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Abstract

The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for
transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of
metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of
metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites
when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and
the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides
and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide
hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several
previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-
specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the
highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal
endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and
biofuel production and provide the genomic foundation for the study of a model endophyte system.
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Introduction

Global climate change and decreasing fuel reserves are driving a

push towards biologically derived fuels from plant wastes. The

optimal biofuel for immediate implementation is one that

functions within the context of current infrastructure, in particular

with existing engines and distribution systems. This would require

chemical similarity to gasoline, which is a mixture of hydrocarbons

with an average chain length of eight [1]. Fungi have been

recognized as producers of eight carbon (C8) volatiles for nearly 80

years and are a major global carbon recycler [2,3]; however,

despite the interest in these compounds, the genes responsible for

their production remain largely undefined.

One such producer of C8 volatiles is the endophyte Ascocoryne

sarcoides (NRRL 50072). Originally identified as Gliocladium roseum,

this organism was shown to produce a series of molecules of

potential interest as biofuels when grown on a cellulose-based

medium [4]. The taxonomy was later revised to A. sarcoides and its

production profile of Volatile Organic Compounds (VOCs) was

amended to remove branched-chain alkanes. However, this

follow-up work also confirmed the production of straight-chain

alkanes from C6 to C9, as well as branched-chain alcohols varying

in length from C3 (2-methyl-1-propanol) to C7 (5-methyl-1-

hexanol) (Table S1) [5–7]. Understanding and optimizing

biological production of such molecules is an area of active

research (reviewed in [8]).

Bacteria have been shown to produce alkenes through ‘‘head-to-

head’’ condensation of fatty acids; however, products with fewer

than 23 carbons, like those from A. sarcoides, are not known to be

synthesized by this mechanism [9,10]. Odd-chain alkanes and

alkenes of chain lengths 13–19 have been observed in bacteria as

products of the decarbonylation of aldehydes and the decarbox-

ylation of fatty acids, respectively [11,12]. However, currently

there are no known eukaryotic homologs for these enzymes. C8

alcohols and ketones have been identified as the products of

linoleic acid breakdown; however, the genes responsible for the

downstream reductions that generate C8 alkenes and alkanes are

still unknown [13–17]. In order to gain a better perspective on

PLoS Genetics | www.plosgenetics.org 1 March 2012 | Volume 8 | Issue 3 | e1002558



these pathways and the cellulolytic machinery used by an

endophyte, we coupled genome sequencing and short and long

RNA-seq with metabolomic profiling of A. sarcoides.

Generation of metabolic pathway predictions in organisms for

which genetic tools have not yet been developed remains a

difficult problem. Techniques such as gene expression analyses

and metabolomics profiling have the advantage that genetic

tractability is not required. In a pioneering study, Askenazi et al,

showed that gene expression could be linked to specific

metabolite production [18]. The authors profiled the level of

lovastatin production in engineered strains of the fungus

Aspergillus terreus and showed that strains with similar transcrip-

tional profiles also had similar amounts of lovastatin production

[18]. Furthermore, extensive metabolic network analyses have

demonstrated the ability to link the transcription of individual

genes to metabolites [19,20]. Metabolite-transcriptional coupling

has since been validated extensively for the monitoring of

different stress responses [21–23].

We used RNA-seq based gene expression measurements to

accurately map gene structures and to generate candidate gene

lists for novel metabolic pathways. In particular, we used gene

expression and the co-occurrence of a compound across multiple

experimental perturbations to generate candidate genes and

pathways for the production of C8 volatiles and several other

alkanes and alkenes that currently have no known eukaryotic

pathway. In addition, we extensively mapped and annotated the A.

sarcoides cellulose breakdown machinery using RNA-seq expression

analysis after growth on different carbon substrates. Together with

the high quality genome assembly and annotation, these data

provide the most complete genomic characterization of any fungal

endophyte to date. The analyses and datasets contribute to the

development of biofuels from microbial metabolites and the

related study of cellulose degradation and may be a reservoir of

information for studying the plant-endophyte relationship.

Results

Genome assembly and annotation
The A. sarcoides NRRL 50072 genome was sequenced resulting

in approximately 38-fold coverage of the estimated 34 Mb

genome [24]. Reads were assembled into 16 scaffolds incorporat-

ing 99.5% of the total genomic base pairs. The genome size and

overall GC content (45%) is within the average range for other

Leotiomycetes fungi [25]. We predicted 10,831 genes resulting in

100% recovery of annotated Core Eukaryotic Genes Mapping

Approach (CEGMA) genes which is a benchmark for a high

quality genome assembly (Text S1) [26]. Roughly 70% of the gene

models had at least one match to one of the 42 available fully

sequenced fungal genomes. Approximately 22% of the gene

models are seemingly species-specific and did not match to

anything currently in GenBank [27]; the remaining 8% were

homologous to genes outside of the fungal kingdom. Eighty-seven

percent of the gene models were validated with long-read

transcriptome profiling (Text S1) and 75% of the potential exon-

exon junctions were confirmed (see Figure 1A and 1B). Although a

subset of the unvalidated gene models and exon junctions may be

spurious, the majority are most likely true genes that are silent

under these specific conditions [28,29].

RNA-seq analysis and novel TAR identification
We subjected A. sarcoides to seven different growth conditions to

assay diversity in both transcription and compound production

(Table S2). Volatile metabolite production was analyzed by gas

chromatography mass spectrometry (GC/MS) for six of these

seven conditions (no GC/MS dataset was obtainable on the day 9

potato dextrose harvest; Table S1 and S2). We monitored A.

sarcoides cultures for production of volatiles and selected this subset

of six conditions for RNA-seq analysis, which provided differential

compound production profiles. Under these six conditions, A.

sarcoides produced 48 identifiable volatile metabolites including 18

alcohols and 7 alkanes/alkenes including heptane, octane, and

nonane. All volatile metabolites were scored with a binary scale to

indicate their presence or absence in each culture headspace. We

chose this digitized scoring because different analyses required

variation in culture and headspace volumes and our method of

detection of VOCs (Solid Phase Micro Extraction (SPME), see

Materials and Methods) is sensitive to such variation [30]. The

large number of functionally diverse metabolites in the headspaces

also precluded the use of external or internal standards to

determine the absolute amount detected for each compound

across all conditions.

