 in Table 2, column 11 in Table S7). The dashed line indicates the linear least squares fit of y~0:902x{0:416. The Pearson
correlation is r~0:996.
doi:10.1371/journal.pgen.1002886.g009
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We performed PCA by applying the function eigen in R (www.r-

project.org) to the N|N matrix M~XX T [43]. The coordinates

of the N individuals on the jth PC are given by s
1=2
j ~vvj , where sj is

the jth eigenvalue of M, sorted in decreasing order, and~vvj is the

corresponding eigenvector. The proportion of variance explained

by the kth PC is calculated as sk=
PJ

j~1 sj , where J is the total

number of eigenvectors of M. This quantity measures the

variation among individuals along the kth PC direction, relative

to the total variance in the standardized genotypic matrix X . In

our examples, L&N, and J~N{1 because X has rank N{1
after standardization (eq. 1).

We note that some studies have used the eigenvectors~vvj directly

as PCs, so that all PCs have equal variance. We follow an

alternative convention [43,53], reporting PCs using s
1=2
j ~vvj , so that

the proportions of variance explained by each PC are reflected on

the PCA plot. In PCA plots superimposed on geographic maps,

because horizontal and vertical axes are plotted on different scales,

PC1 and PC2 can appear to not be perpendicular.

Procrustes analysis and permutation test
We applied Procrustes analysis [13,15] to compare the

individual-level coordinates of the first two components (PC1

and PC2) in the PCA performed on the SNP data to the

geographic coordinates. Procrustes analysis minimizes the sum of

squared Euclidean distances between two sets of points (two

‘‘maps’’) by transforming one set of points to optimally match the

other set, while preserving the relative pairwise distances among all

points within maps. Possible transformations include translation,

scaling, rotation, and reflection. The similarity between two maps

is then quantified by a Procrustes similarity statistic t0~
ffiffiffiffiffiffiffiffiffiffiffi
1{D
p

, in

which D is the minimum sum of squared Euclidean distances

between the two maps across all possible transformations. D,

which is given by equation 6 in Wang et al. [15], has been scaled to

have minimum 0 and maximum 1. The similarity statistic t0

therefore also ranges from 0 to 1. In our analyses, we fixed the

geographic coordinates and Procrustes-transformed the PCA

coordinates in order to superimpose the PCA maps on the

geographic maps. In addition to t0, we also report the rotation

angle h of the PCA map as given by the Procrustes analysis,

measured in degrees counterclockwise.

To test the statistical significance of t0, we used a permutation

test. In each permutation, we randomly permuted the population

geographic locations, assigning all individuals from the same

population to a single geographic location in the permuted dataset.

We then applied Procrustes analysis to compute the similarity

score t between the PCA coordinates and the randomly permuted

geographic coordinates. We calculated the P-value as P(twt0),
representing the probability of observing a similarity statistic

higher than t0 under the null hypothesis that no geographic

pattern exists in the population structure. For each dataset, we

employed 100,000 permutations for the permutation test.

Analyses with populations excluded individually
We investigated the effect of each population on our PCA and

Procrustes analysis using a leave-one-out approach. For each

dataset, we excluded one population at a time and repeated PCA

to obtain a new set of genetic coordinates (for each population

excluded, this PCA started from the same final set of individuals

after exclusions owing to missing data and PCA outliers, and we

did not repeat the search for outliers). We then performed two

Procrustes analyses. In the first one, we compared the new PCA

coordinates and the original PCA coordinates obtained before

removing any population. This comparison was based on the

common set of individuals included in both analyses, and its

similarity score was denoted t’. In the second Procrustes analysis,

we computed the similarity between the new set of PCA

coordinates and the corresponding geographic coordinates,

denoting the similarity score by t’’.

Subsets of loci
To investigate the effect of the number of markers on our

results, we created a series of marker lists by randomly selecting L
loci from the 32,991 total loci. These marker lists were selected

independently of each other and had L~500,1000,:::,32500. We

then repeated PCA and Procrustes analysis for each geographic

region using genotypes at the loci in each of our marker lists. For

Sub-Saharan Africa, we used the dataset that excludes hunter-

gatherer populations and the Mbororo Fulani. Given L, the

analyses for different geographic regions are based on the same set

of markers, so that their results are comparable.

FST estimation
We calculated FST in each dataset using Weir and Cockerham’s

estimator (eq. 10 in [54]) based on all 32,991 loci.

Supporting Information

Figure S1 Procrustes analysis of genetic and geographic

coordinates of European populations, when reducing the maximal

sample size to 50. That is, for each population that has sample size

Nw50 in Figure 2, we reduce the sample size to 50 by randomly

excluding N{50 individuals. (A) Geographic coordinates of 37

populations. (B) Procrustes-transformed PCA plot of genetic

variation. The Procrustes analysis is based on the unprojected

latitude-longitude coordinates and PC1-PC2 coordinates of 721

individuals. PC1 and PC2 are indicated by dotted lines, crossing

over the centroid of all individuals. Population abbreviations can

be found in the caption of Figure 2. PC1 and PC2 account for

0.35% and 0.25% of the total variance, respectively. The

Procrustes similarity is t0~0:777 (Pv10{5). The rotation angle

of the PCA map is h~{77:750. FST~0:230%.

