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Abstract

Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–
specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day
8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with
high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and
histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the
signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change
during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and
preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-
regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered
adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for,
respectively, PPARc and C/EBPa, the master regulators of adipocyte differentiation. Computational motif analyses of the
adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed,
ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARc binding sites near PPARc, C/EBPa,
and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet
formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of
NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a
physiological function of these factors in the adipogenic program. Together, our study demonstrates the utility of FAIRE-seq
in providing a global view of cell type–specific regulatory elements in the genome and in identifying transcriptional
regulators of adipocyte differentiation.
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Introduction

Sequencing allowed identification and mapping of the human

genome [1]. Transcriptional regulation of genes is essential for

manifesting cellular phenotypes and complex biological processes.

Coordinated actions of transcription factors and cofactors on

regulatory DNA sequences produce transcriptional activation of

the eukaryotic gene. Therefore, identification and mapping of the

genome’s regulatory elements is critical for understanding how

cell-type-selective regulation of genes in the genome is achieved.
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Traditionally, regulatory elements have been identified by

DNase I hypersensitivity assay combined with Southern blot

analysis [2]. That assay coupled with microarray or high-

throughput sequencing (DNase-Chip or DNase-seq) were effec-

tively applied in genome-wide identification of open chromatin

regions [3,4,5,6]. Lieb and his colleagues recently developed

formaldehyde-assisted isolation of regulatory elements (FAIRE) as

a simple procedure to isolate nucleosome-depleted DNA from

chromatin [7,8]. FAIRE detects open chromatin structure much

the way the DNase I hypersensitivity assay does [8,9]—but with

advantages, like obviating the need for clean nuclei preparation

and laborious enzyme titrations [7,8]. Coupled with high-

throughput sequencing (FAIRE-seq), FAIRE allows unbiased

identification of potential regulatory elements without requiring

prior knowledge of (or about) binding factors. FAIRE-seq’s

genome-wide detection of open chromatin genomic regions in

human pancreatic islets was successfully used to determine a causal

single nucleotide polymorphism in loci associated with type 2

diabetes development in genome-wide association studies [10].

The adipocyte is central in controlling energy balance and

whole-body glucose and lipid homeostasis [11]. Advances in

adipocyte research have shown that adipose tissue stores excess

energy and secretes hormones and metabolites to communicate

with other organs, maintaining systemic metabolic homeostasis

[12]. Peroxisome proliferator-activated receptor gamma (PPARc;

NR1C3) is both necessary [13,14,15] and sufficient [16] for

adipocyte differentiation. Necessary for both development and

maintenance of mature adipocytes, PPARc is crucial in systemic

glucose and lipid homeostasis [13,14,15,17], and, importantly, is

the molecular target of thiazolidinediones, widely prescribed for

obese diabetics [18]. C/EBPa-b-d act with PPARc, forming the

adipogenic transcription cascade [19]. C/EBPb and d are induced

by adipogenic stimulus, inducing PPARc, which activates

expression of C/EBPa, which binds and further activates

expression of PPARc, providing a positive regulatory loop

[11,20]. Genome-wide approaches now dissect the transcriptional

mechanisms of adipocyte differentiation. ChIP-chip or ChIP-seq

studies of adipogenic regulators [21,22,23,24,25,26,27,28,29] have

provided valuable mechanistic insights into adipogenic transcrip-

tion never before gained by conventional experiments: New

concepts include co-localization of PPARc and cell type–specific

transcription factors [27], low conservation rate of PPARc binding

sites between murine and human adipocytes [28] and the role of

C/EBPb as a pioneer factor that establishes ‘‘hot spots’’ where

multiple adipogenic regulators cooperatively work in the very early

stage of differentiation [6].

Our study took an unbiased approach to mapping adipocyte-

specific regulatory elements in the genome by using FAIRE in

3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and

NIH-3T3 fibroblasts. We show that the FAIRE peaks contain

regulatory elements such as promoters, enhancers and insulators,

and that adipocyte-specific non-promoter FAIRE peaks are

functionally linked to genes regulated during differentiation—

about half these peaks being overlapped by PPARc. We show that

highly regulated genes in adipocyte differentiation are associated

with clusters of multiple adipocyte-specific non-promoter FAIRE

peaks. Furthermore, because FAIRE does not require a prioi

knowledge of bound transcription factors, we could employ

computational motif analyses of DNA sequences from the

adipocyte-specific FAIRE peaks in an unbiased manner and

identify a motif for nuclear family I (NFI) transcription factors in

addition to motifs for PPAR and C/EBPs. We show the functional

role of NFIA and NFIB in adipocyte differentiation. We

demonstrate the utility of FAIRE-seq both in providing a global

view of cell type–specific cis-regulatory elements in the genome

and identifying transcriptional regulators of adipocyte differenti-

ation.

Results

Genome-Wide Profiling of Open Chromatin Regions in
3T3-L1 Adipocytes by FAIRE-seq

Regulatory elements in the genome are characterized by open

chromatin structures accessible to regulatory factors [30]. To

explore genome-wide changes in open chromatin conformation

during adipocyte differentiation, we used FAIRE—a method of

isolating genomic regions depleted of nucleosomes [7]—combined

with high-throughput sequencing (FAIRE-seq) to identify open

chromatin sites in the adipogenic cell line 3T3-L1 before (day 0)

and after (day 8) differentiation and in NIH-3T3 fibroblasts, which

cannot differentiate into adipocytes. This approach identified in

the genome 37,781 FAIRE peaks in 3T3-L1 on day 0 and 26,611

on day 8, plus 36,111 in NIH-3T3 cells—all, with a false discovery

rate of ,1024. By using ChIP-seq analyses, we also generated

genome-wide maps of binding sites for PPARc, the master

regulator of adipocyte differentiation, for RXRa, its heterodimer

partner, for histone H3 lysine 4 trimethylation (H3K4me3), and

for CCCTC-binding factor (CTCF) [31].

Figure 1 shows a representative map of results generated

near Klf15 and Pparg, both transcription factors up-regulated by

differentiation, and both important in adipocyte differentiation

[16,32]. Consistent with previous observations [10], 28% of the

FAIRE peaks were detected near the transcription start sites (TSSs

6500 bp) of RefSeq genes [33] and are referred to as promoter

FAIRE peaks (Figure S1A), while 72% were located outside known

TSSs, and are referred to as non-promoter FAIRE peaks. Notably,

only 8% of the non-promoter FAIRE peaks were located in a

25 kb proximal promoter region while the majority of non-promoter

FAIRE peaks were located in introns and distal regions (Figure

S1A). Average profiling revealed that a FAIRE signal, H3K4me3

Author Summary

Humans consist of a few hundred types of specialized-
function cells. Spatial and temporal transcriptional regula-
tion of genes is essential for manifestation of cellular
phenotypes. Identification of regulatory regions in the
genome is central to understanding the mechanism of cell
type–specific gene regulation. Recently developed high-
throughput sequencing technology and computational
analyses allow genome-wide investigation of the genome’s
chromatin structure. Using the FAIRE-seq technique, we
identified the genome’s open chromatin regions, which
harbor regulatory elements in adipocytes. Open chromatin
regions distal to genes’ transcription start sites significantly
differ among cell types. Multiple cell type–specific open
chromatin regions exist near genes regulated during
adipocyte differentiation. Computational motif analysis of
adipocyte-specific open chromatin regions revealed enrich-
ment of a binding motif for the NFI transcription factor
family. These factors bind to the regulatory elements near
adipogenic PPARc, C/EBPa, and aP2 genes and regulate
their expression. Overexpression of NFIA in 3T3-L1 cells
resulted in robust induction of these genes and lipid droplet
formation without differentiation stimulus and knockdown
of NFIA or NFIB significantly suppressed both induction of
genes and lipid accumulation during differentiation. Our
study demonstrates the utility of FAIRE-seq in providing a
global view of regulatory elements and in identifying
transcriptional regulators of cellular functions.