Coupled transcriptional profiles for the six conditions obtained

via RNA-seq resulted in more than 200 million reads alignable to

the reference genome or exon junctions (Table S3) and greater

than 99% similarity between the two technical replicates (Figures

S1 and S2). Six diverse sampling conditions were chosen for the

RNA-seq analysis in lieu of replicates in order to more thoroughly

explore the transcriptional landscape of A. sarcoides and more

completely map gene structure throughout the genome. The

genome and transcriptome data can be accessed at http://asco.

gersteinlab.org.

In addition to the 10,831 gene models predicted, we identified a

number of RNA-seq reads which map outside of the gene models.

A subset of these reads formed well-defined regions on the

reference genome. 602 of these regions are at least 1 kb away from

any annotated genes and are designated as transcriptionally active

regions (TARs) (Figure 1C, Figures S3 and S4 for sensitivity

analysis and examples). These TARs were seemingly devoid of

open reading frames and in some cases were quite long (up to

Author Summary

A renewable source of energy is a pressing global need.
The biological conversion of lignocellulose to biofuels by
microorganisms presents a promising avenue, but few
organisms have been studied thoroughly enough to
develop the genetic tools necessary for rigorous experi-
mentation. The filamentous-fungal endophyte A. sarcoides
produces metabolites when grown on a cellulose-based
medium that include eight-carbon volatile organic com-
pounds, which are potential biofuel targets. Here we use
broadly applicable methods including genomics, transcrip-
tomics, and metabolomics to explore the biofuel produc-
tion of A. sarcoides. These data were used to assemble the
genome into 16 scaffolds, to thoroughly annotate the
cellulose-degradation machinery, and to make predictions
for the production pathway for the eight-carbon volatiles.
Extremely high expression of the gene swollenin when
grown on cellulose highlights the importance of accessory
proteins in addition to the enzymes that catalyze the
breakdown of the polymers. Correlation of the production
of the eight-carbon biofuel-like metabolites with the
expression of lipoxygenase pathway genes suggests the
catabolism of linoleic acid as the mechanism of eight-
carbon compound production. This is the first fungal
genome to be sequenced in the family Helotiaceae, and A.
sarcoides was isolated as an endophyte, making this work
also potentially useful in fungal systematics and the study
of plant–fungus relationships.

Genome of Ascocoryne sarcoides
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Figure 1. Validating gene models and novel TARs. (A) Schematic showing splice junction library generation. (B) For each of the three gene
models shown, the x-axis is the genomic coordinates and the gray boxes represent individual exons, with arrows indicating strand. Reads having any
overlap with the genic region are represented by black lines, the height of which correspond to the number of reads covering a particular base pair.
Note that a read can align outside the exonic region, but that this was not observed at intron boundaries, although it did occur in the UTRs. (C)
Schematic illustrating de novo assembly of reads into transcriptionally active regions (TARs). Three parameters are shown: threshold, min run, and
max gap. Threshold sets the number of reads required for the region to be considered in the assembly. minRun sets the number of base pairs in the
contiguous region required, and maxGap sets the number of discontiguous base pairs permitted to still be considered part of the assembly. Only the
black box has sufficient base pairs above the threshold with the permitted contiguous length to be considered a TAR. (D) The minimum distance
between each TAR and its nearest neighboring gene was computed. The number of TARs at least 1 kb away from any gene are shown (novel TARs).
(E) Histogram of the length of novel TARs. Note the break in both the x and y-axis to indicate the outliers for TAR length and frequency. (F) Columns
represent the culture growth conditions, rows individual novel TARs, and elements are color coded according to their RPKM value from white (no
expression) to dark green (high expression).
doi:10.1371/journal.pgen.1002558.g001

Genome of Ascocoryne sarcoides
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3.7 kb in length). Forty percent of these TARs illustrated

condition-specificity (standard deviation greater than 1; see

Figure 1D–1F) as has previously been observed in S. cerevisiae

and H. sapiens [31]. The importance of these polyadenylated non-

coding RNAs in regulating gene expression has only recently been

discovered [31,32] and their exact role remains an active area of

research.

Annotation and expression of cellulose degradation
machinery

Given the emphasis on cellulose breakdown and utilization for

the development of alternative fuels, we were interested in exploring

and annotating the cellulolytic capabilities of A. sarcoides. We

analyzed the transcription profiles of A. sarcoides for growth on three

different carbon sources: cellulose (CELL), cellobiose (CB), and

potato dextrose (PD4). While cellulose and cellobiose share the same

b(1–4) linkage between monomer units, potato dextrose contains

predominantly glucose-monomer. Differential gene expression

between the potato dextrose and the two more complex substrates

(CELL and CB) provides information on the pathways and

mechanisms of cellulose breakdown; whereas, differences between

the CELL and CB provides information on the genes necessary to

utilize a soluble versus an insoluble polymer. Such differences are

particularly useful as they can inform methods aimed at increasing

cellulose breakdown efficiency. We first examined the differential

expression across these three conditions (Table S15) [29,33]. There

were 1,435 genes that were expressed under all three conditions

(Figure 2A). A smaller number, 142 genes, were only expressed

during growth on cellulose or cellobiose, including the endo- and

exo-cellulases, as expected based on their role in cellulose utilization.

