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Abstract

Genes are regulated because their expression involves a fitness cost to the organism. The production of proteins by
transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce
fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key metabolic
network, the lactose utilization pathway in Escherichia coli. We measure the growth of several regulatory lac operon mutants
in different environments inducing expression of the lac genes. We find a strikingly nonlinear fitness landscape, which
depends on the production rate and on the activity rate of the lac proteins. A simple fitness model of the lac pathway,
based on elementary biophysical processes, predicts the growth rate of all observed strains. The nonlinearity of fitness is
explained by a feedback loop: production and activity of the lac proteins reduce growth, but growth also affects the density
of these molecules. This nonlinearity has important consequences for molecular function and evolution. It generates a cliff
in the fitness landscape, beyond which populations cannot maintain growth. In viable populations, there is an expression
barrier of the lac genes, which cannot be exceeded in any stationary growth process. Furthermore, the nonlinearity
determines how the fitness of operon mutants depends on the inducer environment. We argue that fitness nonlinearities,
expression barriers, and gene–environment interactions are generic features of fitness landscapes for metabolic pathways,
and we discuss their implications for the evolution of regulation.
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Introduction

Gene regulation is a major factor of molecular evolution, and

changes in gene expression contribute to phenotypic differences

between species [1]. Expression levels are under natural selection,

which results from a balance between costs and benefits for the

organism. For single-cell organisms, fitness benefits include the

ability to digest nutrients in different environments. The cost of

gene expression, on the other hand, depends on the biophysics of

protein production and of protein activity. The cost of protein

production has been studied extensively [2–6]. However, enzy-

matic activities of proteins can also reduce fitness due to energy

consumption or toxic effects of the reaction products. What are the

relative contributions of these two effects? How do they interact?

To address these questions, we have to understand the fitness

effects of an entire metabolic pathway, in which protein

production is coupled to function and growth. This is the subject

of the present paper.

For our analysis, we use the lactose utilization pathway in

Escherichia coli, which is one of the best characterized molecular

pathways [7]. It is coded in a set of genes referred to as the lac

operon. Several studies have addressed fitness effects associated

with expression of the lac genes. In particular, production of the lac

proteins in the absence of lactose has been shown to involve a

fitness cost, that is, to reduce the growth rate of a cell population

[2–4,8,9]. This cost has been ascribed to transcription and

translation of the lac genes [10], because toxic effects of the gene

products have not been observed. Growth is also reduced by the

presence of inducers in the medium, even after the maximum of

expression is reached [8]. This fitness cost is likely to arise from

inducer transport through the cell membrane [11,12]. Further-

more, the lac operon has been used to study the interplay of cost

and benefit in the evolution of gene expression [9]. Taken

together, these observations make the lac operon an ideal system to

study the coupled fitness costs of protein production and activity.

Here we determine a fitness landscape of the lac pathway by a

combined experimental and theoretical approach. We measure

the fitness of different regulatory mutant strains in the presence

and absence of the lac inducer IPTG and of the natural sugar

lactose. LacY proteins act as transporters (so-called permeases) for

IPTG and lactose (i.e., these molecules are substrates of LacY). We

develop a quantitative biophysical growth model to disentangle the

fitness contributions of protein production (i.e., transcription and

translation) and of protein activity (i.e., intra-cellular transport).

The model explains the growth rate of all observed mutants in

different inducer environments. Its key element is a feedback loop

between the lac pathway and fitness: at constant rate of protein

production, faster cell growth leads to stronger dilution of proteins

and lowers the cost of protein activity. In addition, the rate of lac

gene expression itself can depend on growth [13,14]. Similar

growth feedback mechanisms have been argued to play an

important role in bacterial drug resistance [15,16], and to generate

diversity in an isogenic population [13,15,17].

Our analysis suggests that growth feedback is a pervasive feature

of the activity-dependent fitness of metabolic pathways. This

feature has important evolutionary consequences. In particular,

our model predicts a fitness cliff, beyond which populations cannot

maintain viable growth, and an expression barrier, that is, an upper
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bound for protein production and activity in viable populations. As

a consequence, gene regulation in metabolic pathways is likely to

be under stronger selection than the mere cost of protein

production would suggest.

Results

Fitness effects of lac protein production and activity
There are two generic sources of fitness cost for a molecular

pathway: the cost of protein production and the cost of enzymatic

activity [2–6]. In the case of the lac pathway, fitness depends

strongly on the presence of substrates of the lac proteins, even

when these substrates cannot be used as a carbon source [8,11,12].

