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Abstract

Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we
selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield
production named photoassimilate defective1 (phd1). Molecular and biochemical analyses revealed that PHD1 encodes a
novel chloroplast-localized UDP-glucose epimerase (UGE), which is conserved in the plant kingdom. The chloroplast
localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts,
which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose
and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was
responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG), a
major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG)
amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG
biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered
chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus
phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and
upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the
decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass,
and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid
membranes for proper chloroplast biogenesis and photosynthetic activity. These findings will be useful for improving crop
yields and for bioenergy crop engineering.
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Introduction

Plants possess a sophisticated sugar biosynthetic machinery

comprised of families of nucleotide sugars that can be modified at

their glycosyl moieties by nucleotide sugar interconversion

enzymes to generate different sugars [1,2]. UDP-glucose 4-

epimerase (also UDP-galactose 4-epimerase, UGE; EC 5.1.3.2)

catalyzes the interconversion of UDP-D-glucose (UDP-Glc) and

UDP-D-galactose (UDP-Gal) [3,4]. UGE is essential for de novo

biosynthesis of UDP-Gal, a precursor for the biosynthesis of

different carbohydrates, glycolipids, and glycosides. Genes encod-

ing UGE have been cloned from a range of different organisms

including bacteria, yeast, and human [5–7], and the crystal

structures have also been obtained [8–10].

The original biochemical and genetic analyses of UGE in plants

was described by Dörman and Benning [11]. To date, five UGE

isoforms have been identified in Arabidopsis [2,12], three in barley

[13], and a family of four putative UGE isoforms exist in rice. In

Arabidopsis, global co-expression analysis revealed that UGE2, -4,

and -5 preferentially act in the UDP-Glc to UDP-Gal directions,

whereas UGE1 and UGE3 might act in the UDP-Gal to UDP-Glc

directions [14]. Reverse genetic studies demonstrated that UGE2

and UGE4 influence vegetative growth and cell wall carbohydrate

biosynthesis, that UGE3 is specific for pollen development, and

that UGE1 and UGE5 act in stress situations [15,16]. Compared to

4-day-old seedlings, UGE expression increased 5-fold in roots of 3-

week-old pea plants, suggesting that increased UGE expression

correlated with the copious secretion of pectinaceous mucigel in

older seedling roots [17]. To date, all UGEs identified from plants

lack transmembrane motifs and signal peptides and appear to exist

as soluble entities in the cytoplasm.

Photosynthetic reactions in higher plants depend on the well-

developed chloroplast thylakoid membrane system. Chloroplast

thylakoid assembly and maintenance require a continuous supply
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of membrane constituents. Galactose-containing glycerolipids are

predominant lipid components of photosynthetic membranes in

plants, algae, and cyanobacteria. The two most common

galactolipids are mono- and digalactosyldiacylglycerol (MGDG

and DGDG), which account for about 50 and 25 mol% of total

thylakoid lipids, respectively [18,19]. About 80% of all plant lipids

are associated with photosynthetic membranes, and MGDG is

considered to be the most abundant membrane lipid on earth.

Recent studies have demonstrated that galactolipids play an

important role in not only the organization of photosynthetic

membranes, but also in their photosynthetic activities [20,21].

Arabidopsis mutants with a lower amount of these galactolipids

have a reduction in chlorophyll content and photosynthetic

activity, alterations in chloroplast ultrastructure, and impairment

of growth [22–25].

In plants, MGDG is synthesized in two unique steps: (i) the

conversion of UDP-Glc into UDP-Gal by an UGE, and (ii) the

transfer of a galactosyl residue from UDP-Gal to diacylglycerol

(DAG) for synthesis of the final product by MGDG synthase

(MGD1) [26,27]. Although MGD1 has been characterized at both

genetic and enzymatic levels, the UDP-Gal supply mechanisms for

the MGDG biosynthetic pathway remain obscure. MGD1 is

localized in the inner chloroplast envelope membrane [26,27] and

uses UDP-Gal as a substrate. However, the concentration of UDP-

Gal in chloroplasts is considered to be very low [28], suggesting

that the UDP-Gal source is imported from the cytosol or

generated inside chloroplasts.

To gain insight into genes controlling photosynthetic activity

and carbon assimilation in plants, a rice stunted growth mutant

(phd1) with decreased photoassimilate and yield production was

selected for further study from a large-scale screening of our T-

DNA mutant population. Interestingly, PHD1 encoded a chloro-

plast-localized UDP-Glc epimerase involved in UDP-Gal supply

for chloroplast galactolipid biosynthesis during photosynthetic

membrane biogenesis. Its homologs are highly conserved in the

plant kingdom, and the gene was preferentially expressed in

various young meristems where plastid proliferation actively

occurred. Most strikingly, overexpression of PHD1 increased

photosynthetic activity and enhanced rice growth. The important

roles of PHD1 in photosynthetic capability and carbon assimilate

homeostasis are discussed.

Results

Isolation and characterization of the phd1 mutant
To identify genes affecting photosynthetic activity and carbon

assimilation, a large-scale screening of our rice T-DNA insertion

mutant population (Oryza sativa var. Nipponbare background) [29]

was carried out. Of 480 mutant lines with altered carbohydrate

levels in vegetative organs, photoassimilate defective1 (phd1) with both

low carbohydrate contents and stunted growth was selected for

further characterization. Scanning electron micrograph of culms

demonstrated that fewer starch granules were deposited in

parenchyma cells of the phd1 mutants (data not shown). During

the young seedling stage, both shoots and primary roots of the

mutant were shorter and lighter than those of the wild type

(Figure 1A). After internode elongation, the phd1 mutant exhibited

a semi-dwarf, less grain-filling, retarded vegetative growth, later

flowering, and less tillering phenotype (Figure 1B–1E). In addition,

although the grain number per panicle was not altered between

the mutant and wild type, the seed-setting ratio of the phd1 mutant

was significantly decreased, which finally led to a significant

reduction of grain yield (Figure 1F, 1G). Compared to wild type,

mature leaves of the mutant had somewhat reduced sucrose

(Figure 1H) and rather low starch levels (Figure 1I) at all time-

points taken during the light/dark cycle, while hexose levels were a

little higher in the mutant (Figure S1).

PHD1 encodes a functional UDP-Glc epimerase
Genetic analysis indicated that the phd1 phenotype was

controlled by a single recessive gene that did not co-segregate

with the T-DNA insertion, and hence map-based cloning was

carried out. The PHD1 locus was physically delimited to a 72-kb

region on the short arm of chromosome 1. This region contains six

annotated genes, and sequencing of these genes from phd1-1

identified a single nucleotide transition (G-to-T) in exon 2 of

Os01g0367100, leading to a premature translational termination.