Mapping of Open Chromatin in Adipocytes by FAIRE
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and histone H3 lysine 27 acetylation (H3K27ac) were observed at

TSSs of actively transcribed genes (Figure S1B and S1D). On the

other hand, non-promoter FAIRE peaks were accompanied by

monomodal enrichment of H3K4me1 and were devoid of

H3K4me3 enrichment, a condition described as the signature of

enhancers [34,35] (Figure S1D). CTCF binding sites are important

in insulator function and high-order chromatin structure [31]. The

CTCF binding sites in our study (day 0 or day 8) were largely

overlapped by those in a study by Mikkelsen (day 0 or day 7) [28]

(86.3% and 88.5%, respectively). CTCF binding accounted for

about one fifth of either the promoter or non-promoter FAIRE peaks

(Figure 1 and Figure S1C). Collectively, these data suggest that the

open chromatin sites identified by FAIRE-seq show characteristics of

regulatory elements such as promoter, enhancer and insulator.

Analysis of Differentiation-Dependent Non-Promoter
FAIRE Peaks

We next compared the FAIRE peaks in 3T3-L1 cells on day 0

and day 8 and in NIH-3T3 cells. The promoter FAIRE peaks

were relatively constant among the three groups. Over 70% of

Figure 1. Genome-wide profiling of open chromatin regions by FAIRE-seq in 3T3-L1 adipocyte differentiation. Open chromatin regions
detected by FAIRE-seq were observed in both promoter and non-promoter regions. The non-promoter FAIRE peaks were associated with the binding of
PPARc/RXRa or CTCF, and with the enhancer signature H3K4me1(+)/me3(2) and H3K27ac modification—while the promoter FAIRE peaks were
associated with H3K4me3 and H3K27ac modification. Bars below the FAIRE peaks data represent statistically significant FAIRE positive peaks (FDR,1024).
Red asterisks indicate the adipocyte-specific FAIRE peaks on day 8 (see Figure 2B for definition). Multiple adipocyte-specific FAIRE peaks were located
within genomic regions near Klf15 (A) and Pparg (B) in 3T3-L1 adipocytes. Data marked ({) were obtained from Mikkelsen et al. [28] (GSE20752).
doi:10.1371/journal.pgen.1002311.g001

Mapping of Open Chromatin in Adipocytes by FAIRE
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those peaks on day 0 and day 8 3T3-L1 cells and in NIH-3T3 cells

were shared by all three groups (Figure 2A). In contrast, non-

promoter FAIRE peaks showed dynamic change. The three

groups shared only 25%, 45%, and 26% of non-promoter FAIRE

peaks in, respectively, day 0 and day 8 3T3-L1 cells and NIH-3T3

cells. This contrasts with an invariable biding pattern of CTCF in

Figure 2. Cell type– and differentiation-dependent FAIRE peaks. (A) Venn diagrams comparing the FAIRE peaks among 3T3-L1 (day 0), 3T3-
L1 (day 8) and NIH-3T3 at promoter (+/2500 bp from RefSeq TSS) and non-promoter regions. The promoter FAIRE peaks were relatively constant
among the three cell groups while the non-promoter FAIRE peaks were highly variable. (B) The FAIRE peaks in 3T3-L1 (day 0 or day 8) were divided
into tertiles by peak height and adipocyte- (red boxes) and preadipocyte-specific (green boxes) FAIRE peaks, and were defined as indicated. (C) A heat
map showing enrichment of the adipocyte- and preadipocyte-specific FAIRE peaks in the vicinity (+/225 kb from TSS) of genes up-regulated or
down-regulated during differentiation. The horizontal bars in the two right panels indicate each gene with Ad or pAd FAIRE peaks in the vicinity (+/
225 kb from TSS). (D) Fractions of genes that were up-regulated (left) or down-regulated (right) more than two-fold during differentiation among
genes that had the indicated number of adipocyte- (red), preadipocyte-specific (green) or invariant (blue) FAIRE peaks. (E) The number of the
adipocyte- (red), preadipocyte-specific (green) or invariant (blue) FAIRE peaks associated with genes that were stratified by the ratio of the expression
levels between preadipocytes and adipocytes. Each FAIRE peak was defined as associated with the nearest gene in analyses (D) and (E). (F) Ontology
analysis by DAVID of genes associated (+/225 kb from TSS) with adipocyte-specific FAIRE peaks [13]. (G) Venn diagrams showing the numbers and
overlap of the binding sites for PPARc and RXRa in 3T3-L1, day 0 and day 8. (H, I) Fractions of the non-promoter FAIRE peaks that overlap PPARc
binding sites (day 8) (H) or C/EBPa binding sites (Schmidt et al., GSE27450 [86]) (I). PPARc and C/EBPa represented 45.3% and 11.7% of the adipocyte-
specific FAIRE peaks (average of red bars).
doi:10.1371/journal.pgen.1002311.g002

Mapping of Open Chromatin in Adipocytes by FAIRE
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the non-promoter regions; in 3T3-L1 cells, 89.5% of the non-

promoter CTCF binding sites on day 0 overlapped those on day 8.

What’s more, a significant proportion of the non-promoter FAIRE

peaks were cell type–specific (Figure 2A), implying the role of non-

promoter regulatory elements in cell type–specific transcriptional

regulation. We divided the non-promoter FAIRE peaks in day 0

and day 8 3T3-L1 cells into tertiles by FAIRE signal intensity, and

defined adipocyte- or preadipocyte-specific FAIRE peaks as

indicated by red or green boxes in the 4-by-4 table in Figure 2B.

By this definition, we judged each non-promoter FAIRE peak as

adipocyte-specific, preadipocyte-specific or invariant (Figure 2B).

Figure 1, Figures S2 and S3 show examples of adipocyte-specific

non-promoter FAIRE peaks (indicated by asterisks) in loci near

Klf15, Pparg, Cebpa [16,20], Mgll [36], Srebf1 and cidec [37]—all of

which are abundantly expressed in adipose tissue and induced

during adipocyte differentiation (data not shown). Remarkably,

multiple adipocyte-specific FAIRE peaks existed in the vicinity of

these genes and included introns and downstream regions

(Figure 1, Figures S2 and S3).