One such substrate is IPTG (isopropyl-1-thio-b-D-galactoside),

which is transported by LacY and induces lac expression (see

Figure 1). Hence, there are two potential phenotypes affecting the

fitness of the lac operon in an IPTG environment: the rate of lac

protein production and the rate of IPTG transport into the cell.

We measure the fitness effects of lac protein production and

activity in thirteen regulatory mutants in the lac operon of

Escherichia coli. Twelve mutant strains have substitutions in the

lacO1 operator region, which affect expression of the lac genes, and

one strain has a deletion in the gene of the repressor lacI (see

Figure 1 and Text S1 for details). We determine the lac protein

concentration and the fitness of these mutants both with and

without substrates of the lac permease LacY. Specifically, we

compete each mutant strain against a reference strain with deleted

lac genes. This assay defines the fitness cost of the lac pathway as

the difference in growth rate, or difference in Malthusian fitness,

between reference strain and mutant, DF~Fr{F (see Materials

and Methods and Text S1 for details).

Figure 2 summarizes the results of these experiments. They

show that fitness always decreases with increasing concentration of

lac proteins inside the cell, but the form of this dependence

depends on presence or absence of the substrate. Without

substrate, the fitness cost can be fitted to a linear form, which

we associate with lac protein production (blue line). When

substrate is added, the magnitude of the fitness cost strongly

increases and its dependence on concentration becomes nonlinear

(purple line). The additional, nonlinear fitness cost in the presence

of IPTG can be associated with the transport activity of the LacY

proteins. This is shown by a control mutant with deleted lacY gene,

for which we only observe the linear cost of protein production

(red dot). Deviations of individual data points from the fit curves

can be caused by different sources of noise. Competition assays

involve experimental errors, in particular for large fitness

differences between strains. For example, there can be slight

day-to-day differences in medium composition. Furthermore,

some of the strains might have acquired mutations with a fitness

effect outside the lac operator sequence, although we have

controlled for random mutations elsewhere the genome (see Text

S1).

As a further experimental step, we test whether these results

extend to lactose, which is a natural nutrient of E. coli. The sugar

used to support cell growth in the above experiments is glycerol,

which is a poor carbon source. Lactose supports faster growth and

is known to give an advantage to cells which are able to metabolize

it. With 1 mM of lactose, the wild type has a fitness benefit over the

reference strain, which amounts to {DF~0:34+0:04 (mean of 4

replicates + standard error). To assess whether lactose metabo-

lism also involves a cost, we construct a mutant with deleted lacZ

and lacI genes. This mutant cannot use lactose and expresses lacY

constitutively. In the presence of lactose, it has a fitness cost

DF~0:22+0:01 (mean of 12 replicates + standard error) against

the reference strain, which indicates that lactose and IPTG cause a

similar decrease in fitness in the presence of the lac permease (see

Materials and Methods for details).

We conclude that both the rate of protein production and the

rate of protein activity (intra-cellular transport by LacY) are

phenotypes that affect the fitness cost of the lac pathway. But what

is the cause of the fitness nonlinearity in the presence of substrates,

and what are its biological consequences? To address these

Figure 1. Schematic representation of the lac pathway. The lac
operon is composed of three genes controlled by the same promoter:
lac Z, lac Y, and lac A. The lac pathway also involves the constitutively
expressed repressor LacI. It represses the transcription from the lac
promoter by attaching to the operator sequence lacO1. Inducers, such
as IPTG, deactivate the repressor LacI and thus stimulate the synthesis
of the gene products LacZ, LacY, and LacA. The rate of production of
the three lac proteins is denoted by a and it depends on the sequence
of lac O1, on the presence of inducer inside the cell, and on the growth
rate. All three lac genes are transcribed with the same rate, hence LacZ
can be used as a reporter for the whole operon. LacY transports
molecules such as IPTG inside the cell with a rate c, which depends on
the concentration of these molecules. One proton Hz is transported
with each substrate molecule [7]. Growth (measured by the Malthusian
fitness F ) dilutes the internal molecules, thus lowering their concen-
trations. The strains used in this study differ by the lacO1 sequence and
are grown in various IPTG concentrations.
doi:10.1371/journal.pgen.1002160.g001