The identity of Os01g0367100 as PHD1 was confirmed by analysis

of two other phd1 alleles with similar phenotypes isolated from the

same genetic screen, for which a single nucleotide substitution (A-

to-T) in exon 7 in phd1-2 and a 13-bp insertion between exon 3

and exon 4 in phd1-3 were found (Figure 2A). Almost no PHD1

mRNA was detected in any of the three allelic mutants (Figure S2).

The phd1 phenotype was complemented by transgenic expression

of wild type Os01g0367100 in the phd1-1 mutant background

(Figure 2B, 2C), confirming that the nonsense mutation of

Os01g0367100 was responsible for the presumed null mutant

phenotype.

Database searches revealed that PHD1 has similarity to proteins

from Thalassiosira pseudonana (XP_002290295), Phaeodactylum tricor-

nutum (XP_002178225), Chlamydomonas reinhardtii (XP_001699105),

Micromonas pusilla (EEH60780), Ostreococcus tauri (CAL54696),

Physcomitrella patens (XP_001767242), Ricinus communis

(XP_002516868), Arabidopsis thaliana (AT2G39080), Populus tricho-

carpa (XP_002311843), Vitis vinifera (XP_002276706), Zea mays

(NP_001131736), and Sorghum bicolor (XP_002457832), with 27 to

75% amino acid identity (Figure S3). Phylogenetic analysis

between PHD1 and its 16 putative homologs indicated that

PHD1 is closely related to Sb03g014730 from sorghum and

LOC100193101 from maize (Figure 3). PHD1 homologs are only

found in the plant kingdom, suggesting that these proteins are

Author Summary

Photosynthesis is carried out in chloroplast, a plant-specific
organelle. Photosynthetic membranes in chloroplasts
contain high levels of glycolipids, and UDP-galactose is a
dominating donor for glycolipid biosynthesis. Although
glycolipid assembly of photosynthetic membranes has
been characterized at the genetic and enzymatic level, the
mechanism of substrate supply of UDP-galactose for the
glycolipid biosynthetic pathway remains obscure. By
genetic screening of rice mutants that are impaired in
photosynthetic capacity and carbon assimilation, we
identified PHD1 as a novel nucleotide sugar epimerase
involved in a process of glycolipid biosynthesis and
participating in photosynthetic membrane biogenesis.
PHD1 was preferentially expressed in green and meristem
tissues, and the PHD1 protein was targeted to chloroplasts.
We revealed that UDP-galactose for glycolipid biosynthesis
catalyzed by the new enzyme was generated inside
chloroplasts, and the reduced amounts of glycolipids in
the mutant led to decreased chlorophyll content and
photosynthetic activity. Overexpression of this gene lead
to growth acceleration, enhanced photosynthetic efficien-
cy, and finally improved biomass and grain yield in rice.
These results suggest that PHD1 has significant economic
implications in both traditional crop improvement and
bioenergy crop production.

PHD1 Is Involved in Galactolipid Biosynthesis
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evolutionally conserved across plant species. However, none of the

homologous genes have been functionally characterized. Analysis

of the conserved domain demonstrated that PHD1 and its

homologs contain the consensus WcaG domain, featured in

nucleoside-diphosphate sugar epimerases (Figure S3). One of the

best characterized nucleotide sugar epimerases is UDP-Glc

epimerase, which catalyzes the interconversion of UDP-Glc and

UDP-Gal. Hence, PHD1 and its homologs may function as novel

plant specific UDP-Glc epimerases.

To validate PHD1’s biochemical function as an UDP-Glc

epimerase, the mature PHD1 protein lacking the putative N-

terminal 62-aa transit peptide was expressed in E. coli and UGE

activity was examined. The result showed that PHD1 could

catalyze the conversion of UDP-Gal to UDP-Glc, and curve fitting

indicated that UDP-Gal binding followed a simple Michaelis-

Menten kinetics with a Km value of 0.84 mM at 30uC (Figure

S4A). To examine whether PHD1 had UDP-Glc epimerase

activity in vivo, the mature PHD1 under the control of the yeast

glyceraldehyde-3-phosphate dehydrogenase promoter was used to

complement the auxotrophic phenotype of a yeast gal10D mutant

which cannot grow on a medium containing D-galactose as sole

carbon source. The complementation results demonstrated that

PHD1 also had UDP-Glc epimerase activity in vivo (Figure S4B).

RNA gel blot analysis revealed that PHD1 was present in all

green tissues, with highest abundance in leaf blades and leaf

sheaths, then flowers and culms, but only at very low levels in roots

(Figure 4A). mRNA in situ hybridization using an antisense probe

revealed that PHD1 was expressed predominantly in leaf

primordia and shoot apical meristems (Figure 4B), the mesophyll

cells surrounding the vascular bundles of young leaves (Figure 4C),

inflorescence primordia (Figure 4D), and axillary buds (Figure 4E).

In contrast, hybridization with a PHD1 sense probe showed no

signal (Figure 4F).

PHD1 is targeted to the chloroplast
PHD1 encodes a 340 aa protein with a putative 62-aa

chloroplast transit peptide at the N-terminus. To confirm

chloroplast localization of PHD1, the full-length PHD1 was fused

to the green fluorescent protein (GFP) reporter gene under the

control of the cauliflower mosaic virus (CaMV) 35S promoter and

subsequently transformed into rice shoot protoplasts. Figure 5A

shows that GFP fluorescence co-localized with the red chlorophyll

Figure 1. phd1 mutant phenotypes. (A) Two-week-old seedlings grown on MS medium. (B and C) Growth phenotype of 2-month-old (B) and 4-
month-old (C) plants grown in a paddy field. (D) The harvested panicles showed a reduced seed-setting ratio for phd1-1. (A–D) wild type (left) and
phd1-1 (right). (E–G) Quantification of the agricultural traits of tiller number (E), seed setting ratio (F), and grain weight per plant (G). Each bar is the
mean 6 SD from 30 replicate samples. (H, I) Diurnal changes in sucrose (H) and starch (I) content of phd1-1 and wild type. Mature leaves of individual
wild type and phd1-1 plants at the anthesis stage were harvested and immediately frozen in liquid nitrogen. Each point is the mean 6 SD from ten
replicate samples.
doi:10.1371/journal.pgen.1002196.g001

PHD1 Is Involved in Galactolipid Biosynthesis
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autofluorescence, confirming that PHD1 was a chloroplast-

localized protein and the predicted transit peptide was functional.

