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Abstract

The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained
mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic
homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm
methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic
and disease studies consistently points to a strong association of germline hypomethylation and genomic instability.
Specifically, methylation deserts, the ,1% fraction of the human genome with the lowest methylation in the germline,
show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of
chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy
number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic
hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural
mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–
mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar
disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more
concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective
mutability, evolution, and human disease.
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Introduction

Array comparative genomic hybridization (aCGH) studies [1] and

massively parallel sequencing [2] revealed that approximately 10%

of the human genome is structurally polymorphic at the submicro-

scopic scale (,4 Mb), a much larger fraction than affected by single

nucleotide polymorphisms (SNPs). Structural mutations that occur in

a number of well studied structurally unstable loci cause disease [3].

The discovery of these structurally mutable disease-associated loci

gave rise to the concept of genomic disorders [3,4]. Their detailed

analysis revealed the role of non-allelic homologous recombination

(NAHR) and low copy repeats (LCR) in mediating recurrent

deletions, duplications and inversions [5]. Genome-wide analyses of

regions between paralogous LCRs in direct orientation have since

led to the successful prediction of novel LCR-mediated genomic

disorders [6], reinforcing the role of NAHR and LCRs. A potential

role for LCR in inverted orientation has been elucidated recently for

a specific type of complex duplication with an embedded triplicated

segment in inverse orientation, DUP-TRP/INV-DUP [7].

The process of chromothripsis [8] has been proposed as a model

to explain instability in 1–3% of all cancers resulting in a highly

complex pattern of genomic rearrangements with multiple CNVs.

The patterns of genomic instability observed in cancer have also

been observed in complex genomic rearrangements (CGR) in

human germline, pointing to similar mechanistic underpinnings [9].

The distribution of structural mutations in the human genome is

highly selective, characterized by many hotspots of structural

mutability. Evolutionary analyses of recent structural mutations in

the human genome reveal that structural mutation hotspots

frequently give rise to new LCRs [10,11], indicating that a

significant fraction of the observed association of LCRs and

mutability may be explained by the increased production of LCRs

at hypermutable loci. The recent discovery of a genome-wide

association of LCRs with somatic mutability in cancer [12], and
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structural breakpoints in the mouse genome independent of LCR

homology [13] further support the hypothesis that LCRs may not

always cause instability but may preferentially arise at the loci that

are inherently mutable both in cancer and in germline.

Recent high-resolution genome analyses of genomic disorder

loci revealed complex patterns of rearrangements not consistent

with the NAHR mechanism [14,15,16,17]. The mechanisms

causing mutability in such structurally mutable hotspots remain

elusive. Microhomologies and other sequence-level features point

to the role of Fork Stalling and Template Switching (FoSTeS) and

Microhomology-Mediated Break-Induced Replication (MMBIR)

mechanisms [16] in the processing and repair of one-ended,

double-stranded DNA [18]. However, these are repair mecha-

nisms, are not causing mutations, and have not explained the

highly selective distribution of structural mutability nor predicted

genomically unstable loci.

Multiple independent lines of evidence point to a possible role of

the epigenome in structural mutability. Chromatin modifications

are known to play a significant role in chromosome maintenance

[19], including DNA repair [20,21], and recombination [22,23].

Chromatin and the epigenome regulate mutability at smaller scales,

including increased mutability of 5-methyl cytosine [24], retroposon

silencing [25,26,27], and preferential retrotransposition into specific

chromatin states [28]. Genome-wide hypomethylation has been

repeatedly observed in structurally unstable cancer genomes

[29,30]. Mutations in the methyltransferase DNMT3B have been

shown to cause hypomethylation and genomic instability in

juxtacentromeric regions in humans [31]. Mutations in the mouse

homolog of methyltransferase DNMT1 have been shown to cause

genomic instability [32]. Analyses of the structurally hypermutable

genomes of gibbon species revealed association of hypomethylation

with structurally mutable loci [33]. Finally, the recent discovery of

the role of the DNA-break inducing base-excision repair pathway in

genomic demethylation of primordial germ cells (PGCs) during fetal

development in mouse [34] provides a possible mechanistic link

between genomic hypomethylation and genomic instability in the

mammalian germline.

Genomic hypomethylation and LCR-mediated NAHR are

therefore the two genome architectural features shown to be

associated with structural changes. We here systematically examine

and quantitate these associations. To assess the degree of association

of germline methylation levels with structural instability, we examine

four sperm methylome maps, including two high read coverage

(156combined coverage) from a recent study [35] and two maps we

obtained by performing whole-genome bisulfite sequencing of

sperm samples from two anonymous donors at low coverage (2.56
combined coverage). To improve detection of structural mutations

associated with LCRs and NAHR, we perform a comprehensive

detection of human LCRs in the human genome and design an

aCGH array for diagnostic use in the BCM Medical Genetics

Laboratories (BCM-MGL) targeting NAHR susceptible regions

between directly oriented paralogous LCRs (DP-LCRs) with size

larger than 10 Kbp, separated by a distance less than 10 Mb of

unique genomic sequence. We combine evidence of structural

mutations from the following three sources: 1) human-specific

genomic rearrangements; 2) structural polymorphisms in the

human population, including copy-number variation (CNV) data

from BCM-MGL and publicly available CNV data sets [36,37,38];

and 3) recent disease studies of schizophrenia [39], bipolar disorder

[40], developmental delay [41], and autism [42]. Our analyses

reveal a pattern of association of structural mutability with germline

hypomethylation comparable in magnitude to the association

between structural mutability and LCR-mediated NAHR.

Results

Construction and Comparative Analysis of Sperm
Methylomes by Whole-Genome Bisulfite Sequencing

To examine a potential association between germline methyl-

ation and structural mutability in humans, we first derived two

sperm methylome maps by sequencing at combined 2.56genome

coverage (one at 1.26 and the other at 1.36) bisulfite-treated

genomic DNA samples extracted from the sperm of two

anonymous donors. Methylation levels were calculated for each

of the 28,705 non-overlapping 100 Kbp windows covering the

hg18 human genome assembly as the ratio between the number of

methylated CpGs and the total number of CpGs sampled in reads

mapping within the window. Windows with less than 20 CpG

sampling events were removed from the subsequent analysis to

avoid bias due to low sequence mappability. Both samples had

more than 95% of windows with reads covering more than 40% of

the CpGs within the window (Figure S7B). Due to the low 2.56
combined coverage, the methylation levels of individual CpGs

could not be determined with accuracy, but the average

methylation levels at 100 Kbp level of resolution could be

determined with high accuracy. Specifically, the methylation level

of .98% windows was determined with ,10% error with .95%

probability (Table S10). The two methylomes were highly

concordant at 100 Kbp level of resolution (linear correlation

coefficient = 0.96). For the purpose of our analyses, an average

sperm methylome at 2.56coverage was constructed as an average

of the two concordant methylomes. Methylation deserts were

operationally defined as the 100 Kbp windows with the lowest 1%

methylation level in the average sperm methylome. A 5%

threshold was also used for some analyses, as noted below.

We repeated our analyses using an independently obtained pair

of sperm methylomes generated by Molaro et al. [35] from bisulfite

sequencing data at a combined 156 genome coverage. To ensure

deep sampling of CpGs in each window, only windows with more

Author Summary

The human genome contains many loci with high
incidence of structural mutations, including insertions
and deletions of chromosomal segments. This excessive
mutability has accelerated evolution and contributed to
human disease but has yet to be explained. Segments of
DNA repeated in low-copy numbers (LCRs) have been
previously implicated in promoting structural mutability in
specific disease-associated loci. Lack of methylation
(hypomethylation) of genomic DNA has been previously
associated with high structural mutability in gibbons and
in human cancer cells, but the association with structural
mutability in the human germline has not been explored
prior to this study. Our analyses confirm the role of LCRs in
promoting structural mutability on the genome scale but
also reveal a surprisingly strong association of genomic
instability with hypomethylation. Specifically, evolutionary
analyses reveal that methylation deserts, the ,1% fraction
of the human genome with the lowest methylation in
human sperm, harbor a tenfold higher number of
structural mutations than genome-wide average. More-
over, the structural mutations in individuals diagnosed
with schizophrenia, bipolar disorder, developmental delay,
and autism are significantly more concentrated within
hypomethylated regions. Our findings suggest a new
connection between methylation of genomic DNA, selec-
tive structural mutability, evolution, and human disease.

Hypomethylation and Selective Structural Mutability

PLoS Genetics | www.plosgenetics.org 2 May 2012 | Volume 8 | Issue 5 | e1002692



than 100 mapped reads and more than 100 CpG sampling events at

156 coverage were included in the subsequent analyses. To

facilitate comparison, both combined methylomes (at 2.56 cover-

age and at 156coverage) were represented as methylation averages

across the same set of 100 Kbp windows tiling the human genome.

The 156 methylome showed high correlation with the 2.56
methylome at the 100 Kbp resolution (r = 0.82, p-value,2.2e-16).

Methylation deserts discovered at 2.56 coverage using methyla-

tion percentile rank thresholds of 1% and 5% significantly

overlapped those discovered at 156 coverage (Figure S21),

indicating relatively stable genomic localization of methylation

deserts across individuals.

Comprehensive Identification of Potentially
NAHR–Associated LCRs in the Human Genome

It has been suggested that directly-oriented paralogous LCRs

(DP-LCRs) with high similarity, large size, and in close proximity

would be most likely to mediate NAHR, resulting in deletions or

duplications identifiable by aCGH [1,3,5,6,43]. We designed,

implemented, and validated a new computational method for

comprehensively detecting LCRs and DP-LCRs (see Materials

and Methods: Computational Pipeline for LCR Identification).