Author Summary

The levels of protein produced by an organism are likely to
change its fitness, potentially driving the evolution of
genetic regulation. Importantly, protein expression gener-
ates costs as well as benefits. Here, we use a model genetic
system, the lac operon of Escherichia coli, to investigate
different sources of fitness costs. We find that fitness
depends not only on the production rate of proteins but
also on their enzymatic activity. A simple quantitative
model, which is based on the biophysics of protein
production and activity, accurately reproduces the exper-
imental results and provides testable predictions. The
model describes a feedback cycle between a molecular
pathway and the growth rate of cells: pathway activity
impedes growth, but growth itself affects the pathway.
This feedback can generate dramatic effects, such as gene
expression barriers, fitness cliffs, and population extinc-
tions, which can be triggered by small environmental or
genetic changes. Our results disentangle the complex
interplay of protein production and activity, and they show
how these processes shape the evolution of simple
organisms.

Nonlinear Fitness Landscape of a Molecular Pathway
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questions, we now describe our experiments in terms of a simple

biophysical model.

Fitness model
We use a minimal model of gene expression and inducer

transport to disentangle the fitness effects of protein production

and activity in a quantitative way. The underlying intra-cellular

processes involve transcription and translation, uptake of substrate

by active transport, and dilution by cell division. Given the

complexity of these processes and their effects on cell growth, our

model does not aim at a complete description. However, the

model does account for a large part of the fitness variation between

strains and between cellular growth conditions. At the same time,

it contains only few phenotypes and few parameters, which can be

inferred from our fitness measurements.

Within the model, the cost of lac protein production is

proportional the production rate a, and we infer this rate from

our measurements of fitness and LacZ concentration (see Figure 1

and Materials and Methods). The cost of LacY activity has two

different potential contributions: the energy consumption of the

transport process (direct transport costs) and growth effects of the

molecules transported inside the cell (toxicity costs). Direct

transport costs can arise from futile transport cycles: LacY

transports one proton with every IPTG molecule, and ATP is

consumed to pump the excess protons out of the cell. These costs

are proportional to the total LacY pumping rate inside the cell, C.

Toxicity costs are likely to arise from an excess concentration of

the transported protons, i.e., a reduction of the intra-cellular pH

value [11,12]. The toxicity of IPTG itself appears to be negligible

(see Text S1 and [12]). Toxicity costs are proportional to the

steady-state concentration of the toxic molecules, which depends

on their uptake rate, the rate of dilution by cell divisions, and the

cell volume V [18]. The excess concentration of protons is, thus,

proportional to C=FV . Furthermore, the steady-state cell volume

itself depends on the growth rate, V~V (F) [13].

The combined fitness cost of protein production and activity in

the lac pathway takes the form

Fr{F~aazbCzc
C

FV (F )
ð1Þ

in terms of the pathway phenotypes a and C. Here, Fr denotes the

fitness of the reference strain with deleted lac genes (for which

a~C~0). Our model contains a feedback loop: fitness depends on

the rates a and C, which in turn depend on fitness. This feedback

between pathway phenotypes and fitness is illustrated in Figure 3.

It has an important consequence: although the cost contributions

in Equation 1 are taken to be additive at any given value of F , the

resulting dependence of fitness on the pathway phenotypes,

F (a,C), becomes nonlinear.

By calibrating this model to our experimental data, we can infer

the amplitudes a, b, and c of the different cost factors. Bayesian

analysis shows that there are significant fitness contributions of

protein production and steady-state concentration (with maxi-

mum-likelihood parameter values a~0:21, b&0, c~0:17), but

the data are also compatible with a larger direct cost of transport

(bw0) (see Materials and Methods and Text S1). As shown in

Figure 2, the maximum-likelihood model provides a good fit to the

data: the fitness feedback loop quantitatively explains the cost

nonlinearity observed in our experiments.

We use Equation 1 to derive two representations of a fitness

landscape for the lac pathway, which highlight different biological

implications of its form. First, we solve this equation to display the

dependence of fitness on the pathway phenotypes, F~F (a,C), as

shown in Figure 4. Second, we display the dependence of fitness

on the external IPTG concentration, C, and on two genotype

summary variables, which depend only on lac O1 sequence. As

genotype variables, we use the maximal rate of lac protein

production at a fixed growth rate of one cell division per hour, a0,

and the ratio of repressed to unrepressed protein production rates,

r [19]. The resulting function F (a0,r,C), which is shown in

Figure 5, can be called a genotype-environment-fitness map. We

note that the change from the phenotype variables a,C to the

genotype-environment variables a0,r,C depends itself on fitness.

