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Abstract

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR–associated) genes, form
the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign
nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived
from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic
datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs
in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to
reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified
from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then
assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also
identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted
assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs
(including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci,
including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling
,8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral
sites from the same individual shared significantly fewer, while different individuals had almost no common spacers,
indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential
applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work indicates the
importance of effective identification and characterization of CRISPR loci to the study of the dynamic ecology of
microbiomes.
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Introduction

CRISPRs, together with cas genes (CRISPR-associated genes),

provide acquired resistance against viruses and conjugative

plasmids [1,2], and are found in most archaeal (,90%) and

bacterial (,40%) genomes [3,4,5]. CRISPR arrays consist of 24–

47 bp direct repeats, separated by unique sequences (spacers) that

are acquired from viral or plasmid genomes [6]. Even though

some CRISPR arrays may contain hundreds of spacers (an

extreme case is the CRISPR array in the Haliangium ochraceum

DSM 14365 genome, which has 588 copies of its repeat), they tend

to be much smaller, generally with dozens of spacers. The repeat

sequences of some CRISPRs are partially palindromic, and have

stable, highly conserved RNA secondary structures, while others

lack detectable structures [7].

CRISPR arrays are usually adjacent to cas genes, which encode

a large and heterogeneous family of proteins with functional

domains typical of nucleases, helicases, polymerases, and polynu-

cleotide-binding proteins. CRISPR/Cas systems commonly use

repeat and spacer-derived short guide CRISPR RNAs (crRNAs) to

silence foreign nucleic acids in a sequence-specific manner [8,9].

CRISPR/Cas defense pathways involve several steps, including

integration of viral or plasmid DNA-derived spacers into the

CRISPR array, expression of short crRNAs consisting of unique

single repeat-spacer units, and interference with invading foreign

genomes at both the DNA and RNA levels, by mechanisms that

are not yet fully understood [8,10]. The diversity of cas genes

suggests that multiple pathways have arisen to use the basic

information contained in the repeat-spacer units in diverse defense

mechanisms. The CRISPR components are evolutionarily closely

linked and potentially evolve simultaneously as an intact locus—

sequence analysis reveals that the direct repeats in CRISPR locus

and the linked cas genes co-evolve under analogous evolutionary

pressure [11].

Previous studies have shown that CRISPR loci are very diverse

and abundant in the genomes of bacteria and archaea. In addition,

it has been shown that CRISPR loci with the same repeat

sequence and cas gene set can be found in multiple bacterial

species, implying horizontal gene transfer (HGT) [12]. Moreover,

CRISPR loci can change their spacer content rapidly, as a result of

interactions between viruses (or plasmids) and bacteria: several

metagenomic studies investigating host-virus population dynamics

have shown that CRISPR loci evolve in response to viral predation

and that CRISPR spacer content and sequential order provide

both historically and geographically insights [13,14,15,16]—

essentially, epidemiology.
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As a reflection of the infectious dynamics of microbial

communities, the study of CRISPRs is an essential compliment

to the study of the human microbiome, encompassing both disease

ecology and ecological immunology [17]. Infectious disease works

to maintain both species diversity [18,19] and genotypic diversity

[20] within a species, as has recently been shown for marine

microbiomes [21,22]. As such, infectious agents may be at least

partially responsible for the amazing species diversity and turnover

found throughout the human microbiome [23]. The ability of

CRISPR loci to prevent plasmid spread is medically relevant, in

that the exchange of conjugative elements is perhaps the dominant

mechanism by which antibiotic resistance genes (notably multi-

drug resistance) move within a biome, and by which pathogens

acquire resistance [24]; CRISPR activities could be expected to

retard this exchange (e.g. [25]).

CRISPR composition in human microbial communities, the

relative rate of CRISPR locus change, or how CRISPR loci vary

between different body sites and between the microbiota of

different individuals are less studied, as compared to other

environments. A recent analysis of streptococcal CRISPRs from

human saliva, in which CRISPR spacers and repeats were

amplified from salivary DNA, using the conserved streptococcal

CRISPR repeat sequence for priming, revealed substantial spacer

sequence diversity within and between subjects over time [26],

which is imagined to reflect the dynamics of phage and other

infectious agents in the human mouth [2].

The availability of more than 700 shotgun metagenomic

datasets from the Human Microbiome Project (HMP) enables us

to explore the distribution and diversity of many more CRISPRs,

and to discover new ones, across different body sites, in a

systematic manner. We developed a targeted assembly strategy

(see Figure 1) to better identify CRISPRs in shotgun metagenomic

sequences, as whole-metagenomic assembly failed to reconstruct

many CRISPRs that otherwise could be identified. All of the

programs available to date [27,28,29,30] are designed to find

CRISPRS from assembled contigs that are sufficiently long to

contain at least partial CRISPR loci; however, it is very difficult to

assemble metagenome reads into contigs containing CRISPR loci,

because of their repeated structures. We thus needed to collect

sequencing reads associated with CRISPRs and assemble them

specifically. For known CRISPRs (identified in reference ge-

nomes), we identified consensus sequences of CRISPR repeats,

collected the reads containing these sequences, and assembled

these reads into CRISPR contigs. We also identified CRISPRs

from the whole-metagenome assemblies, and for the novel

CRISPRs or new CRISPR variants (that are not seen in the

reference genomes), applied the same assembly strategy to achieve

a more comprehensive identification of the novel CRISPRs across

the samples. This approach allows us to study the evolution of

CRISPRs in human microbiomes.

Results

We identified and selected 64 known CRISPRs—including the

streptococcal CRISPR—from complete and draft bacterial

genomes and 86 novel CRISPRs from the 751 HMP whole-

metagenome assemblies, using metaCRT and CRISPRAlign (see

Methods). For each selected CRISPR, we then applied the

targeted assembly approach (for each CRISPR, first pool the reads

that contain the repeat, and then assemble the pooled reads only;

see Methods for a validation of the targeted assembly approach

using simulated datasets) to achieve a more comprehensive

characterization of the CRISPR loci in the human microbiome

shotgun datasets. Below we provide detailed analysis of the

targeted assembly approach, and the resulting CRISPR loci (listed

in Table 1 and Tables S1 and S2).