The method achieves higher sensitivity than previously applied

methods [44] by using k-mer frequency sequence information to

detect and cluster LCRs without remmatoving (repeat-masking)

high copy-number repetitive elements (Materials and Methods:

Whole-Genome Self-Comparison and Text S1 section 1.1). In

total, 268 regions between DP-LCRs were identified (Figure S3), a

greater than two-fold increase over previously reported estimates

(Text S1 section 1.2 and Figure S4).

Human-Specific Evolutionary Structural Rearrangements
Associate More Strongly with Methylation Deserts Than
with DP–LCR Regions

We next examined the association of evolutionarily recent

structural rearrangements in the human genome with both DP-

LCR loci and germline hypomethylation. Assuming nearly neutral

evolution [45], the distribution of structural variants that have

accumulated in the human lineage since the branching of

chimpanzee can be used as an indicator of structural mutability.

By applying the Genomic Triangulation method [46] to genomic

data from four non-human primate species (chimpanzee, rhesus

macaque, orangutan and marmoset) and the human reference

genome we detected 522 human-specific structural rearrange-

ments (Materials and Methods: Identification of Human-Specific

Rearrangements).

The human-specific structural rearrangements were found to be

highly associated with LCRs (six-fold enrichment, permutation

test, p<1023), much higher than with other examined genomic

features such as repetitive elements (Alu: 0.89-fold; LINEs: 1.1-

fold; Microsatellites: 1.2-fold). One-third of the rearranged regions

were actually human LCRs, indicating a significant fraction of the

association may be explained by segmental duplication events that

produce LCRs. The rearrangements were found to associate

specifically with DP-LCR loci to a lesser degree (three-fold

enrichment, permutation test, p<1023).

A striking association was detected between human-specific

structural variants and hypomethylation. First, the methylation

deserts comprising a total of 1% of the human genome contain

,10% of the human-specific structural rearrangements, a tenfold

enrichment (Figure 1A). Second, genome-wide comparison

indicates a highly significant inverse association of human-specific

rearrangements with methylation levels (Kolmogorov-Smirnov

test, Dmax = 0.23, p<10224) (Figure 1B). Additional permutation-

testing experiments that are not based on fixed window size

indicate that approximately 23% (Dmax = 0.23) of human-specific

rearrangements associate with hypomethylation (Figure S5A). The

significance of this association gradually decreases with increasing

distance from rearrangements (Figure 1C), suggesting that

hypomethylation and structural mutability co-localize within

relatively small chromosomal segments. The association could

not be accounted for by considering a number of other potentially

confounding factors including CpG islands, chromosomal bands,

telomeric/centromeric locations and sex chromosome bias (Text

S1 section 3; Tables S8, S9).

We next directly compared the relative strengths of association

of hypomethylation and DP-LCRs with human-specific rear-

rangements. The 100 Kbp windows covering the genome were

each assigned to one or more of the following groups: (a) windows

containing human-specific rearrangements; (b) windows that are

methylation deserts; and (c) windows containing regions between

DP-LCRs. The Venn diagram in Figure 2A illustrates proportions

of windows across the three groups, based on which we calculated

the statistical relative and attributable risks of rearrangements due

to hypomethylation and DP-LCRs in Figure 2B (first row). Note

that both genomic features confer significantly increased statistical

risk, but the statistical relative risk due to hypomethylation is

markedly higher than the risk due to DP-LCRs.

Estimation of Germline Methylation Levels Using a
Methylation Index Calculation

Methylation levels in sperm are only a partial indicator of

methylation levels in the whole human germline. To further

examine the association between germline methylation and

structural mutability in humans directly, one would ideally be

able to measure DNA methylation in the entire male and female

germline lineages, which are highly dimorphic [47]. To practically

address this issue, we pursued an indirect approach by estimating

methylation levels in the human germline (an average of male and

female germlines), using the methylation index (MI) model [48]

(Materials and Methods: Methylation Index Calculation at

100 Kbp Level of Resolution).

Approximately 20% of the methylation deserts (defined as the

lowest 1% methylation levels in sperm) occur within the 1.5%

fraction of windows with the lowest MI score (MI = 0), an

indication that methylation deserts detected in sperm overlap

substantially with hypomethylation in the germline as a whole

(Figure S6A). The windows with MI = 0 contain ,15% of the

human-specific structural rearrangements, a similar tenfold

enrichment as we observed for methylation deserts defined based

on the sperm methylomes (Figure 1A).

The sperm methylation scores of windows with MI = 0 show a

bimodal distribution (Figure S6B), the lower mode including 35%

with low methylation levels (,5%) in sperm and the higher mode is

comprised of the remaining 65% that appear to have normal

methylation levels in sperm. Because the higher mode could not be

explained by obvious ascertainment biases (Materials and Methods:

Examination of MI Ascertainment Biases), we hypothesize that this

mode may either indicate hypomethylation specific to the female

germline, given that male and female germline methylation patterns

are highly dimorphic [47], or may be due to other germline

hypomethylation detected by MI that is absent from sperm. Similar

bimodal distribution was observed at 156coverage (Figure S9B).

As additional controls, five publicly available methylomes

obtained by whole-genome bisulfite sequencing [49,50] of human

stem cells and fibroblasts were also compared over the same set of

100 Kbp windows. Methylation levels in sperm showed much

Hypomethylation and Selective Structural Mutability
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higher correlations with the methylation levels in embryonic stem

cells than with fibroblasts (Table S2), consistent with the more

differentiated state of fibroblasts. Importantly, the methylation

levels in sperm samples have higher correlations with the germline

MI scores than either stem cells or fibroblasts (Table S2).

Moreover, the bimodal distribution of hypomethylated regions is

unique to sperm (Figure S9), consistent with sperm being the

closest representative of the human germline.

Copy Number Variants (CNVs) Associate More Strongly
with Hypomethylation than with DP–LCRs

To examine structural mutability during more recent evolution-

ary time, we turned to the analysis of Copy Number Variants

(CNVs) in the human population. De-identified aCGH data were

collected from 400 human DNA samples analyzed by the BCM

Medical Genetics Laboratories (BCM-MGL; http://www.bcm.

edu/geneticlabs/). These data were originally produced at BCM-

MGL using a custom designed, whole-genome oligo-aCGH chip

with a genomic distribution of probes more densely spaced between

DP-LCRs as well as with lower but even distribution for the

remaining regions of the genome (Materials and Methods: aCGH

Probe Set Design and Analysis of CNVs in 400 MGL Samples).

Approximately 12,000 non-unique CNVs seen in more than one

individual larger than 500 bp were identified. More than 60% of the

CNVs were not in public structural variation databases (Figure S10).

A significant enrichment of LCRs (permutation test, three-fold

enrichment, p<0.01) was found around the CNVs. When CNVs

occurred between DP-LCRs, they were more likely to span the

intervening region, a signature of NAHR, than those between

non-paralogous LCRs (2-fold enrichment, p<0.001 by chi-square

test, Figure 3G). However, such CNVs represent a small fraction

(,2.5%, Figure 3A) of all CNVs.

We next examined any potential association between LCRs and

structural mutability using structural heterozygosity as a proxy.

Assuming structural mutations are neutral, under the infinite allele

model [51], the rate of structural heterozygosity is proportional to

the mutation rate. Structural mutability can therefore be assessed

using the rate of structural heterozygosity as a proxy (Figure 4A).

Our results indicate that genome-wide structural mutability is

directly correlated with LCR density and particularly with the LCRs

that contain high copy-number repetitive elements (Figure S11).

Following a similar approach as in Materials and Methods:

Human-Specific Evolutionary Structural Rearrangements Associ-

ate More Strongly with Methylation Deserts Than with DP–LCR

Figure 1. Association between methylation deserts and human-specific structural rearrangements. (A) Locations of human-specific
structural rearrangements (black), 100 Kbp windows with methylation index value 0 (violet), 100 Kbp windows with lowest 1% sperm methylation at
156 coverage (green) and 2.56 coverage (red) for three representative chromosomes. (See Figure S18 for a whole genome view). (B) Cumulative
sperm methylation distribution and the Kolmogorov-Smirnov statistics for 100 Kbp windows containing rearrangements (solid line) and the rest of
the windows (dashed line) at 156coverage (red) and at 2.56coverage (red). (C) Simulation test of extent of hypomethylation in the regions flanking
human-specific structural rearrangements. Distribution of methylation levels for 10 Kbp regions sampled at increasing distances (from 10 Kbp to
100 Kbp) from the 522 human specific structural rearrangements is compared to the distribution of methylation levels of randomly picked segments
with matching sizes within the same chromosome (100 random samplings for each rearrangement). The same analysis is performed for methylomes
at 156 coverage (green) and 2.56 coverage (red). Dmax and significance p-value were determined using the Kolmogorov-Smirnov test.
doi:10.1371/journal.pgen.1002692.g001

Hypomethylation and Selective Structural Mutability
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Regions, we next compared the distributions of sperm methylation

levels for 100 Kbp windows containing CNVs and for those not

containing any CNVs. The Kolmogorov-Smirnov test results

indicate that the windows containing CNVs have significantly

lower methylation in sperm (Figure S13). Permutation testing

indicates that an excess of 9% of the CNVs is explainable by

hypomethylation (Kolmogorov-Smirnov Dmax = 0.09, Figure

S5B). Association analysis also indicates a higher statistical relative

risk due to hypomethylation than due to DP-LCRs (Figure 2B).