To further investigate the subcellular localization of PHD1, we

performed western blot experiments using purified plastid

subfractions (Figure 5B). Several antibodies were used as specific

markers for the different chloroplast subfractions. Tic 40 was used

as a specific envelope marker, and Rubisco, the major stroma

protein, as a marker of this chloroplast subfraction. PsbA, one of

the components of photosystem II (PSII), was used as a marker to

validate the thylakoid membrane fraction, and HSP82 was used as

a cytosol specific marker. As shown in Figure 5B, the PHD1

protein was detected mainly in the stroma fraction and was absent

from the cytoplasmic compartment, thus confirming that PHD1

was a chloroplast-targeted protein. To complete the subcellular

localization study and to obtain additional information about the

distribution of PHD1 in different chloroplast subcompartments,

we further performed immunocytochemical analysis on ultrathin

sections of rice tissues using polyclonal PHD1 antiserum. The

positive signal of PHD1, visualized as black dots, was found

specifically in the chloroplasts (Figure 5C and 5D). In contrast,

sections treated with a preimmune serum (Figure 5E and 5F)

showed no signal. The overall data thus strongly indicated that

PHD1 is targeted to chloroplasts in rice.

UGE activity is severely reduced in chloroplasts isolated
from the phd1-1 mutant

Intact chloroplasts were isolated from leaves of wild type and

phd1-1 mutant plants, and the UGE activity in isolated chloroplasts

was measured (Figure S5). Compared to the wild type, a severe

decrease (ca. 50%) in UGE activity was observed in isolated

chloroplasts from the phd1-1mutant compared with the wild type,

suggesting that PHD1 was responsible for a major part of the UGE

activity in chloroplasts. Moreover, levels of the UGE substrates

UDP-Glc and UDP-Gal in isolated chloroplasts were also

determined (Figure 6). While compared to wild type and

complemented mutant an overabundance of UDP-Glc was found

in chloroplasts isolated from the phd1-1 mutant, almost no amount

of UDP-Gal was detected in the mutant. The levels of nucleotide

sugars in whole leaves were also determined, which showed that

the amount of UDP-Gal was slightly higher in phd1-1 than in wild

Figure 2. Molecular identification of PHD1. (A) Structure of the
PHD1 gene and its mutation sites in three phd1 alleles. The PHD1 gene
consists of nine exons (green boxes) and eight introns (gray lines).
Nucleotide insertion and substitutions in the three phd1 alleles are
indicated. (B, C) Functional complementation of the phd1 mutant. (B)
Upper panel: Phenotypes of wild type, phd1-1, and complemented
phd1-1+PHD1 plants at the tillering stage. Lower panel: Expression
levels of PHD1 transcripts as detected by semi-quantitative RT-PCR. (C)
Sucrose and starch content in flag leaves of wild type, phd1-1, and
complemented phd1-1+PHD1 plants at noon of the day at the anthesis
stage. Error bars represent SD of eight different individuals. *significant
difference between phd1-1 mutant and wild type (P = 0.05).
doi:10.1371/journal.pgen.1002196.g002

Figure 3. Phylogenetic analysis of PHD1. MEGA4 Neighbor-Joining
tree was inferred from the amino acid sequences of the PHD1
(Os01g0367100) homologs among green plants. Bootstrap values are
based on 1 000 replications and are indicated in their respective nodes.
The scale bar indicates genetic distance based on branch length. An
alignment for the constructed tree is shown in Figure S3.
doi:10.1371/journal.pgen.1002196.g003

Figure 4. Expression analysis of PHD1. (A) RNA gel blot analysis of
the PHD1 gene in roots, culms, flowers, leaf blades, and leaf sheaths just
before the anthesis stage. (B–F) PHD1 expression patterns detected by
mRNA in situ hybridization. The PHD1 signal was detected in the shoot
apical meristem and young leaves (B), leaf mesophyll cells around
vascular bundles (C), young inflorescences (D), and axillary buds (E). (F)
Negative control preparation made with a PHD1 sense probe.
Bars = 150 mm in (B), (C), (E), and (F), and 500 mm in (D).
doi:10.1371/journal.pgen.1002196.g004

PHD1 Is Involved in Galactolipid Biosynthesis

PLoS Genetics | www.plosgenetics.org 4 July 2011 | Volume 7 | Issue 7 | e1002196



type plants, and the UDP-Glc amount was significantly higher

(Figure S6). Hence, the ratio of UDP-Glc to UDP-Gal in phd1-1

leaves was also higher than in wild type plants. These results

suggested that PHD1 dysfunction may trigger an accumulation of

substrates and disturb the balance of interconversion between the

two sugar nucleotides.

PHD1 dysfunction affects the photosynthetic membrane
system

Chloroplast membranes contain high levels of glycolipids, and

UDP-Gal is a dominant substrate for glycolipid biosynthesis. To

examine the effect of PHD1 dysfunction on membrane lipid

homeostasis, the composition of total lipids extracted from phd1-1,

wild type, and PHD1-complemented plants was analyzed

(Figure 7). In the phd1-1 mutant, the mol% amount of MGDG

was reduced by 19% compared to wild type and the comple-

mented plants, indicating that PHD1 is involved in MGDG

biosynthesis. In contrast, only a slight decrease (2.5%) in DGDG

content was observed in the phd1-1 mutant, demonstrating that

PHD1 may not be required for DGDG synthesis and suggesting

that the UDP-Gal substrate for DGDG formation was presumably

supplied from the cytosol. Reduced abundance of MGDG in phd1-

1 was accompanied by an increase in the abundance of other

major membrane lipids such as phosphatidylcholine (PC),

phosphatidylglycerol (PG), and phosphatidylinositol (PI), while

the mol% levels of sulfoquinovosyldiacylglycerol (SQDG) and

Figure 5. Subcellular localization of PHD1. (A) Confocal micrographs showing chloroplast targeting of PHD1. Rice protoplasts transformed with
35S::PHD1-GFP (upper panel) and 35S::GFP (lower panel) plasmids are shown. Chlorophyll autofluorescence (middle); GFP fluorescence (left); merged
images (right). Bars = 5 mm. (B) PHD1 protein distribution in chloroplast subfractions. Percoll-purified intact chloroplasts were lysed and subjected to
differential centrifugation fractionation into envelope, stroma, and thylakoid fractions. Proteins were separated by SDS-PAGE, and blotted against the
PHD1 antibody and specific chloroplast subcompartment protein antibodies. Tic 40 is an envelope membrane protein, RbcL a stroma protein, and
PsbA a thylakoid membrane protein. HSP82 was used as a cytosolic protein marker. About 15 mg of total proteins from extrachloroplast (Ep), purified
chloroplast (Cp), envelope (E), stroma (S), and thylakoid (T) subfractions were loaded per line. RbcL seen in the Ep fraction is most likely due to
leakage from the stroma of broken chloroplasts. (C–F) Immunogold localization of PHD1. Thin sections of chloroplasts in leaf mesophyll cells were
incubated with PHD1 antibodies (C and D) and preimmune serum (E and F). The gold label is found preferentially associated with thylakoids of the
chloroplasts as seen in (D). Chl, chloroplast; Cyt, cytosol; Mit, mitochondria; CW, cell wall. Bar = 0.5 mm.
doi:10.1371/journal.pgen.1002196.g005
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phosphatidylethanolamine (PE) were not altered significantly in