Targeted assembly improves the characterization of
CRISPRs

We first asked if our targeted assembly strategy helps to identify

CRISPR elements from metagenomic datasets, and found that it

greatly improved detection (see comparison in Table 2). The

improvements are twofold. First, the targeted assembly approach

identifies known CRISPRs in more human microbiome datasets,

as compared to the annotation of CRISPRs using whole-

metagenome assemblies. Second, targeted assembly resulted in

longer CRISPR arrays, from which we can extract many more

diverse spacers for analyzing the evolution of the CRISPRs and

other purposes. Here we use three examples to demonstrate the

performance of the targeted assembly.

The first example is the streptococcal CRISPR SmutaL36 (see

Table 1), a CRISPR that is conserved in streptococcal species such

as Streptococcus mutans [26]. This CRISPR was observed only in a

limited number of samples (38 out of 751 datasets) when using

contigs from whole-metagenome assembly. But our targeted

CRISPR assembly identifies instances of CRISPR SmutaL36 in

,10 times more (386) datasets. Consistent with the distribution of

streptococcus across body sites, most of the 386 datasets are from oral

samples: 120 of 128 supragingival plaques (94%), 128 of 135

tongue dorsum samples (95%), and 97 of 121 buccal mucosa

samples (80%) (see Table 3). CRISPR SmutaL36 was only found

in a small proportion of samples from other body locations, where

streptococcus rarely exists (e.g., 4 of 148 stool samples, and none of

the posterior fornix datasets). Table 2 shows the details of targeted

assembly of this CRISPR in two datasets.

The other two examples are GhaemL36 and SRS018394L37

(see details in Table 2). CRISPR GhaemL36 was initially

identified from the genome of Gemella haemolysans ATCC 10379

using metaCRT. Targeted assembly further identified instances of

this CRISPR in 258 oral-associated samples. The longest contig—

Author Summary

Human bodies are complex ecological systems in which
various microbial organisms and viruses interact with each
other and with the human host. The Human Microbiome
Project (HMP) has resulted in .700 datasets of shotgun
metagenomic sequences, from which we can learn about
the compositions and functions of human-associated
microbial communities. CRISPR/Cas systems are a wide-
spread class of adaptive immune systems in bacteria and
archaea, providing acquired immunity against foreign
nucleic acids: CRISPR/Cas defense pathways involve
integration of viral- or plasmid-derived DNA segments
into CRISPR arrays (forming spacers between repeated
structural sequences), and expression of short crRNAs from
these single repeat-spacer units, to generate interference
to future invading foreign genomes. Powered by an
effective computational approach (the targeted assembly
approach for CRISPR), our analysis of CRISPR arrays in the
HMP datasets provides the very first global view of
bacterial immunity systems in human-associated microbial
communities. The great diversity of CRISPR spacers we
observed among different body sites, in different individ-
uals, and in single individuals over time, indicates the
impact of subtle niche differences on the evolution of
CRISPR defenses and indicates the key role of bacterio-
phage (and plasmids) in shaping human microbial com-
munities.

Diverse CRISPRs Evolving in Human Microbiomes
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of 3121 bases—was assembled from the SRS019071 dataset. This

CRISPR array has even more repeats (48; i.e., 47 spacers) than the

CRISPR array in the Gemella haemolysans reference genome, which

has 29 repeats. CRISPR SRS018394L37 (currently not yet

associated with a host genome) was initially identified from the

whole-metagenome assembly of SRS018394, but targeted assem-

bly reveals the presence of this CRISPR in 238 oral-associated

microbiomes. The contig that was assembled in SRS049389 is the

longest one (2014 bps), containing 25 spacers.

In most cases we have tested, targeted assembly dramatically

improves the identification of CRISPRs in the HMP datasets: for

142 CRISPRs (out of 150), targeted assembly resulted in CRISPR

identification in more HMP samples as compared to using whole-

metagenome assemblies, and for 36 CRISPRs, targeted assembly

identified instances of the corresponding CRISPR in at least 10

times more datasets (see Table S1). It suggests that specifically

designed assembly approaches, such as the targeted assembly

approach for CRISPR assembly presented here, are important for

the characterization of functionally important repetitive elements

that otherwise may be poorly assembled in a whole-metagenome

assembly (which tends to be confused by repeats), and such a

comprehensive identification is important for deriving an unbiased

distribution of these functional elements across different body sites

among individuals.

Novel CRISPRs are found in human microbiome samples
In order to identify novel CRISPR loci, with which to seed

further targeted assemblies, we set out to find loci based simply on

the structural patterns of CRISPR loci, using the program

metaCRT, which we modified from CRT (see Methods). As a

result, we found and selected 86 different types of novel CRISPR

repeats in metagenomic samples, which could not be found in

reference genomes, for further targeted assembly (see Methods).

Table 1 lists selected examples of novel CRISPRs that we

identified in HMP datasets (see Table 1 for naming conventions).

A full list of CRISPRs (including the number of CRISPR contigs

assembled in each metagenomic dataset) is available as Table S1.

In this section, we highlight two examples of novel CRISPRs.

CRISPR SRS012279L38 was identified from a whole-meta-

genome assembly contig of dataset SRS012279 (derived from a

tongue dorsum sample; see Figure 2A). The identified CRISPR

contig has 6 copies of a 38-bp repeat (the last copy is incomplete;

see Table 1 for the consensus sequence of the repeats). De novo gene

prediction by FragGeneScan [31] reveals 10 protein-coding genes

in this contig, among which 9 share similarities with cas genes from

other genomes, including Leptotrichia buccalis DSM 1135

(NC_013192, an anaerobic, gram-negative species, which is a

constituent of normal oral flora [32]) and Fusobacterium mortiferum

ATCC 9817, by BLASTP search using the predicted protein

sequences as queries (see Figure 2B). (By contrast, BLASTX search

of this contig against nr database only achieved annotations for 7

genes). In addition, similarity searches revealed a single identical

copy of this repeat in the genome of Leptotrichia buccalis DSM 1135

(from 1166729 to 1166764; de novo CRISPR prediction shows that

this genome has several CRISPR arrays, including an array that

has 84 copies of a 29-bp repeat, but none of the CRISPRs have

Figure 1. A diagram of the targeted assembly approach for CRISPR.
doi:10.1371/journal.pgen.1002441.g001

Diverse CRISPRs Evolving in Human Microbiomes
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the same repeat sequence as SRS012279L38). These two lines of

evidence (similar cas genes, and an identical region in the genome)

suggest that the SRS012279L38 CRISPR we found in the human

microbiomes could have evolved from Leptotrichia buccalis or a

related species.