To determine whether non-promoter FAIRE peaks were

functionally associated with cell type–specific gene expression,

we analyzed the relationship between the presence of the

adipocyte- or preadipocyte-specific non-promoter FAIRE peaks

and the change in gene expression during adipocyte differentia-

tion. Those FAIRE peaks were enriched in the vicinity of genes,

expression levels of which were highly induced or suppressed

during adipocyte differentiation (Figure 2C). Importantly, as the

number of the adipocyte-specific FAIRE peaks associated with a

gene increased, the fraction of up- or down-regulated genes

increased or decreased, respectively (Figure 2D, red lines), while as

the number of associated preadipocyte-specific FAIRE peaks

increased, the fraction of up- or down-regulated genes decreased

or increased, respectively (Figure 2D, green lines). Conversely, the

more robust the induction of the expression level of a gene during

adipocyte differentiation, the greater the numbers of adipocyte-

specific FAIRE peaks associated with the gene (Figure 2E, red

line). In contrast, the more robust the reduction of the expression

levels of a gene during adipocyte differentiation, the greater the

numbers of associated preadipocyte-specific FAIRE peaks that

were associated (Figure 2E, green line). Invariant FAIRE peaks

were associated specifically with neither up- nor down-regulated

genes (Figure 2E, blue line). We next employed a gene ontology

(GO) analysis tool (DAVID) [38] to determine what kind of

biological processes were associated with genes bound by the

adipocyte-specific FAIRE peaks. We found that biological

processes (e.g., adipocyte differentiation) were significantly en-

riched compared with the genomic background (Figure 2F). It was

of interest that embryonic placenta development—for which

PPARc is critical [13,14,15]—was enriched (Figure 2F). Together,

these data highlight the role of the cell type–specific non-promoter

open chromatin sites detected by FAIRE-seq in differentiation-

dependent transcriptional regulation.

Analysis of Binding Sites for PPARc and RXRa in 3T3-L1
Adipocytes

PPARc is key regulator of adipocyte development [16,20]. To

elucidate the contribution of PPARc to adipocyte-specific

transcriptional regulation, we conducted ChIP-seq analyses using

antibodies specific for either PPARc or RXRa [24] in 3T3-L1

adipocytes at 36 hours and day 8 after induction of differentiation.

The number of PPARc binding sites increased during differenti-

ation while that of RXRa binding sites remained virtually constant

(Figure 2G). Significant overlap between the PPARc and RXRa
binding sites was consistent with the heterodimer formation of

PPARc and RXRa [21,39] (Figure 2G). Microarray and GO

analysis revealed that the PPARc binding sites were enriched in

the vicinity of genes up-regulated by adipocyte differentiation

(Figure S4B) and the bound genes were associated with adipocyte

differentiation and lipid metabolism (Figure S4C). Using MEME

[40], we performed de novo motif analysis of genomic regions

bound by PPARc, and found that the AGGTCA-n-AGGTCA

(called DR-1) shown was the most over-represented one (E-value

1.36102055) (Figure S4A). An extension AGT 59 outside of DR-1

appeared to correspond to the direct interaction between the DNA

and the hinge region between the DNA-binding domain and the

ligand-binding domain [41].

As shown in genomic loci (Figure 1, Figures S2 and S3), a

significant proportion of adipocyte-specific non-promoter FAIRE

peaks overlapped the PPARc/RXRa binding sites. To determine

the contribution of PPARc to the adipocyte-specific open

chromatin regions, we calculated percent fractions of the FAIRE

peaks that were stratified by FAIRE signal in 3T3-L1 on day 0 and

day 8 (Figure 2B) —and that overlapped either the PPARc
binding sites (Figure 2G) or C/EBPa binding sites in 3T3-L1

reported by Schmidt et al. [42]. Both PPARc and C/EBPa
binding sites were enriched in the fractions of adipocyte-specific

FAIRE peaks (Figure 2H and 2I), and they respectively accounted

for 45.3% and 11.7% of the adipocyte-specific FAIRE peaks

(averages of the red bars in Figure 2H and 2I). These data support

the role of PPARc and C/EBPa as primary transcription factors

that drive adipocyte-specific gene expression—although they may

not explain all of it.

Clustering of Multiple Adipocyte-Specific Non-Promoter
FAIRE Peaks and the PPARc Binding Sites

Genes that were highly induced by adipocyte differentiation

often harbored multiple adipocyte-specific FAIRE peaks and/or

PPARc binding sites in their vicinity, as suggested by the linear

correlation between the number of the associated adipocyte-

specific FAIRE peaks and the robustness of the induction of the

gene by adipocyte differentiation (Figure 2D and 2E). (See

Figure 1, Figures S2 and S3 for representative genes.) To

determine whether these multiple regions have functional

regulatory elements, we selected AdipoR2 [43,44]. Although

AdipoR2 was regulated by PPARc and PPARa ([45] and data not

shown), conventional 22 kb promoter studies failed to identify the

response element [46]. Our ChIP-seq analysis revealed a cluster of

multiple PPARc/RXRa binding sites in the intron 1, downstream

of the TSS of AdipoR2 (Figure S2B, arrow heads). We identified

putative DR-1 motifs in these biding sites (Figure 3A) and tested

them by gel-shift assay and luciferase assay. These motifs were

indeed bound by the PPARc/RXRa heterodimer, and were

functional in the luciferase assay (Figure 3B and 3C), suggesting

the functionality of these elements and the advantage of a genome-

wide approach over the conventional ‘‘promoter-bashing’’ ap-

proach to identifying such response elements.

Recent genome-wide studies revealed clustering of open

chromatin regions detected by Dnase I hypersensitivity assay or

by FAIRE in the genomes of CD4+ T cells [47], pancreatic islet

cells [10,48] and binding sites for certain transcription factors

[49])—certainly the PPARc binding sites and adipocyte-specific

FAIRE peaks in our analyses tended to form clusters as indicated

by an additional peak in distribution histograms of the distance to

the nearest peak among the PPARc binding sites or the adipocyte-

specific FAIRE peaks (Figure 4A). We calculated the total number

of PPARc binding site clusters for different window sizes and

compared them with a random data set comprised of the same

number of sites (Figure 4B). The PPARc binding sites had a

Mapping of Open Chromatin in Adipocytes by FAIRE
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Figure 3. Identification of functional regulatory elements in the intron 1 of Adipor2. The PPARc binding sites in the Adipor2 gene locus
(Figure S2B, arrow heads) were analyzed. (A) Putative DR-1 motifs (PPAR response elements or PPREs) in the regions. ARE6 and ARE7 in the 25.4 kb
promoter upstream of Fabp4(aP2) were previously identified PPREs [87]. (B) Gel shift assay showing binding of the PPARc/RXR heterodimer to the
motifs. An arrow indicates the PPARc/RXRa heterodimer bound by radiolabeled probe. Competition by cold oligos showed the specificity of the
binding. (C) Luciferase reporter assay in HEK293T cells. Most of the motifs inserted into reporter vectors with the tk minimal promoter responded to
over-expressed PPARc/RXRa and stimulation with its synthetic ligand, rosiglitazone. The 25.4 kb promoter of PPARc target gene Fabp4 (aP2) [84] was
included as a positive control.
doi:10.1371/journal.pgen.1002311.g003

Mapping of Open Chromatin in Adipocytes by FAIRE
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significantly higher number of clusters in a window size raging

from 800 bp to ,30 kb. Similar results were obtained for the

adipocyte-specific FAIRE peaks (Figure 4A and 4B).