the phd1-1 mutant (Figure 7A). Because the two galactolipids and

SQDG are major components of thylakoid membrane lipids, this

result suggests that the mutant had an overall lower amount of

chloroplast membrane lipids than wild type plants. Focusing on

the exclusive chloroplast lipid MGDG, the fatty acid composition

was also investigated (Figure 7B). MGDG of the phd1-1 mutant

contained considerably decreased levels of stearic acid (18:0)

compared with the wild type and elevated levels of linoleic acid

(18:2) and linolenic acid (18:3). The levels of other fatty acids were

similar to those observed in wild type plants. Hexadecatrienoic

acid (16:3), which is typically found in the plant prokaryotic

pathway, was not detected in all the rice plants, suggesting that rice

entirely relies on endoplasmic reticulum (ER)-derived lipids for

thylakoid galactoglycerolipid biosynthesis.

Noninvasive chlorophyll fluorescence measurements indicated

that the maximum quantum yields for photosystem II photo-

chemistry (Fv/Fm) were similar for phd1-1 and wild type (Table 1).

The effective quantum yield of photochemical energy conversion

in photosystem II (WPSII) was slightly but significantly reduced in

the mutant (Table 1). Pigment content was also reduced in the

phd1-1 mutant (Table 1). Interestingly, chloroplasts of 2-month-old

phd1-1 plants were significantly smaller than those of wild type

plants (wild type, 5.060.4 mm; phd1-1, 3.060.5 mm), and starch

grains were also either absent or reduced in size and/or number in

the mutant (Figure S7). These data indicated that a reduced

amount of galactolipids in chloroplasts and perhaps a smaller size

of chloroplasts due to a decrease in membrane lipid content might

lead to reduced photosynthetic capability of higher plants.

PHD1 influences the homeostasis of carbon assimilation
in leaves

UDP-Gal is the activated form of galactose in biosynthetic

reactions, but a galactose salvage pathway exists in eukaryotic

organisms. To assess expression of genes involved in the Leloir

salvage pathway, the expression levels of three key genes of this

pathway, GalM, GalK, and GalT, were analyzed in both phd1-1 and

wild type. The expression of all three genes was significantly

upregulated in the phd1-1 mutant, suggesting an activation of the

whole salvage pathway (Figure 8A). b-Lactase is involved in the

generation of free b-D-Gal from polysaccharide breakdown, and

Figure 6. UDP-Glc and UDP-Gal levels in isolated chloroplasts
from wild type, phd1-1, and PHD1-complemented transgenic
lines. Intact chloroplasts were isolated from leaves of wild type, phd1-1,
and PHD1-complemented plants by step-wise density gradient
centrifugation, and UDP-sugar levels were determined as described in
Materials and Methods. Values are the mean of three experiments 6
SDs. Asterisks indicate a statistically significant difference from the wild
type (*P,0.05, Student’s t-test).
doi:10.1371/journal.pgen.1002196.g006

Figure 7. Polar lipid composition and fatty acid profiles in
leaves of wild type, phd1-1, and PHD1-complemented plants. (A)
Polar lipid composition in leaves of wild type, phd1-1, and PHD1-
complemented plants grown in paddy fields. Glycerolipids were
quantified by GC/MS of leaf lipids separated by TLC. The bars show
lipid composition in mol% and indicate means 6 SD of three
measurements. PC, phosphatidylcholine; PE, phosphatidylethanol-
amine; PG, phosphatidylglycerol; PI, phosphatidylinositol; SQDG,
sulfoquinovosyldiacylglycerol. (B) Fatty acid composition of MGDG
from wild type, phd1-1, and PHD1-complemented plant leaves. The data
are presented as the average mole percent of fatty acid for the
indicated fatty acids along the x axis. The error bars represent the
standard deviations of three biological replicates. Asterisks indicate a
statistically significant difference from the wild type (*P,0.05, Student’s
t-test).
doi:10.1371/journal.pgen.1002196.g007

Table 1. Pigment contents (mg?g21 fresh weight) and
photosynthetic parameters of wild type, phd1-1, and PHD1-
complemented plants.

Wild type phd1-1 phd1-1+PHD1

Chlorophyll a 2.5060.34 1.8660.36* 2.4860.37

Chlorophyll b 0.9660.13 0.6760.12* 0.9360.18

Chlorophyll a+b 3.4660.42 2.5360.43* 3.4160.52

Chlorophyll a/b 2.6260.37 2.7760.41 2.6660.55

Carotenoids 0.3360.04 0.2860.05 0.3460.07

Fv/Fm 0.8460.01 0.7960.01 0.8360.02

WPSII 0.7260.01 0.5860.02* 0.7060.02

Samples were collected from fully expanded leaves of 4-month-old plants
grown in paddy fields. Values represent means (6 SD) of six to ten independent
determinations.
*Significant difference between mutant and wild type (P,0.05).
doi:10.1371/journal.pgen.1002196.t001

PHD1 Is Involved in Galactolipid Biosynthesis
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UDP-Glc pyrophosphorylase (UGP) catalyzes the formation of

UDP-Glc from Glc-1-P. The expression levels of genes encoding

b-lactase and UGP3 were also upregulated in phd1-1. More

strikingly, the expression levels of OsUGE1 and OsUGE4 encoding

for putative cytoplasmic isoforms of UGE in rice were more than

two-fold higher in phd1-1 than in wild type plants, indicating an

upregulation of de novo UDP-Gal biosynthesis in the cytoplasm.

These results suggested that PHD1 may be responsible for a

majority of the UGE function in chloroplasts, and appears to be

involved in the generation of UDP-Gal from UDP-Glc to supply

building blocks for galactolipid biosynthesis required for proper

chloroplast membrane composition.