Targeted assembly of this novel CRISPR (SRS012279L38) in

HMP datasets resulted in 278 contigs from 97 datasets, confirming

the presence of this CRISPR in human microbiomes. In

particular, the CRISPR fragments (407 bps) identified from the

whole-metagenome assembly of SRS012279 were assembled into

a longer CRISPR contig (890 bps) by targeted assembly. A total of

14 unique but related repeat sequences were identified from 278

CRISPR contigs, and two of them (which differ at 3 positions) are

dominant, constituting 71% of the repeats in the CRISPR contigs.

Notably, all the repeats could be clustered into a single consensus

sequence with an identity threshold of 88%. By contrast, the

spacer sequences are very diverse across different samples. For

example, we obtained a total of 352 unique spacer sequences,

which were clustered into 345 consensus sequences with an

identity threshold of 90%. Among 352 unique spacers, 114 spacer

sequences were shared by multiple samples—a single spacer was

shared by at most eight samples.

The second example is CRISPR SRS023604L36, initially

identified in a whole-metagenome assembly contig of dataset

SRS023604 (derived from posterior fornix), which has 5 copies of

a 36 bp repeat (see consensus sequence of the CRISPR repeat in

Table 1). Targeted assembly of this CRISPR across all HMP

metagenomic datasets revealed further instances of this CRISPR

in several other datasets, including two from stool, and two from

posterior fornix. Moreover, the CRISPR contig was assembled

into a longer contig of 778 bps containing 12 copies of the

CRISPR repeat. BLAST search of the CRISPR repeat against the

nr database did not reveal any significant hits.

Expanding the CRISPR space by human microbiomes
To investigate how much the CRISPRs identified in the HMP

datasets can expand the CRISPR space (sequence space of the

CRISPR repeats), we built a network of CRISPRs, based on the

sequence similarity between CRISPR repeats. An edge in the

network between two CRISPR repeats, each represented by a

node, indicates that the two repeats can be transformed from one

to another by at most 10 operations (including mutations,

insertions, and deletions). Since it is difficult to determine the

direction of CRISPR repeats [7] (especially for the CRISPR arrays

that have incomplete structures), given two repeats, we calculated

two edit distances—one is the distance between the two repeats,

and the other one is between one repeat and the reverse

complement of the other—and used the smaller value as the edit

distance between the two repeats. The global network (Figure 3A;

see Figure S1 with node labels) shows that most of the novel

CRISPRs identified in the human microbiomes are remotely

related to ones identified in complete (or draft) genomes. Still,

there are small clusters that contain only novel HMP CRISPRs,

indicating that these CRISPRs are substantially different from

ones identified in the reference genomes. In Figure 3B, we have

colored nodes by body site: while specific CRISPR repeats can be

highly specific to body site (see below), the larger families of repeats

shown in Figure 3B do not appear to cluster based on body site.

We further studied the sequence patterns of the repeats for each

group and our results show 1) distinct patterns among the groups,

and 2) high conservation around the stem and start/end positions

in CRSIPR repeats of each group (see sequence logos—for the

large groups—in Figure S2). The consensuses revealed by the

logos show consistencies with the results in a previous study, which

used a similar approach, based on alignments of CRISPR repeats,

for classification of CRISPR repeats [7].

CRISPRs have diverse distributions across human body
sites and individuals

Overall, the distributions of CRISPRs are largely body-site

specific (see Figure 4 and Figure S3; the name of CRISPR and the

number of samples in which the CRISPR was found are listed in

Table S3). For example, CRISPRs AhydrL30 ad BcoprL32 are

only found in stool samples (see Table 3). Exceptions include two

CRISPRs that were found from both a significant number of gut-

and oral-associated samples: Neis_t014_L28 were found in 51 gut

samples and 92 oral-associated samples; FalocL36 identified from

Table 1. List of selected CRISPRs discussed in the paper.

IDa
Species (or HMP sample ID)
Consensus sequence of the CRISPR repeats

Known

AhydrL30 Anaerococcus hydrogenalis DSM 7454 (NZ_ABXA01000037)
ATTTCAATACATCTAATGTTATTAATCAAC

AlactL29 Anaerococcus lactolyticus ATCC 51172 (NZ_ABYO01000191)
AGGATCATCCCCGCTTGTGCGGGTACAAC

BcoprL32 Bacteroides coprophilus DSM 18228 (NZ_ACBW01000156)
GTCGCACCCTGCGTGGGTGCGTGGATTGAAAC

FalocL36 Filifactor alocis ATCC 35896 (NZ_GG745527)
TTTGAGAGTAGTGTAATTTCATATGGTAGTCAAAC

GhaemL36 Gemella haemolysans ATCC 10379 (EQ973306)
GTTTGAGAGATATGTAAATTTTGAATTCTACAAAAC

LcrisL29 Lactobacillus crispatus ST1 (NC_014106)
AGGATCACCTCCACATACGTGGAGAATAC

LjassL36 Lactobacillus gasseri JV-V03 (NZ_ACGO01000006)
GTTTTAGATGGTTGTTAGATCAATAAGGTTTAGATC

LjensL36 Lactobacillus jensenii 115-3-CHN (NZ_GG704745)
GTTTTAGAAGGTTGTTAAATCAGTAAGTTGAAAAAC

Neis_t014_L28 Neisseria sp. oral taxon 014 str. F0314 (NZ_GL349412)
GTTACCTGCCGCACAGGCAGCTTAGAAA

Neis_t014_L36 Neisseria sp. oral taxon 014 str. F0314 (NZ_GL349412)
GTTGTAGCTCCCTTTCTCATTTCGCAGTGCTACAAT

PacneL29 Propionibacterium acnes J139 (NZ_ADFS01000004)
GTATTCCCCGCCTATGCGGGGGTGAGCCC

PpropL29 Pelobacter propionicus DSM 2379 (NC_008609)
CGGTTCATCCCCGCGCATGCGGGGAACAC

SmutaL36 Streptococcus mutans NN2025
GTTTTAGAGCTGTGTTGTTTCGAATGGTTCCAAAAC

Novel

SRS012279L38 SRS012279 (dataset from a tongue dorsum sample)
TATAAAAGAAGAGAATCCAGTAGAATAAGGATTGAAAC

SRS018394L37 SRS018394L37 (dataset from a supragingival plaque sample)
GTATTGAAGGTCATCCATTTATAACAAGGTTTAAAAC