This dependence has two reasons: (i) The LacY pumping rate

depends on the production rate, the pumping rate per LacY

molecule c, and fitness, C~ac=F , because LacY molecules are

diluted by cell divisions just like the transported molecules. This

generic dependence reinforces the basic growth feedback loop by

dilution, which also enters Equation 1. (ii) For fixed genotype and

environment, the production rate itself can depend on fitness,

a~a(a0,r,C,F ). This growth effect on gene expression generates

an additional feedback between the lac pathway and fitness, which

is expected under several growth conditions [13,14]. Including this

feedback in our model significantly improves the agreement

between data and theory (see Materials and Methods and Text S1

for details). The fitness landscapes of Figure 4 and Figure 5 are

obtained from our model using maximum-likelihood parameters,

but their shape depends only on the presence of a fitness

nonlinearity (cw0). We now discuss their form and their biological

implications in more detail.

Figure 2. Fitness of lac regulatory mutants in different
environments. Measured fitness cost of each mutant strain, plotted
against LacZ concentration (normalized to the fully induced wild-type
value). Measurements are obtained in minimal medium with 0.1%
glycerol in the absence of IPTG (blue dots) and in the same medium
with 1 mM IPTG (mauve squares). Fitness is measured by competition
against a reference strain which has a deletion of the whole lac locus
and of lac I (DlacIZYA). The fitness cost DF of a given strain is defined
as the reduction in growth rate (Malthusian fitness) compared to the
reference strain (see Materials and Methods for details). In presence of
1 mM IPTG, a control strain with deleted lac Y gene (DlacY) has an
expression level comparable to the wild type, but a fitness close to that
of constitutive mutants in absence of IPTG (red dot). All points show the
average of 12 replicates for fitness and at least 3 replicates for protein
concentration, with error bars giving the standard error. Lines show
model predictions (the dashed line represents an unstable solution, see
main text).
doi:10.1371/journal.pgen.1002160.g002

Nonlinear Fitness Landscape of a Molecular Pathway
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Phenotype-fitness map
The phenotype-fitness landscape of the lac pathway resulting

from our model is shown in Figure 4, together with fitness

measurements of different lac O1 operator mutants in different

inducer environments. The experimental data are plotted as a

function of the pathway phenotypes a and C inferred from our

model; for each mutant, the dependence of these phenotypes on

the IPTG concentration is indicated by a red line. Data and model

Figure 3. From genotype and environment to pathway phenotypes and fitness. Environment and genotype determine the function of the
lac pathway, which is described by the two phenotypes of protein production and protein (transport) activity. These phenotypes are coupled by a
pathway-specific positive feedback loop (blue circle). The pathway itself is coupled to growth (fitness) by a generic positive feedback loop: protein
production and protein activity are fitness costs, and cell growth reduces protein concentration and activity by dilution (red circle). In addition,
growth can affect the rate of gene expression [13] (dashed arrow). These feedback loops generate strong nonlinearities in the phenotype-fitness map
and the genotype-environment-fitness map; see Figure 4 and Figure 5.
doi:10.1371/journal.pgen.1002160.g003

Figure 4. Phenotype-fitness map. The fitness cost DF of the lac pathway is shown as a function of the protein production rate a and the
transport rate C. The fitness landscape obtained from our model (shaded surface) is strongly nonlinear and has two branches. The stable part of the
landscape (solid shading) ends at a fitness cliff (solid blue line), beyond which populations cannot maintain growth. The remaining part of the lower
fitness branch is unstable (striped shading). Protein expression and activity of viable populations are bounded by a barrier (dotted blue line). Model
predictions of pathway phenotypes and fitness for individual strains under varying inducer concentrations are shown as a family of red lines (light
red: wild type, dark red: operator mutant strains). Experimental fitness values are shown as dots (the offset from the model surface is marked by gray
lines).
doi:10.1371/journal.pgen.1002160.g004

Nonlinear Fitness Landscape of a Molecular Pathway
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consistently show that protein production and activity of the lac

pathway affect fitness in a highly nonlinear way. Our model

explains the nonlinearity in terms of the growth feedback

mechanism contained in Equation 1.