Because the phd1-1 mutant exhibited a dramatic decrease of

carbon assimilate levels, we determined whether transcript levels

of several key genes involved in the synthesis, transport, and

cleavage of starch and sucrose were altered in mature leaves of

wild type and phd1-1 plants. Interestingly, while the expressions of

starch biosynthesis genes such as AGPL2, SSI, SSIIIa, GBSS, BE,

and BT1, were suppressed in the phd1-1 mutant (Figure 8B),

expression levels of genes participating in sucrose cleavage, such as

INV1/3 and SuSy1, were all increased (Figure 8C). Meanwhile, the

GPT gene encoding a glucose-6-phosphate/phosphate translocator

was upregulated in phd1-1, implying an enhanced export of

hexose-phosphates from chloroplasts to the cytosol. In addition,

increased expression level of UGP2, a gene involved in UDP-Glc

synthesis, was correlated with increased UDP-Glc accumulation

and a higher UDP-Glc/UDP-Gal ratio in the phd1-1 mutant.

Overexpression of PHD1 increases growth rate and grain
yield

Since a mutation in PHD1 affected photosynthesis and growth

rate, we further investigated whether biomass and grain yield

could be improved by PHD1 overexpression. When grown in

paddy fields, transgenic rice plants overexpressing PHD1 showed a

significant increase in tillering (branching) and photosynthetic rate

(Figure 9A, Table S1) in lines that overexpressed the PHD1

protein (Figure 9B). Compared to non-transgenic control plants,

grain yield per plant of transgenic lines S3, S5, and S8 increased

10.7, 15.5, and 18.3%, respectively (Figure 9C). In addition, the

growth rate of transgenic plants accelerated at the seedling stage

and dry material accumulation was enhanced 12.5% to 22.4% at

the mature stage compared to non-transgenic plants (Figure 9D,

Table S1). These results demonstrated that PHD1 overexpression

in rice is positively correlated with an increase in biomass

production and grain yield.

Discussion

To date all UGE genes coding for UDP-Glc epimerases isolated

from plants are localized to the cytosol, where their substrates

UDP-Glc and UDP-Gal are present at high levels [30]. As a

precursor for the synthesis of the galactolipid MGDG in

chloroplasts, UDP-Gal is widely assumed to be mobilized from

the cytosol, because the UDP-Gal concentration is relatively low

within plastids [28] and MGDG synthase (MGD1) is associated

with the inner envelope membrane [26,27]. However, a labeling

experiment in which radioactively labeled UDP-Gal was applied

to isolated Arabidopsis chloroplasts revealed that radioactivity was

not efficiently incorporated into MGDG [23], raising the question

of how UDP-Gal is transported into the chloroplasts. In this study,

we found that a mutation in PHD1, which encodes a novel rice

plastidial UGE involved in the biosynthesis of chloroplast

galactolipids, lead to disturbed carbon assimilation homeostasis

and impaired photosynthetic efficiency. Our work revealed that

PHD1 codes for an active epimerase that is targeted to

chloroplasts, and, therefore, that the UDP-Gal substrate for

MGDG biosynthesis can be generated in situ in chloroplasts

Figure 8. Expression analysis of key genes involved in UDP-Gal
biosynthesis and carbohydrate allocation in leaves of phd1-1
plants. (A) The expression of genes involved in the UDP-Gal
biosynthesis pathway was upregulated in phd1-1. (B) The expression
of starch biosynthesis genes was downregulated in phd1-1. (C) The
expression of sucrose cleavage genes was upregulated in phd1-1.
Expression values are displayed as the ratio of expression to rice 18S
RNA (mean 6 SE). All assays were carried out with three biological
replicates.
doi:10.1371/journal.pgen.1002196.g008
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(Figure 10). The novel finding that this UGE is chloroplast-

targeted was supported by three independent lines of evidence

(Figure 5). First, PHD1-GFP fusion products were found

exclusively in chloroplasts. Second, Western blot analyses of

fractionated chloroplasts showed that PHD1 was highly enriched

in the stroma fraction of chloroplasts. And third, immunocyto-

chemistry indicated that PHD1 was concentrated inside the

chloroplast stroma, most likely associated with the thylakoid

surface. This striking result provides a well-defined genetic and

biochemical framework to study the novel functional mechanism

of this UGE in plastids, and to evaluate the role of galactolipids in

photosynthetic activity of rice.

Of MGDG synthases that are primarily important for thylakoid

membrane biogenesis, MGD1 is considered to be the major isoform

[24]. In Arabidopsis, two more MGDG synthases, MGD2 and

MGD3, are targeted to the outer chloroplast envelope where

substrates can be recruited from the cytosol [27]. MGDG generated

by them can move from the outer to the inner envelope and to the

thylakoids. Here we show that compared to wild type, the relative

amount of the major galactolipid MGDG was reduced by 19% in

the phd1-1 mutant, whereas that of DGDG was only slightly

decreased by 2.5%. We observed a slight increase in the mol%

amount of the thylakoid lipid phosphatidylglycerol, which may

compensate for a fraction of the galactolipids lost in the phd1-1

mutant. Meanwhile, the relative amount of several extraplastid

phospholipids was found to be slightly but significantly higher in the

phd1-1 mutant, suggesting that compared to extraplastidic mem-

branes, the overall amount of plastid membranes might have

decreased. These results are consistent with the hypothesis that the

amounts of glycolipids and phospholipids are reciprocally controlled

in plants to maintain a proper balance of lipids in the ER and plastid

membrane systems [20,31]. It has been shown previously that

osmotic stress induced variations in membrane fluidity that

correlated with the physical properties of membrane lipids [32].