SRS023604L36 SRS023604 (dataset from a posterior fornix sample)
GTTTGAGAGTAGTGTAATTTATGAAGGTACTAAAAC

aThe IDs of the CRISPRs are assigned using the following rules: 1) If a CRISPR
(e.g., SmutaL36) is identified from a known complete/draft genome with species
name (for SmutaL36, the genome is Streptococcus mutans NN2025), its ID uses
five letters from the species name (i.e., Smuta) followed by the length of the
repeats (length of 36 is shown as L36); 2) If a CRISPR (Neis_t014_L28) is
identified from a known complete/draft genome that has only general genus
information (e.g., Neisseria sp. oral taxon 014 str. F0314), then its ID is four letters
from the genus name, followed by the taxon ID, and the length of the repeats;
and 3) the CRISPRs identified in the HMP datasets are named as the ID of the
datasets followed by the length of repeat.
doi:10.1371/journal.pgen.1002441.t001
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Filifactor alocis ATCC 35896 were found in 63 gut samples and 72

oral-associated samples, including 50 tongue dorsum samples (see

Table 3).

The first 50 CRISPRs shown in Figure 4 are mainly found in

stool samples. AshahL36, which was initially identified from

Alistipes shahii WAL 8301, was found in more than half of gut-

related samples (96 out of 147 samples). On the other hand, 99

CRISPRs are mainly found in oral samples, in particular, tongue

dorsum, supragingival plaque, and buccal mucosa. We found 5

CRISPRs that exist in more than half of the oral-associated

samples (out of 417): SmutaL36, KoralL32 from Kingella oralis

ATCC 51147, Veil_sp3_1_44_L36 and Veil_sp3_1_44_L35 from

Veillonella sp. 3_1_44, and SoralL35 from Streptococcus oralis ATTC

35037. 4 CRISPRs are mostly found in vaginal samples (AlactL29,

LjensL36, LjassL36, and LcrisL29). 1 CRISPR is skin-specific

(PacneL29), found mainly in skin samples. Below we discuss the

body-site distributions of a few examples.

Neis_t014_L28 and Neis_t014_L36 are inferred from a single

genome, Neisseria sp. oral taxon 014 str. F0314, but these two

CRISPRs show distinct absence/presence profiles across body

sites (see Table 3). For stool samples, there exists only CRISPR

Neis_t014_L28 in 51 datasets, but not Neis_t014_L36. And

Neis_t014_L36 is relatively more prevalent in oral-associated

samples as compared to Neis_t014_L28. The different body site

distributions can be explained by the fact that these two CRISPRs

are found in different sets of genomes (although both can exist in a

common genome, Neisseria sp. oral taxon 014 str. F0314).

Neis_t014_L36 has been identified in multiple Neisseria genomes,

including Neisseria meningitidis ATCC 13091, Neisseria meningitidis

8013 (so Neis_t014_L36 belongs to the Nmeni subtype among the

8 subtypes defined by Haft et al [33]), Neisseria flavescens SK114,

and Actinobacillus minor NM305. Neis_t014_L28, however, was only

found in Neisseria sp. oral taxon 014 str. F0314. On the other hand,

even though we could not find any CRISPRs containing the

exactly same repeat as Neis_t014_L28 in the complete/draft

genomes other than Neisseria sp. oral taxon 014 str. F0314, many

CRISPRs, when a few mismatches are allowed, were found in

diverse genomes (for example, Crenothrix polyspora, Legionella

pneumophila 2300/99 Alcoy, and Thioalkalivibrio sp. K90mix) from

environmental samples.

Four CRISPRs (AlactL29, LjensL36, LjassL36, and LcrisL29)

exist mostly in vaginal samples. AlactL29, initially identified from

the Anaerococcus lactolyticus genome, was found only in 3 vaginal

samples. Notably, LjensL36 was found in 28 vaginal samples

Table 2. Comparison of CRISPR identification using whole-metagenome assembly and targeted assembly.

Whole-metagenome assembly Targeted assembly

CRISPR Sample datasets Spacers (max) Spacers (total) Short reads Spacers (max) Spacers (total)

SmutaL36 (386a vs 38b) SRS017025 (plaque) 1c 1d 1078e 26 76

SRS011086 (tongue) 1 2 4018 24 78

GhaemL36 (257 versus 9) SRS019071 (tongue) 0 0 1718 47 21

SRS014124 (tongue) 3 3 490 21 58

SRS018394L37 (238 versus 39) SRS049389 (tongue) 0 0 5778 25 492

SRS049318 (plaque) 1 1 1463 38 134

athe total number of samples that have streptococcal CRISPRs identified if using targeted assembly, and
bif using whole-metagenome assembly;
cthe total number of spacers found in the longest CRISPR locus found in the given dataset;
dthe total number of spacers found in all contigs assembled from the given dataset;
ethe total number of sequences that contain the repeats of a given CRISPR, i.e., the recruited reads used for targeted assembly. See Table S1 for comparison of all the
CRISPRs studied in this paper.
doi:10.1371/journal.pgen.1002441.t002

Table 3. Distribution of selected CRISPRs across body sites.

Oral Skin

CRISPR
Anterior
nares (94a)

Stool
(148)

Buccal
mucosa (121)

Supra-gingival
plaque (128)

Tongue
dorsum (135)

Posterior
fornix (61) L- (9)c R- (18)d

SmutaL36 11b 4 97 120 128 0 0 1

AhydrL30 0 53 0 0 0 0 0 0

BcoprL32 0 65 0 0 0 0 0 0

FalocL36 0 63 1 18 50 0 0 0

Neis_t014_L28 0 51 15 58 15 0 0 0

Neis_t014_L36 0 0 37 66 82 0 0 0

PacneL29 1 0 0 0 0 0 4 7

athe total number of datasets;
bthe total number of datasets that have CRISPRs identified;
cL-Retroauricular crease;
dR-Retroauricular crease. Note not all body sites are listed in this table.
doi:10.1371/journal.pgen.1002441.t003

Diverse CRISPRs Evolving in Human Microbiomes
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(which comprise 43% of vaginal samples collected) and 1 skin

sample. This observation is consistent with a previous study

showing that Lactobacillus constitutes over 70% of all bacteria

sampled from vaginas of healthy, fertile women, and Lactobacillus

jensenii is one of the major genomes [34]. Interestingly, we could

find evidence of adaptation in the LjensL36 spacer against

Lactobacillus phage Lv-1 (NC_011801) (see below). LjassL36 was

found in 33 vaginal samples by targeted assembly. We confirmed

that it is in different Lactobacillus genomes, such as Lactobacillus

gasseri and Lactobacillus crispatus, by BLAST search. CRISPR

LcrisL29, which was identified in the Lactobacillus crispatus genome,

was found in 31 vaginal samples, and we found the same repeat

sequence in the Lactobacillus helveticus genome.