398 and 380 genes were exclusively expressed on cellobiose and

cellulose, respectively, reflecting the significant differences in the

machinery necessary to utilize a soluble disaccharide versus an

insoluble polymer and in the resulting downstream changes in the

cellular state. We focused on the subset of genes with homologs in

the CAZY database, a manually curated repository for carbohy-

drate metabolism (see Text S1) [34]. In total, 52% (89 of 169) of

glycosyl-hydrolase homologs (GH), 45% (25 of 56) of glycosyl-

transferases (GT), 50% (3 of 6) of carbohydrate-binding module

genes (CBM), 41% (9 of 22) of carbohydrate esterases (CE), and 0%

(0 of 1) of polylyase (PL) were differentially expressed across the

three conditions (Figure 2B; Table S4).

The most highly expressed gene in the cellulose condition was

AS6577, which is homologous to the gene encoding the protein

swollenin. Swollenin was first identified in the cellulolytic model

organism, Trichoderma reesei. Heterologous expression in yeast and

Aspergillus niger showed that swollenin mediates disruption of plant

cell walls without releasing monomeric sugars [35]. Supplemen-

tation of a cellulase mixture with swollenin increased saccharifi-

cation rates suggesting this protein may play an important role in

efficient cellulose breakdown [36]. While A. sarcoides growth on a

lignin-containing medium was not analyzed, we identified the full

pathways for 5-carbon sugar utilization e.g. arabinose and xylose,

sugars which comprise 10–25% of carbohydrates resulting from

Figure 2. Analysis of cellulose-related expression. A. sarcoides transcription was profiled when grown on potato-dextrose media for 4 days
(PD4), cellulose (CELL) and cellobiose (CB). (A) The total number of genes with quantile normalized log2(RPKM) greater than 2 was computed for each
condition. The venn diagram shows the overlap of these genes across the three conditions. (B) Genes were partitioned according to their homology
to the four main CAZY families: Glycoside Hydrolase (GH), Glucosyl Transferase (GT), Carbohydrate Esterase (CE), Carbohydrate Binding Modules
(CBM). The homologs were then filtered to include only those genes which showed a standard deviation across the three conditions greater than 0.5.
Each family was separately clustered (hierarchical, Euclidean distance, single linkage). The colorbar represents the quantile normalized log2 (RPKM)
value from white (low expression) to dark blue (high expression). Note: CBM can co-occur with all families. Only those genes that had exclusively a
CBM domain were clustered in the CBM matrix to avoid duplication. (C) A table of the most highly expressed genes includes genes not directly
involved in degradation, such as swollenin and chitin synthase (see Results for more details).
doi:10.1371/journal.pgen.1002558.g002

Genome of Ascocoryne sarcoides
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hemi-cellulolysis [37]. We further validated the presence of these

pathways by demonstrating A. sarcoides growth on media with

either xylose or arabinose as the sole carbon source (Materials and

Methods).

Identification of genes for biosynthesis of secondary
metabolites

The genes responsible for both cellulose degradation and the

production of secondary metabolites are non-randomly distributed

in a number of sequenced genomes, such that they are clustered

into regions of higher than average gene density [38,39].

Therefore, we searched for clusters in A. sarcoides as a strategy to

identify genes involved in these processes. We generated a

simulated set of scaffolds where the number of genes was kept

constant but the placement was randomized to identify regions of

the genome with higher than expected gene density. We identified

77 clusters ranging in length from 10–72 kb (p,.05, Text S1).

Twenty-six clusters contained genes or domains known to be

involved in secondary metabolism, particularly oxidoreductases

and permeases. We noted five gene-clusters that were involved in

the production of secondary metabolites usually restricted to

plants, including two clusters containing genes homologous to

those involved in the synthesis of patatin (Table S5). Patatin is a

plant storage glycoprotein implicated in plant-fungal communica-

tion [40]. Expression of this protein in Arabidopsis negatively affects

resistance to Botrytis cinerea and Pseudomonas syringae, but it increases

resistance to the cucumber mosaic virus [40]. Interestingly, all

genes in this cluster were transcriptionally silent under the

conditions we tested. Given their known functional role in

mediating plant-fungal interactions, it is possible they are strictly

regulated by interactions with the plant host.

The classes of genes most frequently involved in secondary

metabolite production are Polyketide synthases (PKS) and Non-

ribosomal peptide synthetases (NRPS). We identified 19 PKS and

NRPS clusters through fungal-specific Hidden Markov Models of

beta ketoacyl synthase (KS) and acyltransferase (AT) domains and

an additional 8 gene clusters and 11 gene models composed solely

of enoyl reductase and/or dehydratase accessory domains (Text

S1, Tables S6 and S7). The identified PKS genes ranged in size

from a few kb to the 13 kb and 13-exon hybrid PKS/NRPS

AS8071, which is by far the largest predicted gene model in A.

sarcoides. Examination of the 3 kb region upstream and down-

stream of each PKS element also revealed a number of major

facilitator superfamily transporters and permeases which may

confer resistance to both PKS-derived and exogenous toxins [41].

However, comprehensive searches of previously identified PKS

clusters [42], laeA element identification to delineate possible

cluster boundaries [43], and use of domain to structure software

[44] failed to yield any predictions for possible biosynthetic

products. Intriguingly, one PKS, AS1082 was first found to

contain a beta ketoacyl synthase domain, but subsequent searches

revealed that it contained two distinct KS domains and an acyl

carrier protein domain. However, no acyl transferase domain,

which typically functions in substrate loading, was identified.

While separately encoded acyl transferase enzymes that act in trans

have been found in bacteria, only trans-acting enoyl reductase

domains have yet been characterized in fungi [45].

Correlating VOC production with gene expression to
elucidate biosynthetic pathways

A more direct method to investigate the A. sarcoides genes

responsible for production of the novel metabolites is the use of

association analysis. As mentioned above, the concordance of gene

expression and metabolite production can be used to guide

prediction of genes involved in metabolic pathways [18]. A

complication in the application of these methods for novel

metabolic pathways, as opposed to those generated either via

PKS or as part of conserved metabolism, is that we know neither

the genes that are involved nor the pathway structure (i.e. the

reactant-product pairings that result in the downstream com-

pound). For example, we do not know the genes responsible for the

production of octane, nor do we definitively know the starting

compound or what intermediates may have been subsequently

generated. Thus, we need a series of analyses that simultaneously

infer the potential genes and the pathway trajectory as defined by

the chemical elements (Figure 3A–3D; Figures S5, S6, S7).