Due to an overabundance of UDP-Glc observed in chloroplasts and

entire leaves of the phd1-1 mutant, hyperosmotic stress might occur,

and an increased production of 18:3 could affect hyperosmotic stress

tolerance in the mutant chloroplasts. This would be in agreement

Figure 9. Agricultural traits of transgenic rice lines overexpressing PHD1. (A) Phenotypic differences of wild type, phd1-1, and transgenic
line S3 at the grain-filling stage grown in paddy fields. (B) Immunoblot analysis of PHD1 protein expression in wild type, phd1-1, and PHD1
overexpressing transgenic lines (S3, S5, and S8). Tubulin is shown as loading control. Increased accumulation of PHD1 protein was observed in
transgenic lines. (C, D) Grain yield per plant (C) and dry weight of vegetative organs after harvesting (D) were increased in transgenic plants. Values
are means 6 SD from at least 30 plants/line. Asterisks indicate a statistically significant difference from the wild type (*P,0.05, Student’s t-test).
doi:10.1371/journal.pgen.1002196.g009

Figure 10. Proposed model for the role of PHD1 in the
galactolipid biosynthetic pathway for chloroplast membranes.
The substrates of the reaction catalyzed by PHD1 are in bold. AGP, ADP-
glucose pyrophosphorylase; SS and GBSS, starch synthases; UGP, UDP-
Glc pyrophosphorylase; CyUGE, cytosolic UDP-Glucose 4-epimerase;
SPS, sucrose phosphate synthase; SPP, sucrose phosphate phosphatase;
SuSy, sucrose synthase; Glc-1-P, glucose-1-phosphate; Pi, inorganic
phosphate; PPi, pyrophosphate; ATP, adenosine-triphosphate. Interme-
diates linked by a single reaction are represented by an unbroken line.
doi:10.1371/journal.pgen.1002196.g010
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with earlier observations that transgenic enhancement of fatty acid

unsaturation rendered cells and whole plants more tolerant to

sorbitol-induced osmotic stress in tobacco [33].

Most galactolipids are restricted to plastid membranes during

normal growth and development, however, DGDG can also be

found in extraplastidic membranes following phosphate (Pi)

starvation [34,35]. Importantly, x-ray crystallographic analyses of

photosynthetic proteins in cyanobacteria revealed that MGDG is

associated with the core of the reaction centers of both photosystems

I and II (PSI and PSII) [36,37], which suggest that these lipids are

required not only as bulk constituents of photosynthetic membranes,

but also for the photosynthetic reaction itself. Consistent with this,

we found that the effective quantum yield of photochemical energy

conversion in photosystem II (WPSII) was reduced in the phd1-1

mutant. Seedlings lacking MGDG were previously shown to have

disrupted photosynthetic membranes, leading to a complete

impairment of photosynthetic ability and photoautotrophic growth

[22,24]. In agreement with this, a possible reduction of thylakoid

membrane amount and a changed galactolipid to phospholipid

ratio in chloroplast membranes in the phd1-1 mutant might have led

to the dramatic phenotype of retarded growth, reduced photosyn-

thetic capability, and decreased photoassimilate accumulation.

Taken together, this strongly suggests that the stunted growth

phenotype of phd1-1 mutants is due to an insufficient provision or

slower production of membrane building blocks to support

chloroplast proliferation during plant growth, which is also

consistent with the reduced numbers of thylakoid stacks and sizes

of chloroplasts observed in mutant plants.

In plants, starch acts as a depository for reduced carbon produced

in leaves during the day, and as a supply of chemical energy and

anabolic source molecules during the night [38]. Pyrophosphate

(PPi) is produced during the upregulation of UGP3 (Figure 10), and

hydrolyzed by very high pyrophosphatase (PPase) activity in plastids

[39]. Moreover, inorganic phosphate (Pi) released during PPi

hydrolyzation is an inhibitor for key regulatory starch biosynthesis

enzymes such as AGP [40]. In the phd1-1 mutant, expression levels

of starch biosynthesis genes such as AGP, SS, GBSS, and BE, were

significantly downregulated in source leaves, leading to a sharp

decrease of starch content. However, the reduced starch did not

result in increased sucrose levels, because activation of sucrose

cleavage genes SuSy1 and INV1/3 resulted in reduced sucrose and

increased hexose-phosphate and UDP-Glc levels. Therefore,

sucrose as the main transport form of photoassimilate produced in

source organs was not able to export efficiently to the sink organs.

Moreover, a large amount of UDP-Glc catalyzed by SuSy1 or

UGP2 would be converted to UDP-Gal by cytosolic OsUGE1/4

and transported into chloroplast as galactosyl donors of chloroplast

glycolipids to compensate for the loss of PHD1 activity in the phd1-1

mutant. In contrast, PHD1 overexpression in rice, which enhanced

PHD1 activity in chloroplasts (Figure S5), might increase the

relative amount of MGDG and increase the effective quantum yield

of photochemical energy conversion in thylakoid membranes,

resulting in increased photosynthetic efficiency and growth rate,

implicating a key role of PHD1 for the photosynthetic system in rice.

These improvements of both biomass production and grain yield

have significant economic implications in both traditional crop

improvement and bioenergy crop production.

Materials and Methods

Plant material and growth conditions
The rice (Oryza sativa L.) phd1 mutant is in the Nipponbare (ssp

japonica) background. F2 mapping populations were generated

from a cross between the rice phd1 mutant and MH63 (ssp indica).

Rice plants were cultivated in the experimental station of the

Institute of Genetics and Developmental Biology (IGDB) in Beijing

in natural growing seasons. For analysis of diurnal changes of

starch and sugars, rice plants were kept in a growth chamber at

28uC and 70% relative humidity under a photoperiod of 12 h

light/12 h darkness, with a light intensity of 200 mmol quanta

m22 s21.

Map-based cloning
Genomic DNA was isolated from seedlings of the selected plants

with the mutant phenotype. For fine mapping of PHD1, STS markers

were generated based on the polymorphisms between Nipponbare and

MH63. The molecular lesion of phd1-1 was identified by PCR

amplification of the PHD1 genomic region from wild type and phd1-1

mutant plants and comparison of their sequences. The candidate gene

was mapped between the 2 new STS markers S221 (59-AGAGC-

TAGGGGGTAAAAA-39 and 59-GTGCAGAACAGTGGAATG-

39) and S246 (59-AACCCTATCCTTCCTCACCA-39 and 59-

TTGTCCCTCCGCCTGCTTCC-39).

Database search and phylogenetic analysis
PHD1 homologs were detected by BLASTp using the entire

amino acid sequence of PHD1 as a query in the National Center

for Biotechnology Information database (http://www.ncbi.nlm.

nih.gov/BLAST). Multiple alignment of the homologs was

performed by Clustal X version 2.0 with the default parameters

[41] and manually adjusted. For constructing phylogenetic trees,

the neighbor-joining method of the MEGA 4.1 software [42] was

used, and a bootstrap analysis with 1 000 replicates was performed

to test the confidence of topology.