On the other hand, multiple genes involved in adipocyte

function [55,56,57] were often co-regulated in certain genomic

regions that harbor clusters of adipocyte-specific regulatory

elements (see Figure S2C, Figure 4C, and Figure S5). We

therefore statistically tested—method in reference [50]—to see if

neighboring genes tended to be co-regulated during adipocyte

differentiation, and found that neighbors of highly induced genes

(.10 fold) were indeed more likely to be up-regulated over three

fold (18%, or 112 of 618 neighbors) than the 2,012 of 21,343 total

genes (9%) that were up-regulated over three fold (P = 1.26610212,

one-sided Fisher test). Neighbors of randomly selected genes were

not significantly up-regulated (p = 20.67, average of 1,000 trials,

Figure 4D). Together, these data suggest that the transcriptional

regulation of genes during adipocyte differentiation involves

multiple adipocyte-specific regulatory elements—which tend to

form clusters—and that co-regulation of neighboring genes often

occurs during adipocyte differentiation.

Sequence Motif Analyses of DNA Sequences of the
Adipocyte-Specific Non-Promoter FAIRE Peaks

Next, we performed enrichment analyses of known motifs using

AME in the MEME suite and the TRANSFAC [51] and JASPER

[52] motif databases to identify motifs enriched in either

adipocyte- or preadipocyte-specific FAIRE peaks compared with

the background (statistical values shown as corrected p-value in

Figure 5). We also determined the enrichment ratio (Ad/pAd) by

calculating the ratio of occurrence of a motif in the adipocyte-

specific FAIRE peaks and in the preadipocyte-specific FAIRE

peaks as described in reference [28]. Using both parameters, we

obtained motifs that had been significantly enriched in either kind

of FAIRE peak and that occurred in significantly different

number. Figure 5 shows the top of the list of TRANSFAC motifs

enriched in the adipocyte- and preadipocyte-specific FAIRE

Figure 4. Statistical analyses for clustering of adipocyte-specific FAIRE peaks and PPARc binding sites and co-regulation of
neighbor genes during adipogenesis. (A) Histogram showing distribution of intervals (defined as distances to the nearest neighbor sites) among
all PPARc peaks (left) and among the adipocyte-specific FAIRE peaks (right). Note that there was increased occurrence of sites separated by short
intervals (indicated by asterisks). See [48] for details of the method. (B) Clustering analysis of the PPARc binding sites and the adipocyte-specific FAIRE
peaks by counting the total number of clusters (defined as more than two peaks) determined for windows with indicated width. The PPARc binding
site or adipocyte-specific FAIRE peak clusters occurred more frequently in the observed data set than in random data with the same number of sites.
The difference in the number of clusters was observed at window sizes ranging from 800 bp to 30,100 kb compared with the random sample. See
reference [47] for details of the method. (C) Microarray analysis showing both Slc2a4 (Glut4) and Ybx2 included in the adipocyte-specific FAIRE peak
cluster (Figure S2C) co-regulated during differentiation. (D) Neighbors of highly induced genes (.10 fold) were more likely to be up-regulated over
three fold (18%, or 112 of 618 neighbors) than the 2,012 of 21,343 total genes (9%) that were up-regulated over three fold (p = 1.26610212, one-sided
Fisher test). Neighbors of randomly selected genes were not significantly up-regulated (p = 20.67, average of 1,000 trials). See reference [50] for
method.
doi:10.1371/journal.pgen.1002311.g004

Mapping of Open Chromatin in Adipocytes by FAIRE

PLoS Genetics | www.plosgenetics.org 7 October 2011 | Volume 7 | Issue 10 | e1002311



peaks. The motifs for PPARc (and other DR1 motifs) and C/EBPs

were among the list, consistent with their critical roles in

adipogenic transcription. Motif analyses using the JASPER motif

database showed enrichment of the motifs for PPARc, C/EBPs

and the motif for Zfp423, a recently identified adipogenic

regulator [53] (Figure S6). Motif analyses of the preadipocyte-

specific FAIRE peaks showed significant enrichment of a motif for

AP-1, a downstream transcription factor complex of the growth

factor/MAP kinase signaling pathways, which include epidermal

growth factor and c-Jun N-terminal kinases, known inhibitors of

adipogenesis [54,55] (Figure 5 and Figure S6). We also performed

de novo motif analysis (MEME) [40] of the adipocyte-specific

FAIRE peaks, and observed significant enrichment of motifs that

corresponded to those for PPARc and C/EBPs (Figure S7).

Together, these instances of enrichment of known regulators

indicate the validity of this approach.

Identification of NFI Family Transcription Factors as Novel
Regulators of Adipocyte Differentiation

There were several other motifs for transcription factors, their

functions not previously linked to adipocyte differentiation

(Figure 5, Figures S6 and S7). We focused on a motif for the

NFI family transcription factors. The murine NFI family consists

of NFIA, NFIB, NFIC and NFIX, and was identified as a site-

specific DNA-binding protein that bound to the adenovirus origin

of replication [56]. It forms a dimer to bind to the symmetric

consensus sequence TTGGC(N5)GCCAA [57]. We first exam-

ined the expression change of these factors in in vitro adipocyte

differentiation and found that the expression of NFIA and NFIB

were significantly induced during differentiation of 3T3-L1 and of

another adipogenic cell line, 3T3-F442A (Figure 6A and 6C).

Consistent with this pattern, both NFIA and NFIB were highly

expressed in a variety of adipose tissue depots in addition to the

brain (Figure 6B). We next examined the effect of siRNA

knockdown of NFIA and NFIB on adipogenic gene regulation

and adipocyte differentiation (Figure 6C). Interestingly, induction

of the expression of the adipogenic transcription factors PPARc
and C/EBPa and of downstream genes was significantly

suppressed by siRNA knockdown of either NFIA or NFIB

(Figure 6C). Consistent with the gene expression change, we

observed significant reduction of lipid accumulation as judged by

oil red O staining, suggesting physiological roles for NFIA and

Figure 5. Known motif enrichment analysis of adipocyte- or preadipocyte-specific FAIRE peaks (TRANSFAC motifs). Enrichment
analysis of the adipocyte- (left) and the preadipocyte-specific (right) FAIRE peaks for known motifs in the TRANSFAC database (Release 2010.4)
performed by using AME in the MEME suite. After removing repeat regions with RepeatMasker [83], DNA sequences from the center 150 bp regions
of the top 2,000 cell type–specific FAIRE peaks were analyzed (p-value report threshold : 0.05). Motif enrichment ratios (Ad/pAd FAIRE) for motifs in
the TRANSFAC database were also determined by a method described in reference [28]. Motifs with an enrichment ratio greater than 1.20 (for the
adipocyte-specific FAIRE peaks, left) or less than 0.833 (for the preadipocyte-specific FAIRE peaks, right) are shown in the table. See ‘‘Materials and
Methods’’ for details.
doi:10.1371/journal.pgen.1002311.g005
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NFIB in adipocyte differentiation (Figure 6D). We confirmed the

effect of NFIA and NFIB knockdown on adipogenesis by using

independent pooled siRNA (Figure S8).

We next asked whether overexpression of these factors influence

adipocyte differentiation. We amplified NFIA and NFIB coding

sequences from cDNA prepared from adipocytes, and cloned them

into retroviral pMXs-puro vectors. We also made a dominant

negative NFIA that lacks the C-terminal transactivation/repres-

sion domain (NFIA-DN) [58]. Overexpression of NFIA—but not

NFIA-DN or NFIB—resulted in robust induction of PPARc, C/

EBPa and aP2 (Figure 7A) at a basal state. Surprisingly, the

induction of these factors was robust enough to make the cells to

form lipid droplets visible and stainable by oil red O even before

initiation of differentiation by the DMI (dexamethasone, IBMX

and insulin) treatment (Figure 7B and 7C). However, after the DMI

treatment, NFIA-expressing cells were overtaken by control cells,

and on day 7, NFIA and NFIB overexpressing cells showed

attenuated differentiation (Figure 7D and 7E). We speculate that

this was caused by secondary effects of overly strong overexpression

levels (.30 fold, Figure 7A). Almost complete suppression of

adipogenesis by NFIA-DN overexpression was consistent with the

results of knockdown experiments (Figure 6, Figure 7D and 7E).