It was previously shown that by examining the ‘‘correlation’’

and ‘‘anti-correlation’’ of sets of genes across a wide spread of

phylogenetic space, the importance, ordering, operons, and

additional members of the pathway can be discerned [46–50].

Furthermore, genes belonging to the same pathway or complex

often show both coordinated regulation and conservation [50]. By

substituting the phylogenetic profiles from these previous studies

with our compound profiles generated from compound presence

or absence across all conditions, the resulting character matrix can

be used to determine the relatedness of these compounds

(Figure 3B and 3F, Figures S7 and S8). On the basis of these

relationships, compounds can be then grouped into pathways. To

apply this correlation analysis, each metabolite produced by A.

sarcoides under each of the six growth conditions was assigned a ‘‘1’’

if it was detected in the particular condition and ‘‘0’’ if it was not

detected, as depicted in the schema in Figure 3A–3B and 3E–3F).

To further inform the metabolite analysis, we also used a recent

meta-analysis that profiled the production of 10 Ascocoryne isolates

under varying growth conditions resulting in 20 different GC/MS

profiles [5]. Compounds that consistently co-occurred across the

genus are more likely to be in the same pathway and were given

more weight than those showing inconsistent behavior (Figure S7).

We then grouped sets of compounds that co-occurred into single or

related sets of pathways (Figure 3C, compounds A and C) and those

that rarely or never co-occurred into different pathways

(Figure 3C, compound B). To identify possible metabolite-gene

linkages, we then computed the correlation between the com-

pound profile and expression of each gene under the different

conditions. Correlations between compounds and expression

were used instead of strictly quantitative changes in gene

expression because this more effectively integrated the expression

analysis with the binary compound production data. To ensure

the correlations were significant, we computed a p-value for the

compound co-expression scores (See Text S1, Tables S8, S9, S10,

S11, S12, S13). For a set of compounds with the same compound

profile, there may be many genes with correlated expression, not

only those involved in the compound production. Therefore,

retrosynthesis was used to disambiguate which of the significantly

correlated genes were most likely involved in the production of

those compounds (Figure S8).

As one example of this method identifying candidate genes, we

identified 60 genes with homology to putative alcohol dehydro-

genases (EC 1.1.1.1), which have a wide range of specificities and

annotation quality. However, only three of the identified alcohol

dehydrogenases were significantly co-expressed with any com-

pound production profile. In particular, AS5307 was co-expressed

with the compound profile that had a predominance of branched

medium chain alcohols, including 3-methyl butanol, 3-methyl-3-

buten-1-ol, and 2-methyl-1-propanol. We predict that these three

dehydrogenases, from amongst the 60, play a key role in the

production of the observed medium-chain alcohol metabolites.

Genome of Ascocoryne sarcoides
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Co-expression has been used to assign functions to genes with

known homologs as well as to genes without primary sequence or

domain level annotations [51]. All genes co-expressed with a

particular compound profile were examined as shown in Figure 4,

where each line represents a single gene. A subset of the genes was

homologous to well-known secondary metabolite pathway ele-

ments, but some had no known function (Figures S9, S10, S11). In

the latter cases, gene co-expression was used to infer additional

pathway elements as well as associated regulators and transporters.

Below, we provide an example set of predictions for a C8 product

pathway. The full set of predicted pathway schemas and potential

enzymes are provided in the supplement. An R package

containing the code and documentation for RNA-seq processing

and the association analysis is provided in Text S2.

Pathway predictions for biosynthesis of C8 metabolites
Given the average chain length is about eight for hydrocarbons

in gasoline, the production of molecules with similar lengths

represents an obvious starting point for next generation biofuels

that will be compatible with pre-existing infrastructure [52,53].

We identified candidate pathway elements for the production of

reduced C8 volatiles in A. sarcoides and assigned correlated genes to

each step of the reconstructed C8 pathway (Figure 3). As an

example, lipoxygenases (EC 1.13.12.12) are known to be involved

in the formation of C8 alcohols and ketones in fungi via the

catabolism of linoleic acid [3,54]. There are five lipoxygenases in

the A. sarcoides genome, and two of these are correlated with C8

production (AS2804 and AS3405, Figure 3H, II). The most

strongly correlated lipoxygenase, AS2804 is homologous to the

Aspergillus gene ppoC (Figure 3H, II) (p,.01). Recently, Brodhun et

al showed that expression of ppoC is sufficient to catalyze the

breakdown of linoleic acid into a wide range of compounds

including: 1-octen-3-ol, 2-octen-1-ol, 2-octenal, and 3-octanone in

a crude E. coli lysate [17]. All of these compounds were observed as

products of A. sarcoides with the exception of 2-octenal (Table S1).

The original hypotheses for the production of these C8 volatiles

from linoleic acid involved two enzymes, a lipoxygenase to form a

peroxidated intermediate, and a lyase (EC 4.1.2.-) to catalyze its

breakdown into smaller, volatile products. However, an active

lyase has yet to be successfully purified in fungi [14–16,55], and

recent work argues against the need for this activity [17]. We

identified one lyase, AS9537; however, its expression did not

correlate with the production of C8 volatiles (Figure 3G, III),

arguing against the dual-enzyme hypothesis for C8 production and

supporting the more central role for the lipooxygenase (AS2804).