We next compared structural mutability in methylation deserts

with mutability in other genomic loci using structural heterozy-

gosity rate as a proxy. The comparison indicated that the

methylation desert loci have higher average structural heterozy-

gosity rates (Figure 4B). The Kolmogorov-Smirnov test also

indicates significant excess heterozygosity of CNVs in hypomethy-

lated regions (Figure S14A).

Publicly Available CNV Data Validate Association
between Hypomethylation and Structural Mutability

As an independent test for any potential association between

hypomethylation and structural mutability, we performed analyses

analogous to those discussed in the previous section using the

following three publicly available CNV datasets: (i) aCGH data

obtained from 270 HapMap samples using high-resolution Affyme-

trix SNP 6.0 arrays [36]; (ii) aCGH data obtained from 450 HapMap

samples using tiling oligonucleotide microarrays [37]; and (iii) CNV

data generated on 19,000 samples [38] in a study of the role of

common CNVs in eight common human diseases. The dataset (i)

complements the 400-sample BCM-MGL data because it detects

CNVs that overlap LCRs, and it provides high probe resolution in

regions that are not associated with LCRs. Despite the bias away

from known polymorphisms in the design of the custom array used to

generate the 400-sample BCM-MGL dataset (Materials and

Methods: aCGH Probe Set Design and Analysis of CNVs in 400

Figure 2. Statistical risk analysis of structural mutability due to hypomethylation and DP–LCRs. (A) Venn diagram of 100 Kbp windows
classified into one or more of the following three categories: (i) windows containing human-specific structural rearrangements; (ii) windows within
methylation deserts (windows with lowest 1% methylation at 2.56 or 156 coverage); and (iii) windows containing regions between DP-LCRs.
Numbers within the circle areas indicate fraction (per mil) of the genome occupied by the specific groups of windows. (B) Statistical relative risk (RR)
and statistical attributable risk (AR) of structural instability for hypomethylation and DP-LCRs (the first row corresponds to A).
doi:10.1371/journal.pgen.1002692.g002

Hypomethylation and Selective Structural Mutability
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MGL Samples, Text S1 section 5 and Figure S12), analyses of the

data set (i) confirmed the relative strengths of association of structural

mutability with NAHR and with hypomethylation identified using

the BCM-MGL data, as indicated in Figures 2B, 3, 4, Figure S14,

and Table S7. All three (i–iii) datasets confirmed significantly higher

average heterozygosity rates of CNVs in methylation deserts

(Figure 4). However, dataset (iii), which was biased against rare

structural alleles [38], showed no significant difference in overall

heterozygosity rate distributions between CNVs in the methylation

deserts and the rest of the CNVs (Figure S14D), suggesting that rare

variants may account for a significant fraction of association.

In summary, despite the differences in array technologies, array

design biases, and sample sets applied to the arrays, our analyses

repeatedly point to a significant association of hypomethylation

and structural mutability.

Analysis of Methylomes in Germline and Embryonic Stem
Cells Indicates Association of Structural Mutability with
Germline-Specific Hypomethylation

We next asked if the association between structural mutability

and hypomethylation is specific to germline, using the embryonic

stem cell line H1 methylome [50] as a control. Germline

methylation was assessed using the sperm methylomes both

independently and in combination with the methylation index,

as summarized in the five columns in Table 1.

Recall that for windows with MI = 0, the sperm methylation

scores showed a bimodal distribution (Figure S6B). As indicated in

Table 1, significant enrichment of structural mutability could be

observed for windows with MI = 0, and for both lower and higher

modes of these windows. The enrichment observed in the higher

mode (Table 1, column ‘‘MI = 0 & sperm.5%’’) suggests the role

of hypomethylation that is possibly present in the female germline

and captured using the MI measurement but not present in sperm.

The windows containing rearrangement/variation showed

much lower methylation levels in the sperm methylome (Figure

S15A–S15C). In contrast, an association with methylation levels in

H1 could not be detected for the CNVs, except that windows

containing human-specific evolutionary rearrangements did show

association (Figure S15D–S15F). We found significant negative

correlation between the methylation scores in sperm and the

heterozygosity rates (CNVs from 400 MGL samples: r<20.15,

p<1029; CNVs from 270 HapMap samples: r<20.20, p<10210).

Figure 3. Major patterns of CNVs in relation to LCRs (arrows with same texture indicates paralogous LCRs). (A) CNVs involving whole
regions between DP-LCRs. (B) Scattered CNVs (CNVs covering ,40% of the distance between LCRs) between DP-LCRs. (C) CNVs involving whole
regions between non-paralogous LCRs. (D) Scattered CNVs between non-paralogous LCRs. (E) Complex patterns of CNVs extending over various LCR
groups and intervening regions. (F) CNVs overlapping LCRs. (G–H) Contingency tables summarizing the counts of CNVs observed between LCRs,
corresponding to A, B, C and D. The CNVs between paralogous LCRs tend to involve the whole region (as illustrated in A, corresponding to counts in
top left cells in G and H), a signature of NAHR involving paralogous LCRs.
doi:10.1371/journal.pgen.1002692.g003

Hypomethylation and Selective Structural Mutability

PLoS Genetics | www.plosgenetics.org 6 May 2012 | Volume 8 | Issue 5 | e1002692



In contrast, no significant correlation between the H1 methylation

scores and the CNV heterozygosity rates was detected.

We next examined the difference in methylation levels between

sperm and H1. As illustrated in Figure S16, the difference shows

even stronger association with structural mutability than the

absolute methylation levels in sperm. This result rules out possible

ascertainment biases due to low mappability of sequencing reads

in potentially unstable and repetitive hypomethylated regions. It

also suggests that structural mutability is associated with germline-

specific hypomethylation.

Structural Variants Identified Specifically in Schizophrenia
Patients Concentrate within Hypomethylated Regions

We next examined the distribution of rare CNVs detected in the

recent large-scale study by the International Schizophrenia

Consortium [39]. CNVs in 3,391 individuals diagnosed with

schizophrenia and 3,181 controls were identified and analyzed

using Affymetrix SNP arrays. The study found that the individuals

in the affected group have 15% more rare variants. We asked if the

excess of variants in the affected group tends to occur in regions

with low germline methylation levels.

We first compared the distribution of the methylation levels for

100 Kbp windows containing the CNVs in the affected group with

the distribution of methylation levels for windows not containing any

CNVs. The same procedure was performed for the CNVs in the

control group. Both the affected and control CNVs showed lower

methylation. A significant enrichment of low MI values (Kolmo-

gorov-Smirnov test, p<1025) was found for the affected group (Table

S3), while no significant enrichment was found for the control group.

We next identified those CNVs found only in the affected group

and those found only in the control group. The two subsets were

then further classified as being within or outside of regions showing

lowest 5% methylation levels in sperm. The chi-square test

indicates a 3-fold enrichment (p<1023) within low methylation

regions of variants identified only in the affected group compared

to those found only in the control group (Table 1). Similar

enrichment was found in regions with MI = 0 (Table 1).

Large Deletions Identified Specifically in Bipolar Disorder
Patients Concentrate within Hypomethylated Regions

We next examined distribution of CNVs identified in a recent

bipolar disease study [40]. The study identified CNVs in 1001

Figure 4. Structural mutability assessed by structural heterozygosity. (A) Under the infinite allele model, assuming structural mutations are
neutral and at drift-mutation equilibrium, mutation rates are proportional to heterozygosity rates. (B) Comparison of average CNV heterozygosity
rates (data from four studies) within (black for methylomes at 156coverage, gray for methylomes at 2.56coverage) and outside (white) methylation
deserts. Error bars represent standard deviation of CNV heterozygosity rates in corresponding regions.
doi:10.1371/journal.pgen.1002692.g004
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bipolar disease cases and 1034 controls. An excess of large

singleton deletions was found in cases relative to controls. We

examined methylation of singleton deletions found only in bipolar

cases to the methylation of the deletions found only in controls. As

indicated in Table 1, compared to control-specific deletions the

case-specific singleton deletions were enriched over 2-fold (p,1e-3

by Chi-square test) within the 100 Kbp windows having lowest 5%

methylation levels in sperm.

De Novo Structural Variants in Autism Cases Are
Concentrated within Hypomethylated Regions

A recent autism spectrum disorders (ASDs) study [42] found a

higher burden of rare CNVs in ASD patients. Trio analyses

established that some of the CNVs were not present in parental

genomes and were classified as de novo. We asked if the rare and de

novo CNVs detected in the autism cases and controls associated

with low methylation levels.

The regions containing rare CNVs in both the cases and

controls showed significant enrichment for both low methylation

levels in sperm and for low MI values, when compared with

regions without any rare CNVs (Table S3). The CNV variants

identified only in the cases showed an approximately two-fold

enrichment in hypomethylated regions compared to those found

only in controls, but the enrichment did not reach statistical

significance threshold due to a small number of variants detected

(data not shown).

Analysis of de novo and inherited CNVs found in cases revealed

highly significant enrichment within hypomethylated regions of de

novo relative to inherited CNVs. The enrichment was observed

within hypomethylated regions in sperm (,5%), within windows

of MI = 0, and especially in regions that met both criteria (Table 1).