PacneL29 was the only skin-specific CRISPR we found in the

HMP datasets. Interestingly, instances of PacneL29 are found in

Propionibacterium acnes HL110PA4 and Propionibacterium acnes J139,

but not other P. acnes isolates (including KPA171202, SK137,

J165, and SK187). This indicates a potential application of

CRISPRs in the characterization of specific stains for a species in

human microbiomes.

CRISPRs have very diverse spacers
The HMP project enables us to explore the diversity of

streptococcal CRISPRs (and others) at a much broader scale (with

751 samples from 104 healthy individuals). The CRISPRs that we

identified in human microbiomes exhibited substantial sequence

diversity in their spacers among subjects. Targeted assembly of the

streptococcal CRISPRs (SmutaL36) in HMP datasets resulted in a

total of 15,662 spacers identified from 386 samples, among which

7,815 were unique spacers (clustering of the spacers at 80%

identify resulted in a non-redundant collection of 7,436 sequences).

See Figure S4 for the sharing of the spacers in streptococcal

CRISPRs among all individuals, which shows several large clusters

of spacers that are shared by multiple individuals (for clarity, we

only keep spacers that were shared by more than eight samples in

this figure). In particular, the most common spacer is shared by 25

individuals (in 32 samples).

More importantly, we could check the sharing of CRISPR

spacers across different body sites and sub-body sites (e.g., multiple

oral sites) using HMP datasets (Pride et al. examined streptococcal

CRISPRs in saliva samples from 4 individuals [26]). Figure 5

shows the spacer sharing among 6 selected individuals, each of

whom has multiple samples with identified streptococcal CRISPRs

from multiple body sites (see Figure S5 for the spacer sharing with

spacers clustered at 80% sequence identify). By examining the

distribution of the spacers across samples, we observed that

samples re-sampled from the same individual and oral site shared

the most spacers, different oral sites from the same individual

shared significantly fewer, while different individuals had almost

no common spacers, indicating the impact of subtle niche

differences and histories on the evolution of CRISPRs. Our

observation is largely consistent with the conclusion from Pride et

al. [26]. But our study showed that different samples from the same

oral site of the same person, even samples collected many months

Figure 2. A potentially novel CRISPR array identified in a contig (9848 bases) from sample SRS012279. (A) This CRISPR array has 6
copies of the repeat (repeat sequences shown in red font and spacer shown in blue). (B) shows our annotation of this contig, in which the CRISPR
array is highlighted in red. We first predicted ORFs in this contig using FragGeneScan [31], and then blasted predicted proteins against the nr protein
database to retrieve annotations; for example, the predicted Cas1 is similar to the Cas1 protein identified in Leptotrichia buccalis C-1013-b (accession
ID: YP_003163976), with 60% sequence identify and 80% sequence similarity.
doi:10.1371/journal.pgen.1002441.g002
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Figure 3. Visualizations of the CRISPR network of 150 CRISPRs, each represented as a node. There is an edge between two nodes, if the
edit distance between the consensus sequences of the repeats of the corresponding CRISPRs is ,10, with edges of small edit distances (i.e., the two
CRISPRs share more similar repeats) shown in thick lines and edges of larger edit distances in thin lines. In (A), the known CRISPRs are shown as blue
nodes (except for several CRISPRs highlighted in green), and the novel CRISPRs identified in the HMP datasets are shown as red nodes. In (B), the

Diverse CRISPRs Evolving in Human Microbiomes
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apart, could still share a significant number of spacers (e.g., the

supragingival plaque samples from individual 1 in visit 1 and visit

2, with 238 days between the two visits, and the tongue dorsum

samples from individual 5 in visit 1 and visit 3, with 336 days

between the two visits; as shown in Figure 5). Our study also

showed that although the different oral sites of the same individual

share similar spacers, this sharing (e.g., between the supragingival

plaque sample and the buccal mucosa sample for individual 1) is

minimal, as compared to the spacer sharing between samples

collected in different visits but from the same oral site (e.g., between

the supragingival plaque samples from visit 1 and visit 2 for

individual 1). Finally, our study shows that the spacer turnover

varies among individuals—for the 6 selected individuals, individ-

ual 3 shows significantly higher turnover of the spacers between

visits, as compared to other individuals.

We also checked the spacer diversity for the CRISPR

KoralL32, since it and its variants are one of the most abundant

CRISPRs. This CRISPR was assembled from 339 samples: 327

from oral sites and 2 from gut. The targeted assembly of KoralL32

found 7282 unique spacers, among which the most commonly

shared spacer is shared by 35 individuals (in 58 samples). Figure S6

shows the sharing of the spacers among the individuals for this

CRISPR, which shows similar spacer-sharing patterns as those

found in the streptococcal CRISPRs.

The similarity between spacers from the same individual

suggests that we may still be able to trace the evolution of

CRISPRs, especially in the same body site of the same individual,

even though the CRISPR loci tend to have extremely high

turnover of their spacers.

CRISPR spacer sequences can be used to trace the viral
exposure of microbial communities

As a consequence of CRISPR adaptation, the spacer contents in

CRISPR arrays reflect diverse phages and plasmids that have

passed through the host genome [1,35,36,37]. However, previous

studies have shown that only 2% of the spacer sequences have

matches in GenBank, which is probably due to the fact that

bacteriophage and plasmids are still poorly represented in

databases [13,14]. Similarity searches of identified spacers against

viral genomes enable identification of the viral sources of the

spacers (i.e., proto-spacers) captured in each CRISPR locus. For

example, similarity searches of the 7,815 unique spacers in the

streptococcal CRISPR against viral genomes revealed similarities

between streptococcal spacers and 22 viral genomes (species

names and accession IDs are listed in Table S4), and the two most

prevalent viruses are Streptococcus phage PH10 (NC_012756) and

Streptococcus phage Cp-1 (NC_001825) (see Figure 6A). Figure 6B

suggests that the potential proto-spacers are rather evenly

distributed along the phage genomes (except for a few regions,

including a region that encodes for an integrase, which is

highlighted in red in Figure 6B). Although the positional

distribution of the proto-spacers is close to random, the sequences

adjoining the proto-spacers for streptococcal CRISPR we identi-

fied in the virus genomes showed conserved short sequence motifs

(GG) (see Figure S7 for the sequence logo), which is also the most

common proto-spacer adjacent motif (PAM) shared by several

CRISPR groups, as reported in [38].