(PDF)

Figure S2 Procrustes analysis of genetic and geographic

coordinates of Sub-Saharan African populations, excluding

Maasai (MKK) as well as Mbororo Fulani and four hunter-

gatherer populations. (A) Geographic coordinates of 22 popula-

tions. (B) Procrustes-transformed PCA plot of genetic variation.

The Procrustes analysis is based on the unprojected latitude-

longitude coordinates and PC1-PC2 coordinates of 318 individ-

uals. PC1 and PC2 are indicated by dotted lines, crossing over the

centroid of all individuals. PC1 and PC2 account for 0.89% and

0.75% of the total variance, respectively. The Procrustes similarity

statistic is t0~0:832 (Pv10{5). The rotation angle of the PCA

map is h~{0:240.

(PDF)

Figure S3 Procrustes analysis of genetic and geographic

coordinates of Sub-Saharan African populations, including 23

populations in Figure 3 plus Mbororo Fulani and four hunter-

gatherer populations (Biaka Pygmy, Mbuti Pygmy, !Kung, and

San). (A) Geographic coordinates of all 28 populations. (B-G)

Procrustes-transformed PCA plots of genetic variation. (B) All 28

populations. (C) 23 populations and Mbororo Fulani. (D) 23

populations and Biaka Pygmy. (E) 23 populations and Mbuti

Pygmy. (F) 23 populations and !Kung. (G) 23 populations and San.

Results are summarized in Table S7.

(PDF)
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Figure S4 Histograms of the Procrustes similarity t of 100,000

permutations for the Sub-Saharan African examples in Figure S3.

The blue vertical lines indicate the value of t0. (A) All 28

populations (corresponding to Figure S3B, t0~0:548,

P~0:00040). (B) 23 populations and Mbororo Fulani (Figure

S3C, t0~0:605, P~0:00005). (C) 23 populations and Biaka

Pygmy (Figure S3D, t0~0:559, P~0:00278). (D) 23 populations

and Mbuti Pygmy (Figure S3E, t0~0:543, P~0:00120). (E) 23

populations and !Kung (Figure S3F, t0~0:721, Pv10{5). (F) 23

populations and San (Figure S3G, t0~0:725, Pv10{5).

(PDF)

Figure S5 Procrustes analysis of genetic and geographic

coordinates of Asian populations, excluding Irula. (A) Geographic

coordinates of 43 populations. (B) Procrustes-transformed PCA

plot of genetic variation. The Procrustes analysis is based on the

unprojected latitude-longitude coordinates and PC1-PC2 coordi-

nates of 725 individuals. PC1 and PC2 are indicated by dotted

lines, crossing over the centroid of all individuals. PC1 and PC2

account for 5.55% and 0.74% of the total variance, respectively.

The Procrustes similarity statistic is t0~0:871 (Pv10{5). The

rotation angle of the PCA map is h~2:610.
(PDF)

Figure S6 Procrustes analysis of genetic and geographic

coordinates of East Asian populations, excluding Tibetans. (A)

Geographic coordinates of 22 populations. (B) Procrustes-trans-

formed PCA plot of genetic variation. The Procrustes analysis is

based on the unprojected latitude-longitude coordinates and PC1-

PC2 coordinates of 303 individuals. PC1 and PC2 are indicated by

dotted lines, crossing over the centroid of all individuals. PC1 and

PC2 account for 1.72% and 1.02% of the total variance,

respectively. The Procrustes similarity statistic is t0~0:655
(P~0:00025). The rotation angle of the PCA map is h~80:440.
(PDF)

Figure S7 Data preparation procedure for creating datasets for

different geographic regions.

(PDF)

Figure S8 Data-processing procedures for datasets from differ-

ent geographic regions. (A) The worldwide dataset in Figure 1. (B)

The European dataset in Figure 2. (C) The Sub-Saharan African

dataset in Figure 3 (excluding Mbororo Fulani and four hunter-

gatherer populations). (D) The Asian dataset in Figure 4. (E) The

East Asian dataset in Figure 5. (F) The Central/South Asian

dataset in Figure 6.

(PDF)

Figure S9 Data-processing procedure for the supplementary

example of Sub-Saharan Africa when including Mbororo Fulani

and four hunter-gatherer populations (Biaka Pygmy, Mbuti

Pygmy, !Kung, and San). Similar procedures (not shown) were

also used to prepare datasets for the analyses in Figure S3C-S3G,

in each of which only one outlier population was included.

(PDF)

Table S1 Populations included in this study (Part I).

(PDF)

Table S2 Populations included in this study (Part II).

(PDF)

Table S3 Populations included in this study (Part III).

(PDF)

Table S4 Change of the Procrustes similarity when excluding

one population from the worldwide example.

(PDF)

Table S5 Change of the Procrustes similarity when excluding

one population from the European example.

(PDF)

Table S6 Change of the Procrustes similarity when excluding

one population from the Sub-Saharan African example.

(PDF)

Table S7 Summary of the results for Sub-Saharan Africa when

all or one of five additional African populations are included

(corresponding to Figure S3).

(PDF)

Table S8 Change of the Procrustes similarity when excluding

one population from the Asian example.

(PDF)

Table S9 Change of the Procrustes similarity when excluding

one population from the East Asian example.

(PDF)

Table S10 Change of the Procrustes similarity when excluding

one population from the Central/South Asian example.

(PDF)

Table S11 Samples identified as PCA outliers in the analyses for

different geographic regions.

(PDF)
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