Structural Variants Identified in Children with
Developmental Delay Concentrate within
Hypomethylated Regions

A recent study by Cooper et al. [41] identified CNVs in 15,767

children with intellectual disability and various congenital defects

(cases) and in 8,329 unaffected adults (controls). We examined the

enrichment of rare (,1% population frequency) case-associated

CNVs within the windows with lowest 5% methylation in sperm

relative to CNVs found in controls. Using Chi-square test, we

observed a significant 2.9-fold enrichment of the case-specific rare

CNVs (p = 2.78e-124) compared to the control CNVs. Out of the

59 pathogenic CNVs identified in this study, 12% are located in

the methylation deserts, a 4.7-fold (p = 3.3e-5) enrichment

compared with the control CNVs. Specific sub-classifications of

phenotypic information was reported for almost half of the cases,

including 575 cases with cardiovascular defects, 1,776 with the

epilepsy/seizure disorder, 1,379 with the autism spectrum disorder

and 3,898 with craniofacial defects [41]. We therefore repeated

the same chi-square test for each sub-class, and observed

enrichment of CNVs associated with each sub-phenotype vs. all

control CNVs (Table S11).

Methylation Deserts Are Enriched for Fast-Evolving
Developmental Regulatory Loci

Analysis of genomic features in the methylation deserts showed

no enrichment for SINEs, LINEs or microsatellites (Figure S1C).

Higher GC content was found for methylation deserts than

elsewhere (Figure S1A), which may be due in part to the somewhat

higher number of CpG islands in these regions than expected by

chance (Figure S1C). Methylation deserts also showed higher

average sequence conservation than the rest of the genome (Figure
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S1B). However, conserved coding sequences were slightly under-

represented (0.9 fold), and pseudogenes were over-represented (2

fold, Figure S1C). Overall, genes were under-represented (0.7 fold)

except for homeobox, cadherin, and histone families, all of which

were highly enriched in methylation deserts (Table S1). Using the

sperm gene expression data from previous studies by Pacheco et al.

[52], we detected enrichment within methylation deserts of those

genes that are highly expressed in sperm (Text S1 section 2).

We next examined enrichment of promoters categorized by

their CpG content into high-, intermediate- and low-CpG content

promoters by Weber et al. [53]. We first observed a significant

negative correlation between the methylation level and average

CpG content across all 100 Kbp windows (r = 20.35, p = 2.5e-

270). However, methylation deserts were not enriched for

promoters with high CpG content (Table S6). Those with low

CpG content showed slight under-representation in the methyl-

ation deserts (0.65 fold). Interestingly, those with intermediate

CpG content, which were also referred to as ‘‘weak CpG islands’’

and known to be more prone to de novo methylation during

differentiation [53,54] showed 3-fold enrichment in the methyl-

ation deserts (Table S6).

According to Mohn et al., almost all bivalent promoters (marked

by both H3K27me3 and H3K4me2 during cellular differentiation)

contain CpG islands, and a significant proportion of weak CpG

promoters are bivalent and more likely to be methylated de novo

[54]. We therefore examined the bivalent promoters as identified

by Ku et al. [55] and found their 2.6-fold enrichment in the

methylation deserts (Table S6). The promoters that were both

bivalent and had intermediate CpG content showed four-fold

enrichment (Table 2).

Because the Polycomb repressive complex 2 (PRC2) is known to

regulate bivalent promoters, we next examined the distribution of

PRC2 binding regions within methylation deserts, focusing

specifically on the hyperconserved CpG domains (HCGDs)

identified by Tanay et al. [56]. Tanay et al. used the COCAD

(context-based CpG analysis of divergence) score to compare the

actual rate of human–chimpanzee CpG divergence to the

predicted rate. The HCGDs with low COCAD scores showed

extensive overlap with regions bound by Polycomb repressive

complex 2 (PRC2). Of the 194 non-overlapping genomic regions

corresponding to HCGDs with COCAD scores below 25

(P,1E26), a total of 60 (31%) are located in the methylation

deserts (2.56coverage), showing a 37.6-fold enrichment compared

to the genomic background as determined by permutation testing

(Table 2).

Because tissue-specific regulation may involve changes in CpG

methylation levels, we next investigated whether the methylation

deserts are enriched for regions that are methylated in a tissue-

specific manner. Toward this goal, we first examined the

methylation data gathered at 1,413 CpG loci across 217 samples

from 11 different human tissue types by Christensen et al. [57].

The CpG loci were divided into a group within germline

methylation deserts and a group that did not fall within

methylation deserts. Each CpG locus was assigned a score

measuring the variation of methylation level across 11 tissues

[57]. Kolmogorov-Smirnov test showed that CpG loci within the

methylation deserts are significantly enriched for inter-tissue

variability (Figure S22). To rule out the possibility that the excess

variation is due to causes other than developmental regulation, the

distributions of CpGs that exhibit aging-related variation and of

those that exhibit environment-related variation were examined.

None of the two groups of CpGs exhibited any preferential

distribution within methylation deserts, indicating the methylation

difference among cell lineages is more likely to be related to

developmental regulation.

We next examined whether the methylation deserts are

enriched for regions involved in regulation of tissue-specific gene

expression using the set of 269 putative genomic regulatory blocks

(GRBs) and their target genes identified in the human genome by

Akalin et al. [58]. The GRB target genes are most often

transcription factors involved in embryonic development and

differentiation. We examined the enrichment of GRB target genes

or GRBs themselves in the methylation deserts (lowest 1% sperm

methylation at 2.56 coverage) using randomly selected genomic

segments as controls. The GRB target genes showed 12-fold

enrichment in the methylation deserts (p,1e-10). The GRBs on

the other hand, showed around 2.8 fold enrichment in methylation

deserts, of which those that are multiple target GRBs showed a 4.4

fold enrichment (both p,1e-3). Comparing distribution of other

CpG island-overlapping genes outside GRBs to GRB target genes,

by chi-square test we observed an extremely high 33-fold

enrichment of GRB target genes within the methylation deserts

(p,1.41e-146, Table 2). As an additional control, we examined

‘bystander’ genes defined by Akalin et al. as those intertwined with

highly conserved non-coding elements but whose expression and

function are unrelated to those of the GRB target genes. GRB

target genes were enriched in the methylation deserts 9.2-fold

relative to the ‘bystanders’ (p,1.42e-43, by chi-square test,

Table 2).

Because methylation deserts are hotspots of evolution, we

examined enrichment within methylation deserts of transcription

factors (TFs) reported by Vaquerizas et al. [59] to be fast evolving

in primates. We first applied permutation test to the coding

sequences of all the ,1300 manually curated sequence-specific

TFs and observed a 3.75 fold enrichment for their coding

sequences in the methylation deserts (p,1e-3). We then examined

Table 2. Enrichment of various regulatory features in methylation deserts detected using permutation test or chi-square test.
Enrichments for an expanded set of regulatory features are included in Table S6.

Regulatory features Fold-enrichment in methylation deserts p-value

Two fast-evolving transcription factor clusters [59] 15 ,1e-3

GRB target genes [58] vs. random segments 12 ,1e-10

GRB target genes vs. ‘bystander’ genes [58] 9.2 1.42e-43

GRB target genes vs. other CpG island-overlapping genes outside GRBs [58] 33 1.41e-146

Hyperconserved CpG domains with low COCAD scores [56] 37.6 ,1e-4

Bivalent promoters with intermediate CpG content [55] 4 ,1e-3

doi:10.1371/journal.pgen.1002692.t002
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the TFs within two clusters reported by Vaquerizas et al. [59] to be

fast evolving in primates and detected an even higher 15-fold

(p,1e-3) enrichment (Table 2).

Discussion

Combined evidence from evolutionary, population-genetic and

disease studies supports strong association between germline

hypomethylation and selective structural mutability. Genome-

wide, both relative and attributable risks of structural mutations

due to methylation deserts are at least comparable to the

corresponding statistical risks due to LCR-mediated NAHR.

Our results show that 23% of human-specific evolutionary

rearrangements are associated with hypomethylation. Methylation

deserts comprise a total of 1% of the genomic sequence and

contain about 10% of the 522 submicroscopic human-specific

structural rearrangements identified by primate genome compar-

isons.

The evolutionary findings are generally consistent with the

results of analyses of CNVs in the human population. Our analysis

reveals a two-fold genome-wide enrichment for deletions and

duplications between DP-LCRs, the signature pattern of LCR-

mediated NAHR. While the enrichment is statistically significant,

the fraction of structural variation statistically attributable to

NAHR is small, approximately 2.5%. We show that methylation

deserts exhibit higher association with CNVs (,9%) and contain a

disproportionately high fraction of CNVs that have high structural

heterozygosity. The population-based analyses reveal less striking

enrichment patterns than the evolutionary analyses. This may be

explained by the fact that population based studies were generally

of lower resolution (array-based, unlike sequence-based evolution-

ary analyses), were limited to copy-number changes, and were

biased against rare variants.

By demonstrating a higher association of structural mutability

with hypomethylation than with NAHR, our results underscore

the potential relative contribution of the role of microhomology-

mediated break-induced repair in structural genomic instability

[37] which is consistent with replication based mechanisms such as

FoSTeS [14], MMBIR [18], and serial replication slippage (SRS)

[16] rather than NAHR.

Our results are consistent with the concept of a structural

selective ‘‘mutability profile’’, an epigenomic phenotype marked

by the variation in germline methylation levels along the genome.

Three questions regarding this mutability are of particular interest:

heritability, mechanism, and evolution.

First, does inter-individual variation in methylation-associated

selective mutability profiles exist and if it does, is it heritable? As a

first step toward answering these questions, we have generated

preliminary results tentatively suggesting that inter-individual

variation in selective structural mutability may be associated with

methylation deserts (Text S1 section 6 and Figure S17).