Another example is CRISPR PacneL29, which is mainly found

in skin-associated microbiomes. BLAST search of the identified

spacers against the virus genome dataset revealed similarity

between the spacers and several regions in Propionibacterium phage

PA6 (NC_009541). We also found evidence of adaptation in

LjensL36 against Lactobacillus phage Lv-1 (NC_011801): BLAST

search shows significant matches to a total of 38 regions in the

phage genome. Overall we found 23 CRISPRs that have spacers

with high sequence similarities ($90% over 30 bps) with virus

genomes collected from the NCBI ftp site (Table S5).

We also searched the spacers against plasmid sequences

(collected in the IMG database). For example, matches were

found between the detected streptococcal CRISPR spacers and

nodes are colored based on body site, in which the CRISPRs are most frequently found. CRISPRs are assigned as rare if they were found in ,5
samples; otherwise, they are assigned to particular body site(s) if they are found in more than 10 percent of the samples for that particular body site
(e.g., stool+skin). The figures were prepared using Cytoscape [43].
doi:10.1371/journal.pgen.1002441.g003

Figure 4. Distribution of CRISPRs across body sites. In this figure, the x-axis represents 150 CRISPRs and the y-axis represents the total number
of samples in which instances of each CRISPR are found. Note that there are roughly one third as many stool samples as oral samples, probably
explaining the apparently smaller number of CRISPRs in the gut microbiome. See Table S3 for details of the distribution of CRISPRs across body sites.
doi:10.1371/journal.pgen.1002441.g004

Diverse CRISPRs Evolving in Human Microbiomes

PLoS Genetics | www.plosgenetics.org 8 June 2012 | Volume 8 | Issue 6 | e1002441



more than 10 plasmid sequences (including Streptococcus thermophilus

plasmid pER35, pER36, pSMQ308, and pSMQ173b; Bacillus

subtilis plasmid pTA1040; and Streptococcus pneumoniae plasmids

pSMB1, pDP1 and pSpnP1). See Table S6 for a summary of the

plasmids that share high homology with the CRISPR spacers.

The CRISPER spacers can also be used to identify viral contigs

in metagenome assemblies that contain proto-spacers. As an

example, similarity searches of identified streptococcal CRISPR

spacers against the HMP assemblies revealed 37 potential viral

contigs (of lengths from 2,134 to 56,413 bp): these contigs show

high homology (.80% sequence similarity) with known viral

genomes. The largest contig (of 56,413 bps) is similar to the

genome of Streptococcus phage Dp-1 (NC_015274), with 88%

sequence identify, and covers almost the entire viral genome (of

59,241 bps). A future paper will fully explore this approach.

Conserved CRISPR repeat sequences can be used to
reveal rare species in human microbiome

Because of the large number of repeats that many CRISPR loci

contain, CRISPR repeats of rare species with low sequence

coverage in a community can still be found. It was reported that

repeat-based classification [7] corresponds to a cas gene-based

classification of CRISPRs [33], which revealed several subtypes of

CRISPRs largely constrained within groups of evolutionarily

related species (e.g., the Ecoli subtype). As such, we may use the

presence of the repeats of a particular CRISPR as a first indication

of the presence of related genome(s) in a microbiome, even though

CRISPR locus has been found transferred horizontally as a

complete package among genomes [11].

We use CRISPR PpropL29 as an example to demonstrate this

potential application, as PpropL29 was identified in only a small

proportion of the HMP samples (11 datasets): including 7

supragingival plaque samples (out of 125) and 4 tongue dorsum

samples (out of 138). All the PpropL29-related repeats identified in

these samples can be clustered into 7 unique sequences. In order to

find the most likely reference genomes for these 7 unique repeat

Figure 5. Sharing of streptococcal CRISPR spacers among
samples from 6 individuals. In this map, the rows are the 761
spacers (clustered at 98% identify) identified in one or more of these 6
individuals, and the columns are samples (e.g., Stool_v1_p1 indicates a
sample from stool of individual 1, in visit 1; Tongue_v2_p1 indicates
dataset from tongue, individual 1, in visit 2). Buccal stands for buccal
mucosa, and SupraPlaque stands for supragingival plaque. The red lines
indicate the presence of spacers in each of the samples. Multiple lines in
the same row represent a spacer that is shared by multiple samples.
doi:10.1371/journal.pgen.1002441.g005

Figure 6. Traces of viral sequences in the streptococcal
CRISPRs in human microbiomes. (A) A two-way clustering of viral
genomes and the HMP datasets based on the presence patterns of viral
sequences in the CRISPR loci identified in the HMP datasets: the
columns are the viral genomes, and the rows are HMP datasets. It shows
that the genome of Streptococcus phage PH10 (NC_012756) has the
most regions that are similar to the spacers in streptococcal CRISPRs.
This figure was prepared using the heatmap function in R, with the
default clustering method (hclust) and distance measure (Euclidean). (B)
Mapping of the spacers onto the 31,276 base genome of Streptococcus
phage PH10; in this figure, each vertical line shows a potential proto-
spacer, a region in the virus genome that is similar to a spacer found in
HMP datasets; lines of the same color show sets of proto-spacers
identified from the same HMP dataset (other individual proto-spacers
are shown in gray lines); the ORFs are shown in arrows (the red arrow is
an integrase and the green arrow is annotated as endolysin).
doi:10.1371/journal.pgen.1002441.g006
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sequences, we blasted these repeat sequences against the human

microbiome reference genomes and found 100% identity matches

in the Lautropia mirabills genome. To investigate the overall

coverage of this genome by the reads (not only the CRISPR

regions), we mapped the entire collection of reads from four

samples: SRS019980 and SRS021477 (both are from supragingi-

val plaque, and have an 100% identity match with the CRISPR

repeat in the Lautropia mirabills genome); SRS019974 (from tongue

dorsum, with a slightly different CRISPR repeat sequence with 3

differences); and SRS019906 (which does not contain any

CRISPR repeats similar to PpropL29, used as a control). The

mapping results show the reads from two samples SRS019980 and

SRS021477 each cover ,80% of the Lautropia mirabills genome,

which is very significant evidence that these two microbiomes

include Lautropia mirabills. But the other two samples have only a

limited number of reads mapped to the genome (e.g., only 3089,

reads in SRS019906 were mapped into Lautropia mirabills). This

contrast suggests that identification of CRISPRs by targeted

assembly could provide significant evidence for the existence of

certain rare genomes.