In addition to the oxygenated C8 volatiles observed by Brodhun

et al. from Aspergillus, A. sarcoides produces the reduced compounds

1,3-octadiene; 1,3-trans-5-cis-octatriene; 1,5-octadien-3-ol; 1-oc-

tene; and 3-octanol suggesting that downstream processing of

linoleic acid breakdown products has occurred. One potential

route to these compounds is shown in Figure 3G, whereby 1-

octen-3-one is further reduced to 1-octen-3-ol by FabG (EC

1.1.1.100), a 3-oxoacyl-[acyl-carrier protein] reductase (Figure 3G,

IV). In total, A. sarcoides has 10 genes with strong homology to

FabG (Table S14), however, only the three co-expressed with C8

production are shown in Figure 3H, IV (AS1593, AS4820, and

AS5565, with AS5565 exhibiting the largest expression change).

The nearest sequenced relatives of A. sarcoides, Botryotinia fuckeliana,

and Sclerotinia sclerotiorum, have only two and three FabG genes,

respectively (Figures S13 and S14). Since the reduced C8

compounds have not previously been found outside the Ascocoryne

genus and the expression of some FabG genes do correlate with

Figure 3. Coupled transcriptomics and metabolomics to generate pathway predictions. The top panels (A–D) represent the algorithm
schema and the bottom panels (E–H) represent the corresponding steps with data for an example pathway, C8 production. Cyan, green, and purple
are used to denote different experimental conditions (1, 2, and 3 and CB, PD4, and PD14 for the schematic and the C8 pathway data, respectively).
GC/MS total ion chromatograms (orange box, A & E) are used to generate compound co-occurrence profiles (red box, B & F). These compound co-
occurrence profiles are used to group and order the compounds based on patterns of correlation and anti-correlation to build a possible biosynthetic
pathway (brown box C & G). Genes for which the expression profile matches the compound profile are considered correlated and therefore likely
candidates for the biosynthetic pathway of interest (gray box D & H). Retrosynthesis is then used to match correlated genes with a reaction in the
pathway, represented by roman numerals denoted on pathway arrows (brown box, C&G).
doi:10.1371/journal.pgen.1002558.g003
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these compound production profiles, it is possible that at least

some of these additional FabG genes may participate in the

reduction of eight carbon volatile compounds. In addition to the

FabG homologs, 317 oxidoreductases particularly aldo-keto

reductases, were identified in A. sarcoides. Of these 11 were

correlated with C8 production (Table S14). Oxidreductases are

able to reduce various functional groups, such as ketones and

alcohols, and are expected to participate in the biosynthesis of the

C8 reduced products and other volatiles (Figure 3G, 3H; IV and

VI). In addition, of all sequenced fungal genomes, only A. fumigatus

(626) and T. reesei (494) have a commensurate number. Both B.

fuckeliana and S. sclerotiorum have less than 200 oxidoreductases,

which is approximately the median number for sequenced fungi.

The above average number of oxidoreductases found within A.

sarcoides suggests a large reducing capability and extensive

secondary metabolism potential.

Discussion

The unknown pathway for the production of potential biofuel

compounds in A. sarcoides is part of a more general trend.

Microorganisms produce an extraordinary diversity of natural

products that have the potential to be used in numerous

applications from medicines to biofuels to commodity chemicals

[37,56,57]. However, identifying the genes responsible for their

production remains a major hurdle for organisms that are not

genetically tractable. Despite promising developments in pathway

prediction algorithms, a substantial gap remains between meta-

Figure 4. Compound gene co-expression profiles. Each plot shows the quantile-normalized log2 (RPKM) for each set of genes of co-expressed
with a particular compound profile (green 001, red 010, blue 100, cyan 101, purple 110, and black 111) across all 6 conditions (CB, PD4, PD14, AMM,
CELL, and OAC). The first three conditions (CB, PD4, and PD14) represent the conditions where the compounds analyzed in this study were detected.
The remaining conditions serve as the nulls (see Text S1for details). Within the plots, each line corresponds to a single gene.
doi:10.1371/journal.pgen.1002558.g004
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bolic capabilities and genetic characterization [58–61]. As an

example, Metacyc, a repository of metabolic pathways, contains

8,869 compounds linked to 1,908 known pathways, but this

represents less than 1% of the compounds estimated to be

produced by micro-organisms [62,63]. An integrated omics

approach could provide a relatively simple means of exploring the

biosynthetic potential of uncharacterized non-model organisms.

By examining changes in the A. sarcoides transcriptome across a

diverse array of conditions, we were able to explore a wide fraction

of genes and refine gene and exon boundaries to improve the

genome annotation quality. Additionally, with co-expression

patterns we generated hypotheses for the genes involved in

undefined metabolic pathways and regulatory mechanisms.

Through TAR building we identified a number of long, highly

expressed regions seemingly devoid of open reading frames that

may have a regulatory role. The recovery of 100% of all CEGMA

[26] genes suggests a high quality genome assembly, and the

number of scaffolds is on par with the number of expected

chromosomes in Ascomycete fungi [64]. We used an expanded

version of association analysis to generate hypotheses for products

from unknown pathways. Such methods are flexible enough to

integrate coupled transcriptome and metabolomics data and will

take on increasing importance as the throughput of both

transcriptome and metabolomics continues to increase. The

means to leverage these datasets will be key to our understanding

of novel metabolite production particularly for genetically

intractable organisms. From its plant mediators to its oxidoreduc-

tases and its cellulases, A. sarcoides’s gene complement represents

several avenues for further research and its diverse array of

enzymatic capabilities will contribute to the study of cellulose

degradation and secondary metabolite production.

Materials and Methods

Genomic DNA isolation
Isolate NRRL 50072 was obtained under a material transfer

agreement from Montana State University (GA Strobel, Bozeman,

MT). Genomic DNA was isolated using the Plant DNeasy

MaxiPrep kit (Qiagen) according to the manufacturer’s instruc-

tions with the following modifications: mycelia were grown in

potato dextrose broth for approximately 3 weeks at 25uC, shaking

at 150 rpm and were harvested via filtration. The filtrate (1 g) was

homogenized by mortar and pestle under liquid nitrogen before

the addition of 80 mL RNase (100 mg/mL), 80 mL proteinase K

(10 mg/mL) and lysis buffer P1 (Qiagen). Homogenized material

was heated for 10 min at 65uC and then processed through the

remainder of the Qiagen protocol.