Nevertheless, the robust induction of PPARc, C/EBPa and aP2 by

NFIA overexpression at the basal state implies direct action of NFIA

on transcriptional control of these factors.

To dissect the mechanism by which NFIs regulate PPARc, C/

EBPa and aP2, we examined DNA sequences of the adipocyte-

specific FAIRE peaks and/or the PPARc binding sites in the

vicinity of these factors and found that some of them have NFI

binding motifs as listed in Figure 8A. ChIP analysis using an anti-

NFI antibody confirmed actual binding of NFI to these sites

(Figure 8B and 8C). We extended this experiment by counting NFI

motifs in the FAIRE peaks on a genome-wide scale. Interestingly,

percent fractions of genes harboring NFI binding motifs in the

FAIRE peaks were higher when the genes were bound by PPARc
and induced during differentiation (Figure 8D), indicating a

significant degree of specificity for the NFI’s action on the

adipogenic transcriptional program.

Figure 6. NFIA and NFIB are novel regulators of adipocyte differentiation. (A) Transcriptional regulation of NFI transcription factors during
adipocyte differentiation (3T3-F442A). (B) Tissue distribution of the NFI family genes. Expression levels relative to 36B4 in various tissues were
determined by qPCR. (C, D) Effects of siRNA-mediated knockdown of NFIA and NFIB on adipogenic gene expression (C) and lipid accumulation in 3T3-
L1 adipocytes judged by oil red O staining (D). Knockdown of either NFIA or NFIB resulted in suppression of the induction of PPARc, C/EBPa and the
PPARc target gene, aP2, as well as increase in lipid accumulation during adipocyte differentiation.
doi:10.1371/journal.pgen.1002311.g006
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Collectively, we demonstrated that the combination of FAIRE-

seq and computational motif analyses is useful in identifying novel

regulators of adipocyte differentiation.

Comparison of FAIRE Peaks between Undifferentiated
3T3-L1 and NIH-3T3 Cells

The 3T3-L1 adipogenic cell line was established by isolating

clonal sublines of mouse fibroblast line 3T3 [59]. Lastly, we

compared FAIRE peaks between ‘undifferentiated’ 3T3-L1 and

NIH-3T3 cells. As shown in Figure 2A, a substantial proportion of

FAIRE peaks was unique to either 3T3-L1 or NIH-3T3 cells. We

defined non-promoter FAIRE peaks as specific to 3T3-L1and

NIH-3T3—as we did for the adipocyte- or preadipocyte-specific

FAIRE peaks in Figure 2B. The 3T3-L1- or NIH-3T3-specific

FAIRE peaks were enriched in the vicinity of genes whose

expression levels were higher in 3T3-L1 or NIH-3T3, respectively

(Figure S9A). Motif analysis of the 3T3-L1-specific FAIRE peaks

showed that the binding motif for EBF (Figure S9B) had the

highest enrichment ratio (1.81) and a statistically significant p-

value of 3.9E-3. Although the p-value of the motif for PPARc/

RXR did not reach statistical significance, that motif had an

enrichment ratio of 1.84. These two factors were among the

handful that were proven to transform NIH-3T3 cells into

adipocytes when ectopically introduced [16,60].

Discussion

We demonstrated that genome-wide mapping of open chroma-

tin regions by FAIRE-seq is a simple, accurate method that allows

a snapshot view of regulatory elements in the genome. Although

open chromatin regions detected by FAIRE-seq include promoters

of transcribed genes, enhancers and insulators, open chromatin

regions that vary in two different conditions likely contain

regulatory elements that play roles in the specific biological

process. By comparing open chromatin regions in preadipocytes

and adipocytes, we identified the adipocyte- and preadipocyte-

specific FAIRE peaks in the genome. Functionally, we demon-

strated that the adipocyte-specific FAIRE peaks were associated

with genes up- regulated by adipogenesis while the preadipocyte-

specific FAIRE peaks were associated with genes down-regulated

by adipogenesis (Figure 2C, 2D and 2E). Adipocyte gene

Figure 7. Overexpression of NFIA, NFIB, and dominant negative NFIA in 3T3-L1 cells. (A) Expression analysis of overexpressed NFI factors
(upper panel) and adipogenic PPARc, C/EBPa and aP2 (lower panel). Note, overexperssion of NFIA resulted in a robust induction of adipogenic
factors. (B) Microscopic pictures of 3T3-L1 cells overexpressing NFI factors at confluence stained by oil red O (day 0). (C) Close examination of NFIA-
overexpressing cells revealed formation of lipid droplets without adipogenic stimulus before differentiation. (D) Time course of expression levels of
PPARc, C/EBPa and aP2 during differentiation. Note, the induction of these genes by NFIA overexpression was overtaken by that of control cells, and
on day 7, NFIA and NFIB overexpressing cells showed attenuated differentiation. Dominant negative NFIA showed almost complete suppression. (E)
Oil red O staining of 3T3-L1 overexpressing NFI factors on day 7.
doi:10.1371/journal.pgen.1002311.g007
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expression appears mediated through multiple regulatory elements

distal to transcription start sites (TSSs): greater induction of gene

expression by differentiation means greater likelihood that more

adipocyte-specific FAIRE peaks are associated with the gene

(Figure 2D and 2E). This implies that optimal gene transcriptional

regulation may require coordinated actions of multiple regulatory

elements. Therefore, although valuable and informative, the

proximal promoter assay may not always be sufficient (e.g.,

AdipoR2, see Figure S2B and Figure 3). Nevertheless, the

importance of proximal promoter regions is obvious given the

fact that many proximal promoter regions are successfully used to

generate tissue-specific transgenic lines. Recently, Mikkelsen et al.

demonstrated in adipocytes that many cis-regulatory elements are

often not conserved between human and murine adipocytes even

though the expression pattern of genes is conserved [28]. They

observed that such motifs were located within linage-specific

transposon insertions. Existence of multiple regulatory elements

around biologically important genes could be a mechanism by

which cells maintain key gene regulations against genomic changes

during evolution. Clustering of regulatory elements could also

result from an accumulative effect of such evolutional genomic

changes.

Computational motif analysis is used to discover new transcrip-

tion-factor binding motifs in sequences inferred from genome-wide

studies such as ChIP-seq [61]. In genome-wide ChIP analysis of

transcription factors, motif analysis is used to obtain their accurate

binding motifs and discover unknown DNA binding factors that co-

localize with the transcription factors of interest, for example, see

[27,62,63]. The analyses, however, relied on prior knowledge

about transcription factors and the regions to be analyzed are

limited to their biding sites. In contrast, the combination of motif

analyses and mapping of regulatory elements by FAIRE-seq does

not require such prior knowledge, hence offers a distinct

advantage in unbiased screening for novel transcription factors

important in given biological processes. In our study, we retrieved

the motifs for PPARc and C/EBPs and for known regulators that

top the list of the motifs identified in the adipocyte- or

preadipocyte-specific FAIRE peaks (Figure 5, Figures S6 and

S7). Furthermore, we demonstrated that NFIA and NFIB were

functionally required for proper adipocyte differentiation

(Figure 6). These results demonstrated that motif analyses of cell

type–specific FAIRE peaks are useful in identifying regulators of a

biological process in an unbiased manner.