Discussion

We have applied a targeted assembly approach to CRISPR

identification, to characterize CRISPRs across body sites in

different individuals. Our studies show that a directed approach—

such as our targeted assembly approach—is important for a

comprehensive (thus less biased) estimation of the distribution of

CRISPRs across body sites and individuals, and their dynamics.

Note that in this study, we only focused on CRISPRs identified in

eubacterial genomes, since archaea are rare in human micro-

biomes (we looked for, but did not find, archaeal CRISPRs in the

HMP assemblies). Also for the sake of simplicity, we derived a non-

redundant list of CRISPRs based on the similarity of the CRISPR

repeats (see Methods), and detailed targeted assembly was only

applied to these CRISPRs.

Although many CRISPR arrays may be missed by whole-

metagenome assembly, we show that whole-metagenome assem-

blies are useful for identifying novel CRISPRs (as de novo prediction

of CRISPRs relies on sequence features of CRISPRs that do not

exist in short reads). Once seeding CRISPRs are identified from

whole-metagenome assemblies, we can go back to the original

short read datasets, and pursue a comprehensive characterization

of the CRISPRs, using the targeted assembly approach. Also, we

did not fully utilize the presence of cas genes for identification of

novel CRISPRs in our study, since in many cases we can identify

arrays of repeats, but not their associated cas genes. A future

direction is to combine targeted assembly of CRISPRs and whole-

metagenome assembly, aiming to achieve even better assembly of

the CRISPR loci with more complete structures, including cas

genes and the arrays of repeats and spacers. Such an improvement

is necessary to achieve a more comprehensive characterization of

especially the novel CRISPRs discovered in metagenomes, and the

temporal order of spacer addition to arrays.

The immediate utility of this study is to provide more complete

inventories of CRISPR loci in human microbiomes and their

distributions in different human body sites, and the spacer content

of these loci. The identification of CRISPR spacers opens up

several potential applications, including tracing the viral exposure

of the hosts, studying the sequence patterns of the regions

adjoining the spacer precursors in viral genomes, and discovering

viral contigs in metagenome assemblies. It has been shown that

short sequence motifs found in the regions adjacent to the spacer

precursors in the viral genomes determine the targets of the

CRISPR defense system [38], and we were able to analyze the

sequence patterns of regions adjacent to spacer precursors for

several CRISPRs with the most spacers identified in the HMP

datasets (including SmutaL36, LjensL36, and KoralL32; see

sequence logos in Figure S7). When more metagenomic datasets

become available, we will extend the analysis to more CRISPRs,

which may provide insights into the mechanism of the CRISPR

defense system (including the turnover patterns of the CRISPR

spacers, and the target recognition of the CRISPR defense

systems). Our preliminary exploration of viral contigs—by

searching CRISPR spacers against whole-metagenome assem-

blies—suggests that we can identify new virus genomes in

metagenome assemblies; further computational and experimental

analysis will be needed to confirm these contigs.

We look forward to being able to utilize CRISPR spacer

sequences to understand human and human microbiome biology

better, utilizing the metadata associated with the HMP datasets.

This awaits a more complete sampling of individuals over time,

and of known relationships; and a far better characterization of

bacteriophage and other selfish genetic elements in the human

biome (our inventory of spacers is a standard against which phage

and plasmid collections can be judged).

Methods

De novo identification of CRISPRs
CRT [28] is a tool for fast, de novo identification of CRISPRs in

long DNA sequences. CRT works by first detecting repeats that

are separated by a similar distance, and then checking for other

CRISPR specific requirements (e.g., the spacers need to be non-

repeating and similarly sized). We modified CRT to consider

incomplete repeats at the ends of contigs from whole-metagenome

assembly, and call the modified program metaCRT.

Identification of CRISPRs by similarity search
We implemented CRISPRAlign for identifying CRISPRs in a

target sequence (a genome or a contig) that has repeats similar to a

given CRISPR (query CRISPR). CRISPRAlign works by first

detecting substrings in the target sequence (or its reverse

complement) that are similar to the repeat sequence of a query

CRISPR, and then checking for other requirements, as in

metaCRT. Both metaCRT and CRISPRAlign are available for

download at http://omics.informatics.indiana.edu/CRISPR/.

Selection of known and novel CRISPRs for targeted
assembly in HMP datasets

Using metaCRT and CRISPRAlign, we prepared a list of

known CRISPRs repeats (identified from complete/draft bacterial

genomes) and a list of potentially novel ones (identified only in the

whole-metagenome assemblies from the HMP datasets) for further

detailed study of their distributions among the HMP datasets. As

we show in Results, the targeted assembly strategy is important for

an efficient and comprehensive characterization of these CRISPRs

in human microbiome datasets.

Known CRISPRs were first identified from the bacterial

genomes (or drafts) collected in the IMG dataset (version 3.3),

using metaCRT. We then selected a subset of the identified

CRISPRs that meet the following requirements: direct repeats are

of length 24–40 bps, there are a minimum of 4 copies of the direct

repeats, and the individual repeats each differ by at most one

nucleotide from the repeat consensus sequence, on average. The

parameters were chosen to minimize false CRISPRs, considering

that a CRISPR array typically contains 27 repeats, with an

average repeat length of 32 base pairs [28]. We only kept

Diverse CRISPRs Evolving in Human Microbiomes
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CRISPRs that can be found in at least one of the whole-

metagenome assemblies, using CRISPRAlign. We further reduced

the number of candidate CRISPRs by keeping only those that

share at most 90% sequence identity along their repeats by CD-

HIT [39], as there are CRISPRs that share very similar repeats,

and our targeted assembly strategy can recover the CRISPRs with

slight repeat differences. To avoid including a repeat and its

reverse complete (metaCRT does not consider the orientation for

the repeats) in the non-redundant list, we included reverse

complement sequences of the CRISPR repeats in the clustering

process. Therefore, a repeat would be classified into two clusters

by CD-HIT (the reverse complete of the repeat would be classified

into a different cluster), one of which was removed to reduce

redundancy.

We consider that a CRISPR identified in the HMP assemblies is

novel if we find no instances of this CRISPR in the IMG bacterial

genomes and the HMP reference genomes, with at most 4

mismatches using CRISPRAlign. Similarly, we only kept a non-

redundant list of the novel candidates.