The second open question is the mechanism behind the

selective mutability profile. One conceivable mechanism is genetic

variation in DNA-break inducing base-excision repair enzymes

involved in germline-specific demethylation [34]. Another possi-

bility may involve unrepaired DNA breaks associated with active

transcription because methylation deserts are highly transcribed in

germline. Yet another possibility may be that transcription factors

mediate structural rearrangements by bending chromatin, creating

looping structures and DNA breaks, analogously to the role played

by estrogen and androgen receptors in mediating structural

instability in hormonally regulated tumors [60,61,62]. One specific

possibility opened by this model is that selective structural

mutability may be affected by the cellular and organismal

environment and may be controlled experimentally or even

therapeutically.

Finally, assuming selective mutability profile variation is

heritable, the question of its evolution arises (for a recent survey

of the topic of ‘‘evolution of evolvability’’ see [63]). Specifically,

does selective mutability evolve mostly neutrally by random drift?

If not, what may be the nature of selection pressure acting on it?

Assuming that selection indeed plays a role, it is useful to consider

the payoff (higher probability of developing a favorable mutation

that ultimately becomes fixed in the population) and risk (of

mutation causing disease). A selective mutability profile with excess

mutability concentrated in the loci with low payoff/risk ratios

would then be less likely to produce mutations that ultimately

become fixed than a mutability profile with mutability concen-

trated in the loci with high payoff/risk ratios. The latter would

therefore be favored by selection.

One testable corollary of this payoff/risk model is that de novo

mutations will tend to cause diseases related to the phenotypes that

are under positive selection in the human population. Assuming

that brain function is under selection in the human population,

this corollary predicts high incidence of brain-related diseases such

as schizophrenia, bipolar disorder, autism, epilepsy, developmen-

tal delay and cranial features due to rare and de novo mutations.

Our findings that the rare and de novo CNV variants in the

individuals suffering from these diseases indeed concentrate within

methylation deserts is consistent with this corollary. These findings

suggest a novel type of connection between evolution and human

disease [64].

The payoff/risk model is also consistent with highly mutable loci

being responsible for tissue-specific phenotypes. This is because a

mutation in a locus regulating a tissue-specific phenotype may not

confer much risk to other tissues. The enrichment within

methylation deserts that we observed for genes with tissue-specific

patterns of expression and for transcription factors involved in

cellular differentiation is therefore consistent with this payoff/risk

model.

Materials and Methods

Methylation and structural variation data used in this study can

be accessed and visualized via the Genboree Project page and

Genboree Genome Browser (http://genboree.org/java-bin/project.

jsp?projectName = Germline%20Methylation&isPublic = Yes).

Sequencing and Methylome Construction of
Bisulfite-Treated Human Sperm DNA Samples

Two anonymous human sperm samples were collected from a

local fertility clinic. Genomic DNA was isolated from the samples

using the PureLink Genomic DNA kit (Invitrogen, CA, USA). A

total 5 ug of DNA was sonicated with 30630 s, 30 s interval, using

Bioruptor (Diagnode, NJ, USA). Sonicated DNA was end repaired

using the End-It Kit (Epicentre, WI, USA) and A-tailed in a 50 ml

reaction containing 1 mM dATP mix, 10 U of 39 to 59 exo-

Klenow DNA polymerase (NEB, MA, USA). Adaptor ligation was

performed in 50 ml reaction containing 300 mM pre-methylated

adapters and 1000 Unit T4 DNA polymerase and incubated at

16uC overnight. Adaptor-ligated DNA was subjected to a size

selection on a 3% NuSieve 3:1 agarose gel. DNA marker lanes

were excised from the gel and stained with SYBR Green

(Invitrogen, CA, USA). 250–350 bp slices were excised from the

unstained gel and purified using MinElute spin column (Qiagen,

CA, USA). Size-selected fragments were bisulfite-treated using the

EpiTect Bisulfite Kit (Qiagen, CA, USA) with minor modifications

by adding 5 more cycles (5 min 95uC followed by 90 min at 60uC).
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After bisulfite conversion, DNA was eluted in 40 ml EB buffer and

0.8 ml DNA was used for analytical PCR reactions to determine

the minimum number of PCR cycles required to get enough

material for sequencing. Final PCR products were purified on

MinElute columns (Qiagen, CA, USA) and assessed on 4–20%

polyacrylamide Criterion TBE Gel (Bio-Rad, CA, USA) and

quantified using Qubit fluorometer (Invitrogen, CA, USA). The

libraries were sequenced on the Illumina Genome Analyzer II (one

lane for each sample) following the manufacturer’s instructions.

The Pash 3.0 software [65] was used to map the resulting reads

to the reference human genome (NCBI 36.1/UCSC hg18). Pash

3.0 maps bisulfite reads natively. Reads were hashed considering

the space of all possible kmers (e.g. for ATCT, the kmers ATCT,

ATCC, ATCCC, ATCCT will be hashed). The forward and the

reverse strands of the reference genome were streamed against the

kmer reads hash, and regular mapping was applied. T’s in the

reads can map to both C’s and T’s in the reference. Pash 3.0

performs gapped mapping, being sensitive to both indels and base

pair substitutions. Only reads that map uniquely and with at least

90% identity were used for subsequent analysis. Duplicate reads

were removed across the same library. In total, 82.39% of the

reads for sample1 and 83.02% for sample2 passed quality filters,

achieving genome coverage at 1.36 and 1.26 respectively.

Each chromosome of the reference human genome (NCBI

36.1/UCSC hg18) was divided into 100 Kbp windows, excluding

assembly gaps. The methylation levels in each sample were

estimated by examining every CpG dinucleotide within each read

mapping into each of the 28,705 windows. The methylation level

of a window was estimated by dividing the number of methylated

CpGs by the total number of CpGs found in reads mapping within

the window. Windows with less than 20 CpG sampling events

were excluded from consideration. The average of the two

methylation maps was used as a representation of the sperm

methylome to compare with the inferred germline methylation

index.

For control purposes, five other methylomes of human embry-

onic stem cells and fibroblasts were constructed from publicly

available whole-genome bisulfite sequencing data [49,50], using the

same pipeline.

Computational Pipeline for LCR Identification
Whole-Genome Self-Comparison. The human genome

sequence (NCBI build 36.1/UCSC build hg18) was compared

against itself to identify similar sequence fragments using the Pash

(Positional Hashing) comparison method [65,66,67]. Pash imple-

ments Positional Hashing, a parallelizable method for sequence

comparison based on k-mer representation of sequences (Figure

S2A) instead of the usual single-base representation (k = 13 in this

study). To improve the sensitivity in the presence of base

mismatches, the actual sampling pattern was 21 bp long, sampling

13-mers and including 8 unsampled positions. To avoid hitting

highly repetitive sequences (LINEs, SINEs, etc.), k-mers overrep-

resented in these high copy-number repetitive elements (HCRs)

were ignored. The frequency distribution of the 13-mers with a

frequency .10 in the HCRs (data from UCSC RepeatMasker

track http://genome.ucsc.edu/cgi-bin/hgTrackUi?g = rmsk) was

compared with their frequency distribution in the whole genome

sequence. The k-mers that were significantly enriched in the HCR

sequences (chi-square test, multiple comparisons corrected with

FDR,0.1) were excluded. For the self-comparison of the genome,

the fragment length was set at 500 bp.

Reciprocal Matching and Merging of Fragments into

Pairwise LCRs. The matches between fragments identified in

the previous step were post-processed by applying a ‘‘reciprocal best

match’’ filter. For a match between two fragments to pass the filter,

the two fragments were required to appear on each other’s list of top

50 matches (50 is the maximum number of members in one

paralogous group in the UCSC segmental duplication track http://

genome.ucsc.edu/cgi-bin/hgTrackUi?g = genomicSuperDups) with

either list not containing more than 1000 matches.

The filtered list of matching fragments then went through a

merging step where multiple segments close to each other in

genomic location were merged into one LCR block if their

matching partners were also located within a certain range

(span,1 Kbp, radius,250 bp), and if the PASH similarity score

density ( = score/chunk length) exceeded a certain threshold

(.0.05). The merging was performed in both direct and reverse

orientations, producing a list of pairwise LCRs (Figure S2B).

Clustering of Pairwise LCRs. All the identified pairwise

LCRs were clustered using their k-mer features and overlaps

(Figure S2C). The clustering was based on two criteria: first, a k-

mer content similarity, measured by {12[No. of kmerDiff+log(1+si-

zeDiff)]/[(No. of kmerInBothSets)]} (kmerDiff2number of k-mers that

occur in one pair but not the other; sizeDiff - size difference

between the two pairs; kmerInBothSets – number of k-mers that

occur in both pairs); and second, any positional overlap between

members from different pairs. Clustering according to the two

criteria was applied recursively to all paired up segments until all

of them have been compared and clustered. Finally, the following

previously suggested similarity threshold filter was applied [44] to

select qualified clusters: containing LCRs with length $1 Kbp,

and sharing identity $90% (calculated using BLAT [68]).

Identification and Validation of Direct Paralogous LCRs

(DP–LCRs). The full set of LCRs was further filtered to identify

a subset, which we refer to as DP-LCRs that are directly-oriented

intrachromosomal paralogous LCRs $10 Kbp in size, sharing

$95% similarity and located within 10 Mbp distance of each

other.

To validate DP-LCR prediction output by the PASH pipeline,

DP-LCRs were independently predicted using a pipeline designed

by a subgroup of our team (TG and AG) and implemented using

the MUMmer [69] software. The pipeline includes dividing

genome sequence into overlapping contigs, aligning each contig

using MUMmer, filtering identified segments according to criteria

of DP-LCRs, and merging results from all contigs. MUMmer was

utilized with parameters settings: exact match length $25 bp,

length between two adjacent matches in a cluster #1 Kbp, cluster

length $3 Kbp, and distance of alignment extension = 2 Kbp.