To our knowledge, few studies have employed motif analysis

and our unbiased approaches in investigating enhancer-like DNA

regions. Mikkelsen et al. recently employed ChIP-seq for H3K27ac

to define enhancer regions specific for adipocyte differentiation.

Both studies similarly detected the motifs for PPAR, C/EBPs and

Figure 8. NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARc binding sites near PPARc, C/EBPa, and aP2 genes. (A) The
NFI binding motifs identified in the adipocyte-specific FAIRE peaks and/or the PPARc binding sites in the vicinity of PPARc, C/EBPa and aP2. For site
numbers, see (B). (B) Genomic location of the regions examined. B1 and B2 are unrelated genomic regions used as background negative controls. (C)
ChIP-qPCR analysis using an anti-NFI antibody (H-300). (D) Percent fraction of genes harboring NFI motifs in non-promoter FAIRE peaks (within
625 kb) were higher when the genes were bound by PPARc (within 625 kb) and induced during differentiation.
doi:10.1371/journal.pgen.1002311.g008
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AP-1 in the most enriched motifs. There are, however, differences.

Mikkelsen discovered PLZF and SRF as novel negative regulators

[28] and we found NFIA and NFIB as regulators of adipocyte

differentiation—perhaps due to differences in methods. First, we

directly compared FAIRE peaks and H3K27ac peaks detected in

the Mikkelsen study and found considerable, but not complete,

overlap especially in the non-promoter regions: 94% of 10,461

promoter FAIRE peaks and 45% of 27,320 non-promoter FAIRE

peaks overlapped H3K27ac in 3T3-L1 on day 0. There may be

different classes of enhancer elements that prefer either H3K27ac or

open chromatin. Also, we used two parameters to sort motifs: the

statistical significance of enrichment (p-value) in either kind of cell

type–specific FAIRE peaks; and the motif enrichment ratio between

the adipocyte- and preadipocyte-specific FAIRE peaks (see [28]).

The combination guarantees significant enrichment of the peaks’

motifs and the difference in their number depending on whether

they are adipocyte- or preadiocyle-specific. The motifs for PLZF

and SRF were not on the top of our list since the p-values were not

significant—probably due to relatively lower occurrence, although

we also found a significant enrichment ratio of 0.37 and 0.50,

respectively. We calculated p-values and the enrichment ratios of

the top motifs in the Mikkelsen’s study by using our adipocyte- and

preadipocyte-specific FAIRE peaks and found general similarity

(Figure S10). Overall, both studies notably demonstrate the utility of

the combining computational motif analysis and unbiased mapping

of regulatory elements in identifying new regulators of adipocyte

differentiation.

Siersbæk et al. recently employed DNase-seq to investigate

genome-wide change in open chromatin structure at various time

points during 3T3-L1 differentiation [6]. They reported dramatic

increase in the number of open chromatin sites in the first hours of

differentiation. Such regions included what they termed ‘‘hot

spots’’ that were bound by multiple adipogenic regulators,

facilitating binding of PPARc and C/EBPa during the late stage

of differentiation. We found that the DNaseI hypersensitive sites in

3T3-L1 cells on day 0 or day 6 in the Siersbaek study [6]

significantly overlapped the FAIRE peaks on day 0 or day 8 in our

study (78.8% and 80.9%, respectively) (Figure S11), suggesting

that both methods detect similar open chromatin regions.

Although limited amount of motif analyses of the DNase I sites

was conducted in their study, we think a combination of motif

analysis and DNase-seq should work in a similar way.

The NFI family was identified as site-specific DNA-binding

protein that bound to the adenovirus origin of replication [56,57].

Although defects in development of organs such as brain, lung,

tooth, bone and skeletal muscle in Nfia, Nifb, Nifc and Nfix-deficient

mice were documented [64,65,66,67,68,69], no publication has

reported direct evidence that NFI family transcription factors are

involved in adipogenesis, but it is a reasonable supposition since

bone, muscle and adipocytes have a common mesenchymal

precursor [70]. Interestingly, Graves et al. demonstrated that NFI

was bound to the adipogenic 25.4 kb enhancer region in the aP2

promoter [71], which is the original adipogenic enhancer region

where the PPARc/RXR heterodimer was found to bind and act

[72]. The NFI binding motif they examined by gel shift assay [72]

was close to the best-characterized PPARc binding sites in the

region, and was also in site 9 (Figure 8A, right panel, site 9), which

was indeed bound by NFI in ChIP assay (Figure 8C). Forced

overexpression of NFIA in 3T3-L1 cells dramatically induced

expression of PPARc, C/EBPa and aP2 and caused lipid droplet

formation before initiation of differentiation. Our ChIP data suggest

that activation of these genes by NFIA is through direct binding of

NFI to regulatory elements near these genes. In overexpression

experiments, NFIB did not activate the adipogenic genes (Figure 7).

NFI factors are known to undergo extensive alternative splicing

[57]. We speculate that this could be due to truncation of the C-

terminus caused by lack of exons 10 and 11 in the NFIB cDNA that

we cloned (NM_001113209.1) while the NFIA clone completely

matched NM_010905.3. NFI was also implicated in functions of

other nuclear receptors such as the androgen receptor (AR),

estrogen receptor (ER) and glucocorticoid receptor [4,73,74].

Further studies are necessary to elucidate the mode of action of

NFIs and positioning of NFIs in the adipogenic regulatory network.

Materials and Methods

Cell Culture
3T3-L1, NIH-3T3, 3T3-F442A and HEK293T cells were

maintained in DMEM, supplemented with 10% FBS. For adipocyte

differentiation, two days after confluence, 3T3-L1 cells were treated

with dexamethasone (1 mM), IBMX (0.5 mM), and insulin (5 mg/

ml) (DMI) for 48 hours, followed by treatment with insulin alone,

with medium replacement every two days thereafter. For dif-

ferentiation of 3T3-F442A, cells were treated with insulin (5 mg/ml)

after confluence, with medium replacement every two days.

Animal Studies
All animal works have been conducted according to the

institutional guidelines.

Antibodies
Generation of characterization of antibodies for human PPARc

and human RXRa was described previously [24]. Rabbit

polyclonal anti-histone H3 trimethyl K4 (ab8580) was from

Abcam. Antibodies against CTCF were from Upstate (#07–

729). Anti-NFI antibody (H-300) was from Santa Cruz (sc-5567).