Generation of transgenic rice plants
The BAC clone BAC53 containing the entire PHD1 fragment

was digested with Sac I and Pst I to generate a 7.96 kb genomic

DNA fragment. The DNA fragment was ligated to the Sac I and

Pst I digested pCAMBIA1300 vector (CAMBIA), to generate the

pSCL construct for complementation analysis. The full-length

PHD1 cDNA was PCR amplified using primers 59-GATCC-

GATCCCCTCACCTC-39 and 59- TTCTCTGGCCGAAAC-

CATT-39, and subcloned into the pCAMBIA2300-35S binary

vector, between the cauliflower mosaic virus 35S promoter and

nopaline synthase (nos) terminator, to generate the pSOL

construct for overexpression analysis. Transgenic rice plants were

generated according to Agrobacterium tumefaciens-mediated transfor-

mation methods [43,44]. The transgenic plants were then

transferred to the field at the IGDB experimental station for

normal growth and seed harvesting.

Protein and RNA analyses
PHD1 cDNA was amplified by primer sets 59-TGATGATA-

CAGGGGTCAAGATG-39 and 59-ACTGTCAAGACCAAG-

GAATTCT-39 and cloned into the Xma I and Xho I sites of

pGEX-4T-1 (GE Healthcare Life Sciences) and expressed in E. coli

strain BL21 (DE3). Recombinant PHD1 protein was affinity-

purified through glutathione Sepharose resin (Amersham Phar-

macia Biotech) and used for antibody production [45].

Total RNA was prepared with an RNeasy kit (Qiagen). In the

RNA gel blot analysis, 5 mg of total RNA was electrophoresed on

a 1.2% (w/v) agarose gel and transferred to a nylon membrane,

and mRNA was detected by a digoxigenin labeling system (Roche

Diagnostics). For quantitative RT-PCR, 15 ng of cDNA and

SYBR Green SuperMix (Bio-Rad) were used in 15 mL qRT-PCR

reactions with a CFX96 96-well real-time PCR detection system

PHD1 Is Involved in Galactolipid Biosynthesis
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(Bio-Rad) and CFX96 software to calculate threshold cycle

values, and rice 18S ribosome RNA was used as an internal

control. Oligonucleotide primers are given in Table S2. The

22DDC
T method was adopted to calculate the relative expression

levels for the phd1 and wild type samples, and a two-tailed t test

used to compare the ratios and determine statistical significance

[46].

Histological analysis and mRNA in situ hybridization
Freshly collected rice tissues were fixed in FAA solution (50%

ethanol, 5% acetic acid, 3.8% formaldehyde) at 4uC overnight,

dehydrated with ethanol solution from 50% to 100%, cleaned by a

series of xylene washes from 25% to 100%, and embedded in paraffin

(Paraplast Plus, Sigma-Aldrich) at 54–56uC as described in [47]. 8 to

12 mm sections were cut with a microtome (Leica RM2265), and

mounted on RNase-free glass slides and photographed.

RNA in situ hybridization was performed as described previously

with minor modification [48]. Briefly, the 420-bp region of PHD1

was amplified by gene-specific primers with T7 or SP6 promoters

59-TAATACGACTCACTATAGGGCCCCTTCTCCGTCAACCT-

39 and 59-AACGAAAGAGCCTTCACCA-39 or 59-

CCCCTTCTCCGTCAACCT-39 and 59-ATTTAGGTGACAC-

TATAGAACGAAAGAGCCTTCACCA-39 in front of the reverse

primer (for making anti-sense probe) or forward primer (for

making sense probe). Digoxigenin-labeled RNA probes were

prepared using a DIG Northern Starter Kit (Cat. No. 2039672,

Roche) according to the manufacturer’s instructions. The

hybridization signals were observed using bright field imaging

with a microscope (Olympus BX51) and photographed with a

Micro Color CCD camera (DVC Co. Austin, USA).

Transient expression assay in rice protoplast cells
A binary vector containing GFP fused with full-length PHD1

was constructed as follows. The PCR product amplified with

primers 59-ACCTCCGTCCCTGCTTCCTC-39 and 59-

GGGCTCCCAACCAATCTCA-39 was subcloned into the

CaMV 35S::GFP vector to generate CaMV 35S::PHD1-GFP.

The binary vector was transformed into rice protoplasts using the

polyethylene glycol method [49]. After overnight incubation in the

dark, the protoplasts expressing GFP were imaged by a confocal

laser scanning microscope (LSM510, Zeiss, Germany) using

488 nm excitation and 500–530 nm emission pass-filters. Chloro-

phyll autofluorescence was detected with 570 nm excitation and

640 nm emission pass-filter [50]. Composite figures were prepared

using Zeiss LSM Image Browser software.

Cloning and expression of recombinant PHD1 in yeast
PHD1 and its derivative cDNAs were amplified by PCR using

the primers 59- ATGATACAGGGGTCAAGATGG-39 and 59-

ACTGTCAAGACCAAGGAATTCT -39, and inserted into the

vector pDBLeu (Invitrogen). The Euroscarf S. cerevisiae strain

BY4742 (Mata his3D1 leu2D0 lys2D0 ura3D0 gal10::kanMX4) was

transformed using a lithium acetate procedure and tested on 1%

(w/v) galactose medium (1% (w/v) yeast extract (Duchefa), 2% (w/

v) Bacto-peptone (BD Bio- sciences), 1% (w/v) galactose (Sigma),

2% (w/v) Micro agar (Duchefa)).

Extraction and measurement of carbohydrates
Individual samples (leaves of circa 500 mg fresh weight) were

harvested and frozen rapidly in liquid N2. The frozen samples

were homogenized and extracted with perchloric acid. Glucose,

fructose, sucrose, and starch were measured enzymatically for the

neutralized supernatant (sugars) and the insoluble pellet (starch)

[51]. Determination of UDP-Glc and UDP-Gal were performed

as described [11].

Lipid analysis
Total lipids were extracted from 2-month-old phd1-1, wild type,

and the PHD1-complemented plants as described [52]. For

quantitative analysis, individual lipids were separated by two-

dimensional thin-layer chromatography and used to prepare fatty

acid methyl esters. The methyl esters were quantified by gas-liquid

chromatography as described [53]. A 1 ml sample was applied for

GC-MS (Agilent 7890A GC coupled to 5975C MS) analysis at a

10:1 split ratio. The GC-MS program started with 80uC for 1 min,

then ramped at 8uC/min to 300uC and held for 5 min; injector

and inlet temperatures were set at 250uC and 280uC, respectively.

Separation was performed on a HP-5 MS column

(30 m60.25 mm60.25 mm) with a constant flow of 1.1 ml/min

helium. The MS scan range was from 50 to 500 m/z. The

quantification of fatty acid methyl esters was performed by the

external standard method.