Options ‘‘-nooptimaize’’, ‘‘-maxmatch’’ and ‘‘-nosimplify’’ were select-

ed. MUMmer’s prediction of direct paralogous LCRs sharing

identity at 80%, 90%, and $92% were combined to compare with

the PASH pipeline output. The DP-LCRs identified by both

methods were used in subsequent analyses.

Methylation Index Calculation at 100 Kbp Level of
Resolution

The MI model is based on the fact that in mammals DNA

methylation predominantly occurs in CpG dinucleotides, increas-

ing the probability of transitions to TpG or CpA dinucleotides.

The MI calculation by Sigurdsson et al. [48] implicitly uses

mutability of CpGs in the human genome as an indicator of

methylation in the germline. We apply this method of by

integrating four million non-redundant SNPs from the HapMap

project. Methylation index values were calculated for the same set

of 100 Kbp windows used for sperm methylome construction to

facilitate comparison.

Methylation Index Calculation. Each of the 100 Kbp

windows across the genome assembly was assigned a methylation
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index as an indicator of methylation levels in the germline, which

was computed as defined by Sigurdsson et al. [48]. Briefly, a SNP

was defined to be methylation-associated (mSNP) if a C/T or G/A

SNP was located within a CpG dinucleotide (in either orientation),

with ancestral allele being C or G respectively. The ancestral allele

was determined as the orthologous base in the chimpanzee or

macaque genomes. The mSNPs were identified using the

HapMap SNPs track (based on International HapMap Project

release 27, available from the UCSC genome browser http://

genome.ucsc.edu/cgi-bin/hgTrackUi?db = hg18&g = hapmapSnps).

Methylation index (MI) was calculated by the following formula:

MI~
NmSNP

NCpG
:NSNP

,

where NmSNP denotes the number of observed mSNPs within a

window, NCpG - the number of CpGs, NSNP - the number of SNPs,

and (NCpG?NSNP) is a number directly proportional to the expected

number of mSNPs within the window assuming uniform methyl-

ation levels across the genome. Windows without any SNP,

therefore without a valid MI value, were excluded from all analysis.

Examination of MI Ascertainment Biases. The sperm

methylation scores of windows with MI = 0 show a bimodal

distribution (Figure S6B), the lower mode including 35% with low

methylation levels (,5%) in sperm and the higher mode is

comprised of the remaining 65% that appear to have normal

methylation levels in sperm. One could expect that if the windows

with MI = 0 were due to low probing density, the windows within

the higher mode would have fewer SNPs or CpGs. However, we

examined potential biases in MI estimation due to variations in the

number of SNPs, CpGs, read coverage (Figure S6CD), or

sampling events (Figure S7BD) and found no significant difference

between the two modes, ruling out the possibility that the two

modes may be explained by variation in mappability or shallow

sampling. In addition, a simulation experiment showed that the

statistical variance of methylation estimates due to CpG sampling

of windows with MI = 0 was a relatively small fraction of biological

variance in methylation observed between the two sperm

methylomes (Figure S8). We therefore hypothesize that the higher

mode may either indicate hypomethylation specific to the female

germline, given that male and female germline methylation

patterns are highly dimorphic [47], or may be due to other

germline hypomethylation detected by MI that is absent from

sperm.

In addition to comparing the two modes, windows with MI = 0

were analyzed for the enrichment of potential confounding

genomic features, evolutionary conservation signatures, and

specific gene families. The results of these analyses are discussed

in detail in Text S1 section 4 and summarized in Figure S19, and

Tables S4 and S5.

Identification of Human-Specific Rearrangements
The sites of likely human-specific structural rearrangements

were identified using the Genomic Triangulation method [46].

Non-human primate fosmid end sequences (FESs) from chimpan-

zee (CHORI-1251 library), rhesus macaque (Washington Univer-

sity Genome Sequencing Center (WUGSC) MQAD library),

orangutan (WUGSC PPAD library) and marmoset (WUGSC

CXAG library) were downloaded from the NCBI Trace Archives

(http://www.ncbi.nlm.nih.gov/Traces/). The FESs were mapped

to the human genome (NCBI 36.1/UCSC hg18) using BLAT [68]

with the parameters: tileSize = 11, minMatch = 2, minScore = 100,

minIdentity = 0, maxIntron = 50. Alignment scores were calculated for

BLAT mappings using the parameters: match = +2, mismatch = 21,

gap opening = 22, gap extension = 21. BLAT mappings with an

alignment score less than 200 were removed from consideration.

BLAT results were also filtered to remove ambiguous reads

anchoring to more than 12 locations with an alignment score

within 5% of the top alignment score. FESs that mapped at a

distance consistent with fosmid clone insert size (25–50 Kbp) and

in correct orientation were used to infer orthologous blocks. FESs

were allowed to consistently map to multiple locations so that

shared segments could be covered. Overlapping orthologous

blocks were merged, based on genomic coordinates, into

‘‘matepair chains’’. Matepair chain gaps due to human assembly

gaps were removed. The remaining 522 matepair chain gaps

indicated sites of likely human-specific structural genomic

rearrangements.

aCGH Probe Set Design and Analysis of CNVs in 400 MGL
Samples

A 105 K Agilent oligo CGH array was designed for the purpose

of routine diagnostic CNV testing at MGL. Probe sequences were

chosen from the Agilent Technologies HD CGH database. Oligos

were searched for multiple homologies to the human genome

(NCBI 36.1/UCSC hg18) to avoid cross-hybridization. Only

unique oligos were selected for the array design.

The whole genome sequence was divided into three types of

regions covered with probes at different densities. The genes

between DP-LCRs associated with genomic disorders were probed

at the highest probe density (1 probe/10 Kbp, or at least 10

probes/gene for small genes). The second-highest probe density (1

probe/15 Kbp, or at least 10 probes/region) was assigned to the

identified regions between DP-LCRs. These regions were required

to be gene-containing, with a length from 1 Kbp to 10 Mbp, and

flanked by direct paralogous LCRs that are $10 Kbp in length,

and sharing $94% similarity. Probes with the same density were

also assigned to the regions within the genome sequence

coordinates of BAC/P1 artificial chromosome clones that had

already been validated for clone arrays used in clinical practice

(Baylor College of Medicine (BCM) BAC Chromosomal Micro-

array V6, including 1472 BAC and PAC clones for over 270

known genetic syndromes, 41 unique subtelomeric regions, 43

unique pericentromeric regions, and the mitochondrial genome).

The third probe density (1 probe/31 Kbp) was assigned to all the

other regions in the genome, so-called ‘‘backbone’’ regions. All the

probes were selected to avoid the highly repetitive elements, the

LCRs, and the known CNVs in major public databases: TCAG

Database [70] of Genomic Variants hg18.v1 (http://projects.tcag.

ca/variation/), and UCSC Structural Variation database (http://

genome.ucsc.edu/cgi-bin/hgTrackUi?db = hg18&g = cnp).

De-identified array intensity data obtained from 400 human

DNA samples were made available to us by MGL. The data were

analyzed using the Circular Binary Segmentation (CBS) method

[71], which splits array intensity data along the genome sequence

into segments with equal copy number that are significantly

different from the neighboring regions.

Simulation Tests of Association between Hypomethylation
and Genomic Rearrangements or Structural Variations

To determine the extent of association of hypomethylation with

human-specific rearrangements/CNVs and to avoid possible

artifacts due to the fixed 100 Kbp window size for sampling, the

distribution of the methylation levels for the structural rearrange-

ments/CNVs was compared to the distribution of the methylation

levels of randomly picked segments (100 random samplings for

each of the rearrangements/CNVs) of matched sizes on the same
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chromosomes (Figure S5AB, Table S7 rightmost two columns). To

examine the extent of hypomethylation in the regions flanking

rearrangements, the average methylation level for 10 Kbp regions

sampled at increasing distances (from 10 Kbp to 100 Kbp)

from rearrangement breakpoints were compared with 10 Kbp

regions at corresponding distances from the randomly selected

segments across the same chromosome (Figure 1C, Figure S20B,

Figure S23).

Statistical Risk Analysis of Structural Changes Potentially
Attributable to Hypomethylation and DP–LCRs

To estimate the potential contribution of hypomethylation and

DP-LCRs regions to the occurrence of structural rearrangements/

CNVs, the 100 Kbp windows covering the genome were each

assigned to one or more of the following groups: (a) windows

containing structural rearrangements/CNVs; (b) windows that are

methylation deserts; and (c) windows containing regions between

DP-LCRs. Statistical relative and attributable risks were calculated

using intersections among these groups or their complements, with

the universal set defined as all windows. Using corresponding

letters to represent frequencies of these groups and their

complements, the statistical relative risk of rearrangements/CNVs

of hypomethylation was calculated as
(a\b)=b

(a\�bb)=�bb
, and the statistical

attributable risk was calculated as
a\b

a
{

�aa\b

�aa
. Similarly, the

statistical relative and attributable risks of rearrangements/CNVs

as effect of DP-LCRs can be estimated by substituting b with c in

the above formulas.

CNV Heterozygosity as An Indicator of Structural
Mutability

Assuming that mutations are neutral, under an infinite allele

model for populations at drift-mutation equilibrium, for any two

loci in the genome, the ratio of heterozygosity rates H1 and H2 is

equal to the ratio of mutation rates m1 and m2 [72] (Figure 4A).