In total, we selected a collection of non-redundant CRISPRs—

including 64 known CRISPRs and 86 novel ones—for further

targeted assembly from HMP shotgun reads. The detailed

information for these CRISPRs (repeat sequences, and their

resources, and the references for the CRISPRs already collected in

the CRISPRdb database http://crispr.u-psud.fr/ [6]), is provided

in Tables S1 and S2.

Targeted assembly of CRISPRs
For the targeted assembly of CRISPRs, we first carried out a

BLASTN search with each putative CRISPR repeat sequence as

the query, to collect reads that contain the repeat sequence (see

Figure 1). In order to make the similarity search tolerant to

sequencing errors and genomic variations that are observed among

the multiple copies of a CRISPR repeat (in one CRISPR locus or

between different CRISPR loci), we allowed three mismatches over

the entire CRISPR repeat sequence: we retained only the reads that

are aligned with the entire CRISPR repeat sequence with a

maximum of three mismatches. With these reads containing

CRISPR repeat sequences, we ran SOAPdenovo [40] with k-mers

of 45 bps, which are sufficiently long to assemble reads with the

repetitive sequences found in CRISPRs. In general, whole-

metagenome contigs are assembled using shorter k-mers (for

example, 21–23 bps in MetaHit [41] and 25 bps in HMP assembly

[42]), as longer k-mers often fragment assemblies into short contigs.

After CRISPR contigs were assembled, the exact boundaries of the

repeats and spacers were obtained using CRISPRAlign.

Validation of the targeted assembly approach using
simulated datasets

We simulated short reads from 6 reference genomes (Azospirillum

B510, Streptococcus mutans NN2025, Deferribacter desulfuricans SSM1,

Dehalococcoides GT, Erwinia amylovora ATCC 49946, and Escherichia

coli K12 MG1655), and applied our method to attempt to assemble

the 10 known CRISPRs in these genomes. All 54 contigs

assembled by our targeted assembly approach match perfectly to

known CRISPRs in the reference genomes. We listed the genome

names, the CRISPR repeats, the coordinates of the known

CRISPRS in the reference genomes, and the coordinates of the

contigs aligned on the reference genomes in Table S7.

Datasets
We used the dataset Human Microbiome Illumina WGS Reads

(HMIGWS) Build 1.0 available at http://hmpdacc.org/HMIWGS,

and the whole-metagenome assemblies from the HMP consortium

(http://www.hmpdacc.org/). The bacterial genomes were down-

loaded from the IMG database (http://img.jgi.doe.gov/cgi-bin/m/

main.cgi), NCBI ftp site (ftp://ftp.ncbi.nih.gov/genomes), and

human microbiome project website (http://www.hmpdacc.org/

data_genomes.php). The viral genomes were downloaded from

the NCBI ftp site (http://www.ncbi.nlm.nih.gov/genomes/

GenomesGroup.cgi?taxid = 10239). Additional phage genomes

were downloaded from the PhAnToMe database site (http://

www.phantome.org/Downloads/DNA/all_sequences/).

Supporting Information

Figure S1 A network of 150 CRISPRS. The CRISPR names

were shown in each node. The CRISPR host species for each

known CRIPRS are listed in Table S2. Known CRISPRs are

shown as blue nodes (except for several CRISPRs highlighted in

green), and the novel CRISPRs identified in the HMP datasets are

shown as red nodes.

(TIF)

Figure S2 The consensus of CRISPR repeats for 6 large clusters.

See cluster ID in Figure S1. The sequence logo was prepared using

weblogo (http://weblogo.berkeley.edu/).

(TIF)

Figure S3 Distribution of CRISPRs in different body sites. The

x-axis represents 150 CRISPRs (listed in Table S2) and y-axis

represents the proportion of samples in which instances of each of

the CRISPR are found.

(TIF)

Figure S4 Cluster of spacers shared by more than eight samples.

In this map, rows are spacers (clustered at 80% identify), and the

columns are samples: cluster (a) is shared by 22 samples; cluster (b)

is shared by 23 samples; cluster (c) is shared by 12 samples; cluster

(d) is shared by 32 samples. The red lines indicate the presence of

spacers in each of the samples. Multiple lines in the same row

represent a spacer that is shared by multiple samples.

(TIF)

Figure S5 Sharing of streptococcal CRISPR spacers among

samples from 6 individuals. In this map, the rows are the 761

spacers (clustered at 80% identify; see Figure 5 for the plot using

98% identify) identified in one or more of these 6 individuals, and

the columns are samples (e.g., Stool_v1_p1 means a sample from

stool of individual 1, in visit 1; Tongue_v2_p1 indicates dataset

from tongue, individual 1, in visit 2). Buccal stands for buccal

mucosa, and SupraPlaque stands for supragingival plaque. The

red lines indicate the presence of spacers in each of the samples.

Multiple lines in the same row represent a spacer that is shared by

multiple samples.

(TIF)

Figure S6 Sharing of KoralL32 CRISPR spacers among

samples from 6 individuals. In this map, rows are the 598 spacers

(clustered at 80% identify), and the columns are samples (e.g.,

Stool_v1_p1 means a sample from stool of individual 1, in visit 1;

tongue_v2_p1 indicates dataset from tongue, individual 1, in visit

2). The red lines indicate the presence of spacers in each of the

samples. Multiple lines in the same row represent a spacer that is

shared by multiple samples.

(TIF)

Figure S7 Sequence logos showing the short sequence motifs in

regions adjacent to proto-spacers in the viral genomes for three

CRISPRs.

(TIF)
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Table S1 List of 150 CRISPRs studied in this manuscript and

the targeted assembly results in the HMP datasets.

(DOCX)

Table S2 List of CRISPRs that are identified from the reference

genomes, and their cross-references in the CRISPRdb.

(DOCX)

Table S3 List of numbers of datasets from different body sites

that have reads (the first number) or CRISPRs (the second

number) identified for each CRISPR.

(XLSX)

Table S4 List of viral genomes and their accession IDs plotted in

Figure 6A.

(DOCX)

Table S5 List of viral genomes sharing high sequence similarities

($90% identify over 30 bps) with CRISPR spacers.

(DOCX)

Table S6 List of plasmids sharing high sequence similarities

($90%) with CRISPR spacers.

(DOCX)

Table S7 Targeted assembly results of 10 CRISPRs using reads

simulated from 6 genomes.

(DOCX)
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