Sample preparation of RNA for Illumina RNA-seq
Please see Table S2 for detailed growth and inoculation

conditions for CB, PD4, and PD14 as distinguished by the short

code referred to in both the text and figure legends. For the

remaining 3 conditions (OAC, AMM, and CELL), media were

prepared and inoculated with 50 mg filtered culture (16 PD) as

reported in Griffin et al., 2010 [5]. Carbon starvation (OAC) was

prepared as a minimal medium base with sodium acetate (50 mM)

as the sole carbon source. Nitrogen starvation (AMM) was

prepared as a minimal medium base with no ammonium chloride

and with 83.3 mM glucose. Cellulose substrate (CELL) was

prepared as a minimal medium base with cellulose (15 g/L) as

the sole carbon source. All were titrated to a pH to 6.0 with

NaOH. Vials were incubated for 2 days at 23uC before GC/MS

analysis and RNA extraction. For each of these conditions, seven

vials were inoculated, with three subjected to GC/MS analysis

while the remaining four vials were concurrently used for RNA

harvesting. Total RNA was isolated using the Ambion RiboPure

Kit (California, USA), and then poly-A purified and prepared for

sequencing as in Nagalakshmi et al., 2008 [28].

Sample preparation of RNA for long-read transcriptome
(454)

Sample PD9 was selected for RNA preparation and long-read

transcriptomics, which was used to confirm gene models. RNA

was extracted from a 9-day old 1 L PDB culture grown at 23uC,

150 rpm (Table S2). Extraction performed as in Nagalakshmi

et al., 2008 [28].

Metabolomics profiling
All conditions were as specified under the RNA-seq preparation.

GC/MS was carried out in parallel with cultures harvested for RNA

seq with the exception of PD9, which was not profiled. Control

samples for each media condition were prepared for use in GC/MS

analysis with the same methods as described in the RNA seq

conditions section above, but without the addition of inoculums.

Analysis of culture headspaces was performed on a gas-chromato-

graph coupled to a time-of-flight mass spectrometer (GCT Premier,

Waters). Automated culture sampling was mediated by a CTC

CombiPAL Autosampler (Leap Technologies) and all cultures were

sampled with a 50/30 mm divinylbenzene/carboxen/polydimethyl-

siloxane StableFlex Fiber (Supelco). GC injection and column

parameters, GC temperature program and MS data acquisition

parameters were as described previously [5]. Parameters for SPME

headspace sampling were as follows. OAC, CELL, and AMM vial

cultures were analyzed via automated sampling with a pre-

extraction SPME fiber conditioning (7 min, 250uC), 35 min

headspace extraction at 30uC, and a splitless GC injection (30 sec,

240uC, 0.75 mm ID injection liner). Manual headspace sampling of

CB, PD4, and PD14 flask cultures used the following sampling

parameters: pre-extraction SPME fiber conditioning (12 min,

250uC), 30 min headspace extraction (room temperature, approx-

imately 20–25uC), and splitless GC injection (30 seconds, 240uC,

0.75 mm ID injection liner). Data were analyzed with the

MassLynx Software SuiteTM (Waters). Chromatographic peaks

were identified with a combination of spectral search comparisons

with the Wiley RegistryTM of Mass Spectral Data, 8th Edition,

elemental composition analysis and the comparison of retention

times and spectra with pure standards for compounds where noted

(Sigma-Aldrich). Compounds identified during the analysis of

control media samples, including contaminants resulting from the

SPME fiber and Wax capillary column, as well as media derived

compounds, were excluded from the final compound report for

each condition. See Table S1 for the full compound profiles.

C5 and C6 growth assays
Growth assays were performed in 96 well plates in 200 mL

media containing trace metals as in Griffin et al., 2010 [65],

0.67 g/L Yeast Nitrogen Base (Difco) and supplemented with

100 mM of either glucose, xylose, arabinose, mannose, cellobiose,

or sodium acetate, titrated to a pH of 6 with KOH. Wells

containing no added carbon source served as the control. The

cultures were inoculated by adding 5 mL of 56107 spores/mL in

Phosphate Buffered Saline (Gibco), and the cultures were grown

for 5 days at 23uC. Growth was determined by visual inspection.

Genome assembly and annotation
Initial assembly with single end shot gun titanium reads with

Roche’s GS DeNove Assembler (Newbler) resulted in 137 scaffolds
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with an N50 of 2.8 Mb [24]. Following addition of a paired end

3 kb-insert sequencing run, these were assembled into 16 scaffolds

encompassing 99.5% of the total sequenced base pairs. Called

genes were first aligned to the GenBank non-redundant database

using blastx (v2.2.24) [27,66]. A hit was defined as a match when

overlap with the length of the query protein was greater than 60%

and E-value,1e-10. We extracted the subset of genes found in the

CAZY database, a repository for manually curated carbohydrate

machinery, and performed a similar procedure [67].

Domains were identified using the hmmsearch function from

HMMer [68] with both a set of fungal-specific protein domains

[69] and the entire PFAM database [70]. A domain was

considered a match if the E-value was greater than 1 and the

length of the match was at least 15. Pathway predictions and

enzyme classification was completed through KEGG/KAAS

[71,72]. GO predictions were made by first mapping the set of

A. sarcoides genes to their corresponding Aspergillus nidulans homolog

[73,74]. Please see Text S1for a full description of the gene cluster

and PKS/NRPS identification strategies.