Therefore, the relative mutation rates at different loci can be

estimated by observed relative heterozygosity rates. Structural

heterozygosity rates were defined as follows. The normal copy

number signal was interpreted as a homozygous major structural

allele and any signal other than normal, either gain or loss, was

interpreted as indicating presence of minor structural allele. The

structural heterozygosity rate at one locus was calculated as 2pq

(p = frequency of normal copy number state; q = frequency of

abnormal copy number state). Since subsets of the 400 MGL

samples and the HapMap samples contained trios or father/

mother-offspring pairs, the following correction was applied to

related samples: if aberration from normal at the same locus was

found for related samples (parent and child), its occurrence was

counted only once for each related sample trio/pair when

calculating allele frequency.

Functional Annotation Clustering of Genes and
Enrichment Analyses

Only genes with valid RefSeq IDs that were detected within

CNV heterozygous segments were considered for functional

classification. The Database for Annotation, Visualization, and

Integrated Discovery (DAVID [73], http://david.abcc.ncifcrf.

gov) was used to perform functional annotation enrichment

analysis. The enrichment analysis was performed by interrogating

the gene lists against the Gene Ontology Biological Process

(GOBP), Gene Ontology Cellular Compartment (GOCC), Gene

Ontology Molecular Function (GOMF), cell signaling pathways

(KEGG Pathway) and the Swiss-Prot/Protein Informatics

Resource (SP-PIR) databases. Using all human RefSeq genes as

background, the gene categories with significant EASE score

(,0.01) and Benjamini correction value (,0.1) in any of these

databases were reported as enriched.

To compare gene enrichment within specific structural muta-

bility levels, genes with different CNV heterozygosity rates as

detected by the oligo array data were binned into lists, each list

corresponding to CNV heterozygosity rates in the range [x, x+0.1)

where x took values from 0 to 0.4 in increments of 0.02. Each gene

list was analyzed using DAVID as described above.

The tool GFINDer [74] was used for the genetic diseases and

clinical phenotypes enrichment analysis. GFINDer exploits textual

information within the Online Mendelian Inheritance in Man

(OMIM) database. All human Entrez genes were used as

background, and resulting categories with p-value less than 0.05

were reported. Tests both without any p-value correction and with

FDR correction were applied.
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Supporting Information

Figure S1 Comparison of genomic features in methylation

deserts (MD, red) at 2.56 coverage and other regions with MI.0

(nonMD, blue) in the genome. Density plots of (A) GC content; and

(B) sequence conservation. (C) Enrichment of various features in

methylation deserts, and correlations between the features frequen-

cies and sperm methylation levels across the 100 Kbp windows.

(PNG)

Figure S2 PASH pipeline for LCRs prediction. (A) PASH [67]

divides the problem of whole genome comparison into groups of

comparison diagonals (L-fragment length, set to 500 bp), which

can be processed in parallel. For each group, each position along

each diagonal is compared between the sequences sequentially

using k-mers (k set to 13). (B) Reciprocal filtering select matching

pairs of fragments identified in step A if they appear on each

other’s list of top 50 matches, then proximal fragments and their

matching partners are merged into segments. (C) Identified

pairwise LCRs from B were clustered into groups according k-

mer content similarity and positional overlaps.

(PNG)

Figure S3 Comparison of regions between direct paralogous

LCRs (DP-LCRs, length $10 Kbp, identity $95%, ,10 Mbp

apart) identified by our method and by Sharp et al. [6] (A)

Locations of regions between DP-LCRs identified by our method

(right-side of each chromosome ideogram), and those identified in

the previous study (left-side). The heights of the bars indicate sizes

of these regions. (B) Number and length coverage of the regions

between paralogous LCRs identified by our method (black),

compared with previous study (gray). (Four categories: (i) all

regions between paralogous LCRs; (ii) regions between DP-LCRs;

(iii) regions between paralogous LCRs and overlapping with genes;

and (iv) regions between DP-LCRs and overlapping with genes).

(C) Size distributions of regions between DP-LCRs identified by

our method (solid color) compared with results from previous

study (hatched color), in terms of number (left) and length (right).

Small-(1 Kbp, 1 Mbp], white; Medium-(1 Mbp, 5 Mbp], gray;

Large-(5 Mbp, 10 Mbp], black.

(PNG)

Hypomethylation and Selective Structural Mutability

PLoS Genetics | www.plosgenetics.org 13 May 2012 | Volume 8 | Issue 5 | e1002692



Figure S4 Factors contributing for increased detection of regions

between DP-LCRs compared with previous study. 39% of the

regions that we detect but are absent from the previous study

occur between the newly identified LCRs that are enriched for

HCRs. 35% of the novel regions occur between the newly

clustered paralogous LCRs. 11% of the novel regions occur

because of the different ways of calculating identity. 15% of the

novel regions occur because of other factors, such as difference

between genome builds on which the two studies were carried out.

(PNG)

Figure S5 Permutation tests examining association between

germline hypomethylation (at 2.56 coverage) and (A) human-

specific structural rearrangements (B) CNVs detected in the 400

MGL samples. Kolmogorov-Smirnov (KS) tests comparing the

distribution of the sperm methylation levels for the 522 human

specific structural rearrangements in (A) and CNVs in (B) (solid

lines) and the distribution obtained by randomly picking segments

with matching sizes within the same chromosome (based on 100

random samplings for each evolutionary rearrangement or CNV)

(dashed lines). The KS test statistic Dmax shows the greatest

discrepancy between the two distributions.

(PNG)

Figure S6 Sperm methylation levels (obtained by whole-genome

methylation sequencing at 2.56 coverage) of 100 Kbp windows

with methylation index MI = 0. (A) Cumulative distributions of

sperm methylation levels for windows with MI = 0 (red) and the

other windows (blue). The Kolmogorov-Smirnov (KS) statistic

indicates significant difference between the two distributions. (B)

Density plots of sperm methylation level for windows with MI = 0

(red) and the other windows (blue). The black arrow marks

methylation level threshold separating the lower mode including

,35% of the windows with MI = 0 (orange) and the higher mode

including ,65% of the windows with MI = 0 (green). (C–D) The

two modes (indicated marked by orange and green lines matching

respective orange and green areas under the two modes in (B))

have similar distribution of SNPs (C) and CpGs (D).

(PNG)

Figure S7 Density plots of the number of CpG dinucleotides

sampled by bisulfite sequencing of sperm (at 2.56 coverage) in

windows with MI = 0. (A) Histogram and density plots of CpG

sampled in all windows with MI = 0. On average there are 787

CpG sampling events per window, with 95% of the MI = 0

windows having at least 20 CpG sampling events. (B) Density plots

of number of CpG sampled per MI = 0 window. The two curves

correspond to the two modes identified in Figure S6B are colored

orange and green correspondingly. (C) Histogram plots for

percentage of CpGs in each 100 Kbp window with at least 20

reads mapped from the two sperm samples being sequenced. (D)

Density plots of the number of reads mapped in each 100 Kbp

window with MI = 0. The two curves, colored orange and green,

correspond to the two modes in Figure S6B and the two curves

in (B).

(PNG)

Figure S8 Scatter plots comparing true and simulated methyl-

ation scores of the two sperm samples (jointly covered at 2.56read

coverage) in 100 Kbp windows with MI = 0. (A) Linear regression

of the actual scores from the two samples, with goodness of fit

r2 = 0.76. (B) Results of a simulation experiment examining

differences in methylation scores due to statistical variability

assuming binomial sampling of CpGs, the statistical variation

being a function of the number of CpG sampling events per

window n and methylation levels p. The scatter plot indicates the

results of 1000 iterations simulating the sampling process in

windows with MI = 0 using binomial model B(n,p), where n is

the number of CpG sampling events in each window and p is the

probability of CpG being methylated in the same window. The

averaged r2 for all simulations is 0.93, with a standard devia-

tion 0.01. The combined evidence from (A) and (B) indicates

that of the total variability between the two sperm samples

(12r2 = 120.76 = 0.24), less than one third (12r2 = 120.93 = 0.07)

is due to statistical variation. Inter-individual variation may

accounts for a fraction of the residual variation (0.17).

(PNG)

Figure S9 Comparison of methylation status in windows with

MI = 0 (red) and other regions with MI.0 (blue) in sperm (A at

2.56 coverage and B at 156 coverage), embryonic stem cells (C),

and fibroblasts (D). The left lower mode of the MI = 0 set is

uniquely present in sperm, which is most closely related to human

germline.

(PNG)

Figure S10 Venn diagram intersecting CNV loci identified from

the 400 MGL samples using our custom Agilent array (dark gray),

CNVs identified from the 270 HapMap samples using the

Affymetrix SNP 6.0 array [36] (light gray), and CNVs from the

TCAG database [70] (A) hg18.v1, the version that was available

when the array was designed. (B) The same as (A) but with TCAG

database version hg18.v8 and UCSC Structural Variation track

(white). The numbers indicate total lengths of loci in basepairs.

(PNG)

Figure S11 Correlation coefficients between structural hetero-

zygosity rates and various properties of regions between

paralogous LCRs: the size of the flanking paralogous LCRs, the

sequence identity of the flanking paralogous LCRs, the distance

between paralogous LCRs, a factor combining the previous three

properties (Identity6Size/Distance), the density of surrounding

LCRs, and the HCRs content of surrounding LCRs.