Assay of UGE activity
UGE activity was measured using a NADH-coupled assay

developed by Wilson and Hogness [54] with some minor

modifications. The 1 ml assay mixture consisted of 100 mM glycine

buffer (pH 8.7), 1 mM b-NAD+ (Sigma), and 0.8 mM UDP-Gal

(Sigma). The reaction was started by adding 10 ml of epimerase

(140 mg/ml) in 50 mM Tris?Cl (pH 7.6), 1% (w/v) bovine serum

albumin, 1 mM dithiothreitol, 1 mM EDTA, and 1 mM b-NAD+,

and stopped by incubation for 10 min at 100uC. The UDP-glucose

produced was determined by addition of 0.04 unit of bovine UDP-

glucose dehydrogenase (Calbiochem) and incubation for 10 min at

30uC, and the increase in absorbance due to NADH formation was

then measured at 340 nm. Km values were determined by varying

the UDP-Gal concentration between 0.4 mM and 3.2 mM. The

experiment was conducted in triplicate.

Purification of chloroplasts and chloroplast subfractions
from rice

All isolation procedures were carried out at 4uC. Batches of 50 g

rice leaves were cut to little pieces and homogenized in 250 ml of

isolation buffer (50 mM HEPES/KOH, pH 7.8, 0.33 M sorbitol,

2 mM EDTA, 1 mM MgCl2, 1 mM MnCl2, 0.1 M Na-ascorbate,

0.2% (w/v) bovine serum albumin) using a Waring blender. The

chloroplast suspension was passed through four layers of Miracloth

and centrifuged at 4 000 g for 4 min. The pellet was gently

suspended in the isolation buffer and layered onto a discontinuous

density gradient consisting of 10, 40, and 80% (v/v) Percoll in the

isolation buffer. The gradient was centrifuged at 8 000 g for 10 min.

Intact chloroplasts distributed around the 40/80% Percoll interface

were isolated and reapplied to the Percoll gradient centrifugation.

Chloroplasts were lysed by resuspension to 0.5 mg chlorophyll

ml21 in 10 mM HEPES/KOH (pH 8.0), 5 mM MgCl2, for

20 min on ice, and the lysate was fractionated into envelope,

stroma, and thylakoids by differential centrifugation as described

by Skalitzky et al [55]. All solutions contained a cocktail of

protease inhibitors. To verify recovery and purity of the sucrose

density fractions, several antibodies against specific marker

proteins were used: Tic40 was used as an envelope marker, RbcL

as a stromal marker, and PsbA as a thylakoid membrane marker.

Immunocytochemistry
Immunoelectron microscopy experiments were carried out as

previously described [56]. Briefly, nickel grids carrying ultrathin
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leaf sections prepared from two-week-old wild type seedlings were

sequentially floated in 0.01 M sodium phosphate buffer (PBS,

pH 7.2) containing 5% (w/v) bovine serum albumin (BSA) for

5 min, then for 1 h at 37uC in PBS containing diluted anti-PHD1

antibody. After several washes in PBS, ultrathin sections were

incubated for 1 h at 37uC in PBS containing goat anti-rabbit IgG

antibody conjugated to 10-nm colloidal gold (1:40, Sigma-Aldrich,

St. Louis, MO, USA). After 5 washes with PBS, ultrathin sections

were washed with distilled water, air dried, counterstained with

2% uranyl acetate, and examined with a FEI Tecnai G2 20

transmission electron microscopy at an accelerating voltage of

120 kV. Negative controls were performed using the same

procedure with the exception of substituting the anti-PHD1

antibody with preimmune serum.

Supporting Information

Figure S1 Diurnal changes in hexose concentration of phd1-1

and WT. Mature leaves of individual wild type (N black symbols

with solid lines) and phd1-1 (# empty symbols with broken lines)

plants were harvested and immediately frozen in liquid N2. Each

point is the mean 6 standard deviation from ten replicate samples.

(TIF)

Figure S2 PHD1 transcript levels in wild type, three allelic phd1

mutants, and one overexpression line. The equal abundance of

RNA among samples was confirmed by RT-PCR detection of

ACTIN1 transcripts. phd1-1 to -3, three allelic phd1 mutant lines;

S3-1, PHD1 overexpressing transgenic line.

(TIF)

Figure S3 Protein structure of PHD1 and comparison of the

conserved regions of seventeen PHD1 homolog sequences from

green plants. (A) Schematic representation of the PHD1 protein

structure. Regions of the putative chloroplast transit peptide (cTP)

and the nucleoside-diphosphate-sugar epimerase (WcaG) consen-

sus motif (COG0541) are shown in patterned boxes. (B) Amino

acid sequences were searched using BLASTP and aligned using

CLUSTALW. Identical amino acid residues are boxed, and

similar residues are shaded. The red bar indicates the conserved

motif GXGXXG (NAD+-binding), and catalytic amino acid

residues of the active site are boxed in red. PHD1: Os01g0367100.

(TIF)

Figure S4 Biochemical function and genetic complementation

assay of PHD1. (A) UGE activity assay of PHD1 in vitro.

Lineweaver-Burk plots of purified recombinant PHD1 UGE

activity at 30uC (&) and at 37uC (%). Values are the means 6

SDs. (B) PHD1 can complement a S. cerevisiae gal10 mutant. A

yeast gal10 mutant strain was transformed with plasmids

containing PHD1 cDNAs, and grown on either glucose or

galactose medium.

(TIF)

Figure S5 UGE activity in isolated chloroplasts of wild type,

phd1-1, and PHD1-overexpressing plants. Intact chloroplasts were

isolated from the leaves of wild type, phd1-1, and PHD1-

overexpressing transgenic lines (S3, S5, and S8) by step-wise

density gradient centrifugation, and UGE activity was determined

as described in Materials and Methods. Values are the mean of

three experiments 6 SDs. Asterisks indicate a statistically

significant difference from the wild type (*P,0.05, Student’s t-test).

(TIF)

Figure S6 UDP-Glc and UDP-Gal contents in leaves of wild

type, phd1-1, and PHD1-complemented plants. The values

represent the means 6 SE of six independent repeats.

(TIF)

Figure S7 Starch accumulation and chloroplast ultrastructures

in leaves of wild type (A) and phd1-1 (B) plants. Leaf samples were

harvested at 9 h under a 12-h photoperiod and prepared for

TEM. Bars = 1 mm.

(TIF)

Table S1 Characterization of biomass and photosynthetic rate

of wild type (Nipponbare) and PHD1-overexpressing plants.

(DOC)

Table S2 Oligonucleotides used in this study.

(DOC)
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