RNA-seq analysis
In the case of the Illumina runs, mapping was done via building

bowtie indices for splice junction libraries, and the genome

respectively using default parameters (tolerated up to 2 mismatches

and screened for quality scores) [75]. Splice junction libraries were

generated as described in Habeggar et al., with 30 bp exon ends

[76]. The bowtie reads were converted to mapped read format

(MRF) and mrfQuantifier was used to compute a variation of

reads per kilobase of exon per million mapped sequence reads

(RPKM) for each gene using RSEQtools [76]. Briefly, we

computed RPKM as the number of nucleotides that map per

kilobase of exon model per million mapped nucleotides for each

gene rather than the read count. It is computed by summing the

total number of reads that cover each base pair of an annotation

feature of interest (in this case of exons) and normalizing by the

total length of the feature. For the conditions denoted by CELL,

OAC, and AMM, technical replicates were performed yielding

one lane per replicate. In the case of PD4, there were two technical

replicates performed 2 months apart. A comparison of the RPKM

of the genes between lane replicates showed greater than 99%

agreement (Figure S2), although the correlation was slightly less

between the two AMM replicates than between any other

conditions.

The 454 long reads (average size 410 bp) were mapped against

the gene models and the genome using BLAT with default

parameters [77]. In all cases, only reads that unambiguously

mapped to a single location were used for the downstream

analysis. For each gene, we calculated the RPKM score as

described above. To estimate depth of coverage, the percentage of

genes that were detectable using subsamples of reads was

computed where detectable was defined as having at least 1, 2,

5, or 10 reads, respectively, overlapping the gene (Figure S12).

Identification of transcriptionally active regions (TARs)
A database of transcriptionally active regions (TARs) was

constructed from those RNA-seq long reads that map uniquely to

the genome via BLAT [77]. The TAR database was built by

employing the minrun/maxgap segmenting module [76]. Gene

coverage values were calculated for a range of minrun/maxgap

parameters to assess their impact on observed gene coverage.

Included in the coverage analysis were TAR file sets with

maximum read gaps between zero and five and minimum read

run from 30 to 40 (See Text S1for a full description; Figures S3

and S4).

Supporting Information

Figure S1 All versus All comparison of transcriptional profiles

for Illumina runs in all seven different growth conditions. Axes are

log2 RPKM values.

(PDF)

Figure S2 Technical Replicates of Illumina transcription data.

There is greater than 99% similarity between the two replicates for

each of four conditions.

(PDF)

Figure S3 Determining the appropriate parameter values for

identifying Transcriptionally Active Regions (TARs). Each line

represents a particular threshold in the TAR sensitivity analysis

(see legend for Threshold levels). The x-axis is sorted first by the

MaxGap value (0,1,2,3,4,and 5) and secondly, for each by the

MinRun length value (30, 35, 40).

(PDF)

Figure S4 Examples of novel TAR read stacks. The top panel

illustrates a well-defined novel TAR that is most likely a missed gene

call. The bottom panel demonstrates another novel TAR that is at

least 1 kb away from any annotated genes and yet remains part of a

long expression tail adjacent to an actively translated exon.

(PDF)

Figure S5 Hypothetical compound gene co-expression profiles

demonstrating the need to include null data sets. (A), the purple

line and the green line (square and circle, respectively) represent

two possible compound profiles (110 and 001). The gene

expression of the black line (diamond) is equally correlated with

the two compound profiles. (B) A null condition is included in the

analysis (condition ID 4). The best compound profile match for the

gene’s expression pattern (black line) is now the green line (0010).

Addition of the null condition permits the distinction between the

two compound profiles. See text for more details.

(PDF)

Figure S6 Inferring Product/Reactant Pairs through Com-

pound Profile Consistency. We illustrate this idea with a simple

color experiment. As an example, a purple precursor (110) can

result in blue (100), red (010), or purple (110) products, but not a

yellow (011) product.

(PDF)

Figure S7 Clustering Compound Co-occurrence. Compounds are

clustered based on their co-occurrence as measured by their DLW

distance across the whole Ascocoryne genus. Compounds are colored

according to their production profiles (using the same color scheme in

Figure S6): Green 001, Red 010, Blue 100, Cyan 101, Purple 110 and

Black 111. Compounds in Brown were reported in the previous

analysis of the Ascocoryne genus for VOC production, but not presently

detected in any of the conditions linked with RNA-seq data.

(PDF)

Figure S8 Retrosynthesis of A. sarcoides products. Compounds are

colored by their associated profile as defined in Figure S6. Brown

indicates those compounds that were previously detected from the

Ascocoryne genus, but were not detected during the present the RNA-seq

coupled analysis. Gray represents compounds that have never been

detected, but are proposed intermediates. (A) Hypothetical schema for

producing alkanes from a ketone precursor. (B) Hypothetical schema

for converting an aldehyde into the corresponding alkane, as well as

possible off-pathway reactions that produce an ester.

(PDF)

Figure S9 Clustered Gene Co-expression 001. Each of the 3

following figures (Figures S9, S10, S11) was generated as follows.
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The genes whose expression correlated with a particular

compound profile were partitioned using k-means clustering into

sets of genes co-expressed across all 6 conditions. Each graph

represents the gene expression of a single cluster where the x-axis is

the Condition Id and the y-axis is the Quantile Normalized log2

RPKM. The 001 genes partitioned into two clusters, representing

up and down regulation states. However, more complex

partitioning occurred for the 101 and 111 profiles.

(PDF)

Figure S10 Clustered Gene Co-expression 101. As described for

Figure S9, this illustrates the gene expression patterns for all genes

correlated with the 101 compound profile, where each plot

represents a single cluster of genes.

(PDF)

Figure S11 Clustered Gene Co-expression 111. As described for

Figure S9, this illustrates the gene expression patterns for all genes

correlated with the 111 compound profile, where each plot

represents a single cluster of genes.

(PDF)

Figure S12 The fraction of genes detected with 1, 2, 5, and 106
read coverage, respectively, at different sub-samplings of the 454

long reads.

(PDF)

Figure S13 Metabolic mapping of KEGG orthologs for A.

sarcoides, S.sclerotiorum, G. zeae, S. cerevisiae. Nodes are compounds

and connecting lines are enzymes. Color codes are based on

functional category. A node can appear in multiple places. The

tree is just for illustrative purposes; the branch lengths are not

drawn to scale. Generated via iPath.