FAIRE
FAIRE experiments were performed based on a protocol

published by Giresi et al. [7]. Briefly, cells were fixed with 1%

formaldehyde for five minutes at room temperature, the fixation

stopped by adding 2.5 M glycine (final 125 mM). Fixed cells were

scraped and collected in 15 ml tubes (4610‘6 cells/tube) and

washed twice with cold PBS, then 86106 cells were re-suspended

in 800 ml of MC lysis buffer (10 mM Tris-HCl pH 7.5, 10 mM

NaCl, 3 mM MgCl2, 0.5% NP-40) and incubated on ice for ten

minutes. After spinning for four minutes at 8000 rpm, the pellet

was re-suspended in 400 ml SDS lysis buffer (1% SDS, 10 mM

EDTA, 50 mM Tris-HCl pH 8.0, proteinase inhibitor cocktail)

and incubated on ice for ten minutes. Glass beads (size, 200 mg)

(Polysciences Inc. #05483-250) were added and the DNA was

sheared by sonicator. Next, we added 200 ml cold ChIP dilution

buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA,

16.7 mM Tris-HCl pH 8.0, 167 mM NaCl), and after spinning

for one minute at 8,000 rpm, supernatant was transferred to a new

1.5 ml tube. Aliquote was taken, de-crosslinked, purified by

phenol/chloroform extraction, and run on a gel to ensure average

fragment sizes of 300 bp. Remaining samples were processed three

times by phenol/chloroform extraction to recover DNA not bound

by nucleosome in the water phase. The samples were de-

crosslinked by overnight incubation at 65uC and purified by

ethanol precipitation. They were subsequently treated with RNase

A (final 50 ug/ml), purified by QIAquick PCR purification kit

(Qiagen) and used for subsequent analyses.

Chromatin Immunoprecipitation (ChIP)
ChIP was performed as descried previously [24,75]. For ChIP

using anti-PPARc, RXRa and CTCF antibodies, 3T3-L1 cells
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were cross-linked with 1% formaldehyde for ten minutes at room

temperature and were prepared for ChIP as described previously.

For ChIP using anti-H3K4me3 antibody, the nuclei of 3T3-L1

cells were prepared by centrifugation through a sucrose gradient

and were digested with MNase (TaKaRa). After centrifugation,

the supernatant was used for ChIP. Sequences of primers used for

qPCR were listed in Table S1.

High-Throughput Sequencing and Peak Detection
High-throughput sequencing was performed by using the

Genome Analyzer System (GA II) (Illumina) as described

elsewhere [76]. In short, we repaired ends of DNA samples,

created 39-dA overhang, ligated Illumina adaptors, size-fractioned

the samples by gel extraction and amplified them with 8 cycles of

PCR according to the manufacturer’s instructions. We then

purified the DNA and performed cluster generation and 36 cycles

of sequencing on an Illumina cluster station and 1G analyzer

following the manufacturer’s instructions. Sequences were mapped

to the reference murine genome, NCBI build 37 (mm9). Peak

detection was performed using Findpeaks 3.1.9.2 [77] with a false

discovery rate (FDR) cut-off of 161024. Operations such as

intersections, unions, and subtractions of genome regions were

performed with a web-based GALAXY genome analysis tool

[78,79].

Average Signal Profiling
Average profiling of FAIRE and histone modifications near

transcription start sites or FAIRE peaks were generated using

‘‘sitepro’’ in the CEAS package [80].

Adipocyte- and Preadipocyte-Specific FAIRE Peaks
For definition, we first ranked peaks based on signal intensity,

which were detected in 3T3-L1 on either day 0 or day 8 with a

FDR of 1024. We then classified each peak into tertiles (high, mid,

low) for either day the peak that had the higher percentile (see also

the 4-by-4 table in Figure 3B).

Gene Ontology Analysis
Gene ontology annotation analysis was performed using

DAVID (ver. 6.7) [38]. The top 2,000 genes were used, sorted

by the number and maximum height of the adipocyte-specific

FAIRE peaks within a region 625 kb from TSS. For genes bound

by PPARc, we used the top 931 genes with more than three

PPARc binding sites within a region 625 kb from TSS. To detect

enrichment of specific—rather than general—terms, following the

instructions of DAVID’s developer, we used GOTERM_BP_4

and GOTERM_BP_5, and sorted result lists by using both fold

enrichment and Benjaini p-value [38,81].

Clustering Analysis
Statistical clustering analyses of the PPARc binding sites and the

adipocyte-specific FAIRE peaks were performed as described in

references [47,48].

Enriched Motif Analysis
Enrichment analyses of known motifs were performed with

AME ver. 4.6.0 in the MEME suite [82]. After removing repeat

regions with RepeatMasker [83], DNA sequences from the center

150 bp regions of the top 2,000 cell type–specific FAIRE peaks were

analyzed with a fixing partition of 2,000, dinucleotide randomiza-

tion and p-value threshold of 1024 and p-value report threshold of

0.05. We used the licensed version of TRANSFAC database

(Release 2010.4) [51] and the JASPAR CORE database [52].

Motif enrichment ratios (adipocyte-/preadipocytes-specific

FAIRE) for motifs in the TRANSFAC or JASPAR CORE

database were determined by a method described in reference

[28]. Instances of motifs were enumerated in the adipocyte- or

preadipocytes-specific FAIRE peaks by using FIMO ver. 4.6.0 in

the MEME suite, with a p-value threshold of 1024, normalized by

total nucleotide length. Motif enrichment ratios were determined

by dividing the normalized adipocyte enrichment values by

preadipocyte values.

MEME ver. 4.3.0 [40] was used to identify de novo motifs

over-represented in the adipocyte- or preadipocyte-specific

FAIRE peaks and the PPARc binding sites. After removing

repeat regions with RepeatMasker [83], DNA sequences from the

center 150 bp regions of the top 800 cell type–specific FAIRE

peaks with higher signals were used for the analyses. Identified

enriched de novo motifs were next analyzed by TOMTOM in

the MEME suite for comparison against a database of known

motifs.

Gel Shift Assay and Reporter Assay
The Gel shift assay and luciferase reporter assay were performed

as previously described [84,85]. For the luciferase assay, putative

PPRE motifs were cloned in tandem (36 or 66) into pGL3 basic

reporter plasmid (Promega) together with the tk minimal promoter.

The 25.4 kb aP2 promoter luciferase construct is described in

reference [84].

Knockdown of NFIA and NFIB by siRNA in 3T3-L1 Cell
Differentiation

The 3T3-L1 cells were transfected with either control siRNA or

siRNA for murine NFIA and NFIB (Santa Cruz Biotechnology, sc-

37007, sc-36045 and sc-43566, Sigma MISSION siRNA,

SASI_Mm02_00309629, 00309630, 00307243, 00307244) by

using Lipofectamine RNAiMAX (Invitrogen) just before they

reached confluence. Induction of differentiation (the DMI

treatment) was started two days after confluence, as described in

a method for differentiation of 3T3-L1 cells.

Oil-Red-O Staining
The 3T3-L1 adipocytes were washed with PBS, fixed with

formalin for 30 minutes at room temperature, rinsed with 60%

isopropanol and stained with oil red O solution—freshly made by

mixing 0.5% oil red O in isopropyl alcohol and water (3:2)—and

left to sit for one hour; the cells were then washed with water and

dried.

mRNA Expression Analysis
Total RNA was isolated using TRIzol reagent (Invitrogen), then

0.5 mg of the total RNA was reverse transcribed using high-

capacity cDNA reverse transcription kits (Applied Biosystems

#4375222) and random hexamers. Real-time quantitative PCR

(SYBR green) analysis was performed on a 7900HT Fast Real-

Time PCR System (Applied Biosystems). Primer sequences are

listed in Table S1. Expression was normalized to 36B4.