(PNG)

Figure S12 Distribution of structural heterozygosity rates and

enrichment of functional gene annotations for CNVs detected in

two datasets. (A–B) Distribution of structural heterozygosity rates

for CNVs between DP-LCRs (solid line) and elsewhere (dashed

line) in (A) 400 MGL samples and (B) 270 HapMap samples. (C–

D) Functional gene annotation categories with highest enrichment

scores at different CNV heterozygosity rates in (C) 400 MGL

sample set and (D) 270 HapMap samples.

(PNG)

Figure S13 Association between germline hypomethylation

(2.56 coverage) and structural polymorphism in the human

population. Kolmogorov-Smirnov tests comparing sperm methyl-

ation levels distribution of 100 Kbp windows containing CNVs

detected in the 400 MGL samples (solid line) and the rest of the

windows (dashed line).

(PNG)

Figure S14 Kolmogorov-Smirnov tests comparing CNV het-

erozygosity rates in methylation deserts (2.56 coverage, 100 Kbp

windows) and elsewhere in the genome for (A) 400 MGL samples;

(B) 270 HapMap samples [36]; (C) 450 HapMap samples [37]; (D)

19,000 samples from eight common diseases GWAS study [38].

(PNG)

Figure S15 Association between structural variation and

methylation in sperm (2.56 coverage) and H1 embryonic stem

cells [50]. (A-sperm, D-H1): Kolmogorov-Smirnov tests compar-

ing methylation score distribution of 100 Kbp windows containing

Hypomethylation and Selective Structural Mutability
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human-specific structural rearrangements (solid line) and the rest

of the windows (dashed line). (B-sperm, E-H1): Kolmogorov-

Smirnov tests comparing methylation score distribution of

100 Kbp windows containing CNVs detected in the 400 MGL

samples (solid line) and the rest of the windows (dashed line). (C-

sperm, F-H1): Kolmogorov-Smirnov tests comparing methylation

score distribution of 100 Kbp windows containing CNVs detected

in the 270 HapMap samples (solid line) and the rest of the

windows (dashed line).

(PNG)

Figure S16 Kolmogorov-Smirnov (K-S) statistics obtained by

comparing 100 Kbp windows containing structural variants and

the rest of the windows. The 100 Kbp windows were assigned

three different methylation scores: (1) methylation difference

between sperm and H1 (dark green); (2) absolute methylation

score in sperm at 2.56 coverage (light green); and (3) methylation

difference between sperm (2.56) and IMR90 (yellow). For all three

type of scores, using K-S statistics we compared (i) the distribution

of methylation level of 100 Kbp windows containing structural

variants and (ii) the distribution of methylation scores of other

windows. The bars with positive values indicate lower methylation

scores in sperm. Specifically, windows containing structural

variants show more negative methylation difference between

sperm and H1 or between sperm and IMR90 (i.e. more

hypomethylated in sperm), or smaller absolute sperm methylation

scores (green bars).

(PNG)

Figure S17 Increased concentration of CNVs from highly

mutable samples in hypomethylated regions (2.56 coverage). (A)

aCGH data are ranked by the total number of CNVs detected in

each sample, as an indicator of mutability. (B) KS test comparing

mutation number per sample in methylation deserts with lowest

1% sperm methylation level at 2.56 coverage (purple) vs. other

regions (gray). (C) KS test comparing mutation number per sample

in windows with MI = 0 (purple) vs. other regions (gray).

(PNG)

Figure S18 A whole genome visualization of the location of,

human-specific structural rearrangements (black), windows with

MI = 0 (violet), windows showing lowest 1% methylation in 156
data (green) and methylation deserts (windows showing lowest 1%

methylation in our 2.56 data, (red).

(PNG)

Figure S19 Comparison of genomic features in windows with

MI = 0 (red) and other regions with MI.0 (blue) in the genome.

Density plots of (A) CpG dinucleotide; (B) GC content; (C) SNP

density; and (D) sequence conservation. (E) Enrichment of various

features in windows with MI = 0, and correlations between the

features frequencies and methylation index across the 100 Kbp

windows.

(PNG)

Figure S20 Permutation tests examining germline hypomethyla-

tion (measured by MI) within and around human-specific structural

rearrangements. (A) Permutation testing of association between

germline hypomethylation and human-specific structural rearrange-

ments. Kolmogorov-Smirnov (KS) test comparing the distribution of

the methylation index for (i) the 522 human specific structural

rearrangements (solid line); and, (ii) randomly picked segments with

matching sizes within the same chromosome (100 random samplings

for each rearrangement) (dashed line). The KS test statistic Dmax

shows the greatest discrepancy between the two distributions occurs

at MI = 0. (B) Simulation test of extent of hypomethylation in the

regions flanking human specific structural rearrangements. Dmax

and significance values from KS tests show difference between the

distribution of the methylation index for 10 Kbp regions sampled at

increasing distances (from 10 Kbp to 100 Kbp) from (i) the 522

human specific structural rearrangements; and, (ii) randomly picked

segments with matching sizes within the same chromosome (100

random samplings for each rearrangement).

(PNG)

Figure S21 (A) Comparison of methylation levels of 100 Kbp

windows obtained from sperm bisulfite sequencing data at 2.56
coverage and at 156 coverage (generated by Molaro et al. [35]).

(B) Venn diagram of 100 Kbp windows with lowest 5% and 1%

methylation levels at 156 (green circle) and 2.56data (blue circle).

The percentages represent proportions in the whole genome. The

areas in elliptical-shadowed areas correspond to windows with

lowest 1% methylation levels at 156 (green) and 2.56 (blue). The

numbers in parenthesis (0.04% for lowest 5% and 0.43% for

lowest 1%) are windows with valid methylation scores at 156
(.100CpG sampling events per 100 Kbp window) but invalid

methylation scores at 2.56 coverage (,20CpG sampling events

per 100 Kbp window).

(PNG)

Figure S22 CpG loci in methylation deserts have higher

methylation variability across human tissues. (A) Heat map

comparing actual methylation level of CpG loci in methylation

deserts and randomly selected CpG loci from elsewhere across 11

tissues. (B) Kolmogorov-Smirnov tests comparing distribution of

methylation level variation at assayed CpG loci across 11 types of

human tissues (data from [57]): violet - CpG loci in methylation

deserts; gray (dashed line) – CpG loci from elsewhere.

(PNG)

Figure S23 Extent of hypomethylation in the regions flanking

CNVs from 270 HapMap samples determined using simulation

test and sperm methylomes at 156 coverage. Dmax and

significance values from KS tests show difference between the

distribution of the methylation levels for 10 Kbp regions sampled

at increasing distances (from 10 Kbp to 100 Kbp) from the CNVs

and segments with matching sizes randomly picked from the same

chromosomes (100 random samplings for each CNV).

(PNG)

Table S1 Genes located in the methylation deserts clustered by

functional annotation using DAVID system [73]. The four clusters

with highest enrichment scores and the three clusters with lowest

enrichment scores are listed.

(PDF)

Table S2 Pairwise correlation coefficients among 7 methylomes

determined using whole-genome bisulfite sequencing, and their

correlation with the inferred MI values (the five somatic samples

data are from previous publications [49,50] and the two sperm

methylomes determined at 2.56 joint coverage. The highest

coefficients clustered the methylomes into different cell lineages, as

highlighted with colors (light red - stem cell; light green - fibroblast;

light blue - sperm).

(DOC)

Table S3 Methylation scores of windows containing CNVs

detected in the two disease studies are significantly lower

compared to the methylation scores in windows not containing

the CNVs. The p-values are generated using Kolmogorov-

Smirnov tests using the following two methylation scores: inferred

germline methylation index values and sperm methylation scores

determined using bisulphite sequencing at 2.56 coverage.

(DOC)
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Table S4 Functional category clusters of genes within windows

with MI = 0 determined by the DAVID system [73]. The three

clusters with highest enrichment scores and the two clusters with

lowest enrichment scores are listed.

(PDF)

Table S5 Clustering of genes located in the windows with

MI = 0 by genetic disorder output by GFINDer [74] web server,

sorted by p-values (without correction for multiple testing).

(PDF)

Table S6 Enrichment of various regulatory features in methyl-

ation deserts detected using permutation test or chi-square test.

The highlighted rows also appear in Table 2.

(DOC)

Table S7 Comparing methylation levels at 156 coverage in

evolutionary rearrangements or CNV segments vs. other genomic

regions with two resolutions: 100 Kbp windows (2nd–3rd columns);

rearrangement/CNV segments vs. random segments of same size

within the same chromosome (4th–5th column).

(DOC)

Table S8 Chi-square test statistics for enrichment of various

structural instabilities in the methylation deserts vs. the random

windows with distances to the centromere/telomere selected from

the normal distribution with the same parameters.

(DOC)

Table S9 Enrichment of structural mutability in methylation

deserts of autosomal chromosomes and chromosome X (2.56
coverage). P-values are determined using Chi-square test.

(DOC)

Table S10 Accuracy of methylation level estimation. Based on

the CpG coverage in each window, we calculated the binomial

confidence interval for each window given the number of

methylated CpG sampling events and the total number of CpG

sampling events per window. Then we evaluated the relative error

of the estimation of the methylation level for each window using

the 95% confidence interval. This table shows the percentage of

windows that do not exceed specific percentage error bounds.

Joint read coverage of the two samples was 2.56.

(DOC)

Table S11 Enrichment in hypomethylated regions (lowest 5%

sperm methylation as determined by 2.56coverage) of rare CNVs

found in developmental delay patients classified by sub-phenotype

(data from [41]). P-values are calculated using chi-square test,

comparing case CNVs in each sub-class with all CNVs found in

controls.

(DOC)

Text S1 Supplementary material for the main text.

(PDF)
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