(PDF)

Figure S14 (A) A representative image of the synteny between S.

sclerotiorum and A. sarcoides. The A. sarcoides scaffolds are stacked on

the right-hand side and S. sclerotiorum scaffolds are shown in the

colored inset. Like-colored regions of A. sarcoides scaffolds and those

of S. sclerotiorum represent syntenic blocks. (B) Table reports the

total number of orthologs and the levels of synteny between A.

sarcoides and each of the four fungi analyzed.

(PDF)

Table S1 Volatile compounds detected and identified via SPME-

GC/MS from the headspace of NRRL 50072 samples. NRRL 50072

was cultured as described in the Materials & Methods and in Table S2

with the following conditions: Acetate (OAC), cellulose (CELL),

cellobiose (CB), ammonium starvation (AMM), potato dextrose broth

at 4 days (PD4), and 14 days (PD14). For each compound, 1

designates production/detection and 0 designates no detection.

RT = retention time in minutes. Asterisk (*) designates compound

retention time and EI spectra matched that of a pure standard.

(PDF)

Table S2 Culture growth conditions for GC/MS profiling and

RNA preparation. NRRL50072 was cultured using the stated

media, volumes, inoculation/growth conditions, and the RNA

preparation and GC/MS analysis were performed on the days listed.

(PDF)

Table S3 Transcriptome Mapping Statistics. Report of Illumina

and 454 reads mapped to gene models and to genome for each of

the conditions and time points.

(PDF)

Table S4 The number of genes from each sequenced organism

with homologs in the CAZY database per CAZY class. Glycosyl

hydrolases (GH), glycosyl transferases (GT), Carbohydrate-binding

module (CBM), carbohydrate esterase (CE), and polylyase (PL).

Table structure adapted from Martinez et al [7].

(PDF)

Table S5 Genes identified in the A. sarcoides genome with

homologs in plants. Genes are subdivided into three classes: P,

genes with exclusively plant orthologs; M, genes with mostly plant

orthologs; and N, genes that did not have a plant ortholog, but

bordered a set of plant orthologs.

(PDF)

Table S6 Targeted search for b-ketosynthase (KS) and acyltrans-

ferase (AT) domains. Genes identified in the targeted search are listed

with their domain annotations. For genes that were part of clusters,

the additional genes found within the cluster are also included.

(PDF)

Table S7 Targeted search for enoyl reductase (ER), dehydratase

(DH), and ketoreductase (KR) domains. Genes identified in the

targeted search are listed with their domain annotations. For genes

that were part of clusters, the additional genes found within the

cluster are also included.

(PDF)

Table S8 Gene Subset Co-expressed with the 001 Compound

Profile. For each of the following 6 tables (Tables S8, S9, S10, S11,

S12, S13): Gene ID, gene ID within A. sarcoides; Status, reports if

the gene is active (A) or repressed (R) in the production conditions;

KO, KEGG ortholog ID; Description, description of the KEGG

ortholog; EC, lists the Enzyme Commission number that

corresponds to the KEGG ortholog, where relevant.

(PDF)

Table S9 Gene Subset Co-expressed with the 010 Compound

Profile. Gene ID, gene ID within A. sarcoides; Status, reports if the

gene is active (A) or repressed (R) in the production conditions;

KO, KEGG ortholog ID; Description, description of the KEGG

ortholog; EC, lists the Enzyme Commission number that

corresponds to the KEGG ortholog, where relevant.

(PDF)

Table S10 Gene Subset Co-expressed with the 100 Compound

Profile. Gene ID, gene ID within A. sarcoides; Status, reports if the

gene is active (A) or repressed (R) in the production conditions;

KO, KEGG ortholog ID; Description, description of the KEGG

ortholog; EC, lists the Enzyme Commission number that

corresponds to the KEGG ortholog, where relevant.

(PDF)

Table S11 Gene Subset Co-expressed with the 101 Compound

Profile. Gene ID, gene ID within A. sarcoides; Status, reports if the

gene is active (A) or repressed (R) in the production conditions;

KO, KEGG ortholog ID; Desc, description of the KEGG

ortholog; EC, lists the Enzyme Commission number that

corresponds to the KEGG ortholog, where relevant.

(PDF)

Table S12 Gene Subset Co-expressed with 110 Compound

Profile. Gene ID, gene ID within A. sarcoides; Status, reports if the

gene is active (A) or repressed (R) in the production conditions;

KO, KEGG ortholog ID; Desc, description of the KEGG

ortholog; EC, lists the Enzyme Commission number that

corresponds to the KEGG ortholog, where relevant.

(PDF)

Table S13 Gene Subset Co-expressed with the 111 Compound

Profile. Gene ID, gene ID within A. sarcoides; Status, reports if the

gene is active (A) or repressed (R) in the production conditions;

KO, KEGG ortholog ID; Desc, description of the KEGG
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ortholog; EC, lists the Enzyme Commission number that

corresponds to the KEGG ortholog, where relevant.

(PDF)

Table S14 Expression values (log2 RPKM Quantile Normal-

ized) for the potential fabG genes (IP011284). For each Gene ID,

expression levels are listed for each culture condition. Genes

correlated with C8 production are highlighted in yellow.

(PDF)

Table S15 Summary Statistics of Differential Gene Expression.

The number of genes expressed (quantile normalized log2RPKM)

in each culture condition (Illumina RNA-seq) relative to

expression in PD9 (454 long reads). Gene counts are given for

six RPKM fold thresholds from 2 to 22.

(PDF)

Text S1 Supporting information including additional methods

used for and results from the Expanded Association Analysis,

Genome Annotation, Models and Clusters, Comparative Geno-

mics, and Transcriptome.

(DOCX)

Text S2 An R package containing the Compound Context

Analysis Code and documentation for RNA-seq processing and

the association analysis described in the Results and in Text S1.

(TXT)
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