Microarray Analysis
Transcriptome analysis of 3T3-L1 during differentiation by

using a GeneChip Mouse Genome 430 2.0 array (Affimetrix) was

described previously [24]. Heat maps were generated by using

GENOMICA, developed by Yaniv Lubling and Eran Segal at the

Weizmann Institute of Science. Microarray data of 3T3-L1 and

NIH-3T3 cells used in Figure S11 was obtained from GEO

(accession number GSE10246).
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Retroviral Expression System
We amplified NFIA and NFIB coding sequences from cDNA

prepared from adipocytes using primers listed in Table S1, and

cloned them into retroviral pMXs-puro vectors. We also made a

dominant negative NFIA that lacks the C-terminal transactiva-

tion/repression domain (NFIA-DN) [58]. Plat E cells were

transfected with pMXs-puro plasmids using Lipofectamine 2000

(Invitrogen). Culture medium containing viruses after two day

incubation was centrifuged at 2,000 rpm for 5 min and superna-

tant was collected and supplemented with 10 mg/ml polybrene.

Conditioned medium with viruses was used to infect 3T3-L1 cells

and then selection was started by adding 2 mg/ml puromycin and

incubated for 2 days.

Accession Numbers
FAIRE-seq and ChIP-seq raw data are deposited into the DNA

data bank of Japan (DDBJ accession number: DRA000378).

Supporting Information

Figure S1 Genomic distribution and characterization of pro-

moter and non-promoter FAIRE peaks in 3T3-L1. (A) Location

analysis of FAIRE peaks relative to RefSeq genes in 3T3-L1 (day

0). Promoter FAIRE peaks were defined as those located within +/

2500 bp of RefSeq transcription start sites (TSSs). Notably, only

8% of the non-promoter FAIRE peaks were located in the 25 kb

proximal promoter region, and the vast majority of them were

located in distal regions such as introns and intergenic regions. (B)

Average profiles of FAIRE and H3K4me3 signals around the

TSSs of genes with high, moderate and low expression levels.

Signal intensity from microarray data was used for classification by

the signal’s expression levels. The X-axis indicates distance from

the TSS. (C) Percent fractions of the FAIRE peaks (promoter and

non-promoter) that overlapped CTCF binding sites as well as

H3K4me1 and H3K4me3 positive regions. (D) Average profiles of

FAIRE, H3K4me1, H3K4me3, and H3K27ac signals around the

FAIRE peaks in promoter and non-promoter regions. The X-axis

shows distance from the center of the FAIRE peaks. The FAIRE

peaks located within +/2100 bp from RefSeq TSSs were

analyzed for promoter FAIRE peaks. The promoter FAIRE peaks

showed H3K4me3(+)/H3K4me1(2) modification whereas the

non-promoter FAIRE peaks showed H3K4me3(2)/H3K4me1(+)

modification.

(TIF)

Figure S2 Clustering of multiple adipocyte-specific non-pro-

moter FAIRE peaks and PPARc binding sites near Mgll, Adipor2

and Slc2a4. Clusters of multiple adipocyte-specific FAIRE peaks

and/or PPARc binding sites were located in genomic regions near

Mgll (A), Adipor2 (B) and Slc2a4(Glut4) (C) in 3T3-L1 adipocytes.

In some cases—e.g., Slc2ar4 (Glut4) and Ybx2 in (C)—multiple

genes were located in such regions. Bars below the FAIRE

signal represent statistically significant FAIRE positive peaks

(FDR,1024). Red asterisks indicate the adipocyte-specific FAIRE

peaks on day 8 (see Figure 2B for definition). Blue arrow heads in

(B) indicate the PPARc binding regions in the intron 1 of Adipor2

tested in Figure 3.

(TIF)

Figure S3 Clustering of multiple adipocyte-specific non-pro-

moter FAIRE peaks and PPARc binding sites near Cebpa,

Srebf1and Cidec. Clusters of multiple adipocyte-specific FAIRE

peaks and/or PPARc binding sites were located in genomic

regions near Cebpa (A), Srebf1 (B) and Cidec (C).

(TIF)

Figure S4 Binding sites for PPARc and RXRa in 3T3-L1 cells.

(A) De novo motif analysis (MEME) of the center 150 bp of the

PPARc/RXRa binding regions (top 400) in 3T3-L1, day 8. Of

note, there is a 59 extension AGT, which corresponds to the

interaction between the PPARc hinge region and DNA identified

by crystal structure analysis [41]. (B) A heat map showing

enrichment of PPARc in the vicinity of genes up-regulated during

differentiation. The horizontal bars in the right panel indicate each

gene bound by PPARc (+/225 kb from TSS, day 8) (C) Ontology

analysis with DAVID of genes bound by PPARc [13].

(TIF)

Figure S5 Co-regulation of neighboring genes during adipocyte

differentiation. (A, B) Genomic loci near (A) co-regulated Mrpl12,

Slc25a10 and Gcgr and (B) co-regulated Hsd11b1, G0s2 and Lamb3.

Note, there are clusters of the adipocyte-specific FAIRE peaks

(asterisks) and the PPARc binding sites encompassing the co-

regulated genes. (C) Microarray analysis showing co-regulation of

Mrpl12, Slc25a10 and Gcgr, and co-regulation of Hsd11b1, G0s2

and Lamb3 included in the clusters of multiple adipocyte-specific

FAIRE peak and PPARc binding sites.

(TIF)

Figure S6 Known motif enrichment analysis of the adipocyte- or

preadipocyte-specific FAIRE peaks (JASPAR CORE motifs).

Enrichment analysis of the adipocyte- (left) and the preadipo-

cyte-specific (right) FAIRE peaks for known motifs in the JASPAR

CORE database performed with AME in the MEME suite by the

same methods used in Figure 5.

(TIF)

Figure S7 De novo motif analysis of the adipocyte-specific

FAIRE peaks. MEME ver. 4.3.0 was used to identify de novo

motifs over-represented in the adipocyte- and preadipocyte-

specific FAIRE peaks and PPARc binding sites. After removing

repeat regions, DNA sequences from the center 150 bp regions of

top 800 cell type–specific FAIRE peaks with higher signals were

used for the analyses. Identified enriched de novo motifs were

analyzed by TOMTOM in the MEME suite for comparison

against a database of known motifs.

(TIF)

Figure S8 Suppression of adipocyte differentiation by knock-

down of NFIA and NFIB by using different siRNAs.

(TIF)

Figure S9 Comparison of FAIRE Peaks between undifferenti-

ated 3T3-L1 and NIH-3T3 cells. (A) A heat map showing

enrichment of the 3T3-L1- and NIH-3T3-specific FAIRE peaks in

the vicinity (+/225 kb from TSS) of genes sorted by using the

ratio of expression levels in 3T3-L1 or NIH-3T3. The FAIRE

peaks specific to 3T3-L1 or NIH-3T3 were enriched in the vicinity

of genes whose expression levels were higher in 3T3-L1 or NIH-

3T3, respectively. (B) Known motif analysis of the 3T3-L1-specific

FAIRE peaks (vs NIH-3T3). The binding motif for EBF and

PPARc/RXR were among the top scored motifs.

(TIF)

Figure S10 The enrichment ratios of the top motifs in

Mikkelsen’s study [28] by using the adipocyte- and preadipo-

cyte-specific FAIRE peaks.

(TIF)

Figure S11 Comparison of DNase-seq in Siersbæk’s study [6]

and FAIRE-seq peaks near Klf5, Pparg and Cebpa gene. DHS stands

for DNase I hypersensitive sites.

(TIF)
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