This form of the phenotype-fitness landscape has two important

aspects. First, the nonlinearity of fitness translates into epistatic

interactions between the pathway phenotypes: the effect of a change

in the production rate a, which is proportional to the slope LF=La,

depends on the transport rate C, and vice versa. Second, the fitness

landscape is not univalued: for some values of a and C, there are two

possible fitness values, for others, there is none. Phenotype values in

the no-solution regime cannot be attained by a cell population in

steady growth. This regime is bounded by a dotted line in the (a,C)
plane, which marks an expression barrier for the lac genes. The

barrier occurs at a finite growth rate F~Fr{DF (in contrast to the

model of ref. [9]). Double-valued fitness solutions and the existence

of an expression barrier for given phenotype values are a direct

consequence of the growth feedback loop in Equation 1. The

stability analysis described below shows that only the full-shaded

part of the landscape describes viable cell populations in stationary

growth, whereas the striped part is unstable. Hence, for parameter

values between the dotted and the solid lines in the (a,C) plane,

populations can reach two different steady-state growth rates with

the same lac pathway phenotypes.

Genotype–environment interactions
We now turn to the dependence of fitness on the lac O1

operator sequence and on the external inducer concentration C,

which are the quantities we manipulate in our experiments. To

display the sequence-dependence, we use the genotype summary

variables a0 (maximal rate of lac protein production at a fixed

growth rate of one cell division per hour) and r (ratio of repressed

to unrepressed protein production rates). These variables reflect

the double role of the operator sequence: it acts as a binding site

for the repressor LacI, but it also affects other processes that lead

to changes in protein production [20]. Figure 5 shows the fitness

cost as a function of the maximal production rate and the IPTG

concentration, DF (a0,C). The ratio r is kept fixed to its wild type

value; the figure shows fitness data for the corresponding subset of

strains (see Figure S1 and Figure S2 for the full dependence of DF
on a0, r and C). Again, cell populations in stationary growth

cannot exist for some genotype-environment parameters; this

regime is bounded by a blue line in the (a0,C) plane.

The fitness of different mutants as a function of the inducer

concentration is again shown as a family of lines. The nonlinearity

in the landscape indicates that the inducer environment affects the

selective effect of regulatory mutations: higher IPTG concentra-

tions lead to increased fitness differences between mutants. This

interaction between genotype and the environment is due to an

increase in the pumping rate with increasing IPTG, to the

coupling of uptake rate and production rate in the term C, and to

the growth feedback through dilution. Figure S2 further illustrates

this interaction. Genotype-environment interactions in the lac

operon have been observed previously [21]. Our model shows how

such interactions emerge from the basic architecture of metabolic

pathways.

Figure 5. Genotype-environment-fitness map. The fitness cost DF of the lac pathway is shown as a function of the operator genotype
summary variable a0 (maximum rate of protein production at a growth of 1 cell division/hr, see text) and the external inducer concentration C. The
model fitness landscape is again strongly nonlinear: it has a stable upper branch (solid shading) and an unstable lower branch (striped shading)
separated by a fitness cliff (blue line), similar to the phenotype-fitness map of Figure 4. Model predictions for individual strains under varying inducer
concentrations are shown as a family of red lines (light red: wild type; dark red: operator mutant strains with r equal to wild type value, see text).
Experimental fitness values are shown as dots (the offset from the model surface is marked by gray lines).
doi:10.1371/journal.pgen.1002160.g005

Nonlinear Fitness Landscape of a Molecular Pathway
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Nonlinearities generate extinction thresholds
The fitness landscapes of Figure 4 and Figure 5 have a common

feature: over a wide range of parameters, there are two possible

fitness values DF . This double-valued fitness landscape is

partitioned into a stable part (full-shaded) and an unstable part

(striped); see Text S1, Figure S3, and Figure S4. The stable part of

the landscape describes stationary growth of viable populations;

i.e., cells with growth rates close to a point on this surface reach a

steady state given by a point on the surface. A large part of the

lower surface DF2 is unstable, i.e., cells with fitness cost

FvFr{DF2 are unable to dilute their proteins and transported

molecules fast enough to maintain stable growth. These cells will

further decline in fitness, whereas cells with FwFr{DF2 will

increase fitness up to the stable value DF1. The stable and the

unstable part of the fitness landscape are separated by a fitness

cliff, which is shown as a blue line in Figure 4 and 5. The cliff

marks an extinction threshold: If a cell population is driven beyond

this cliff by mutations or environment changes, it suffers a sudden

drop in fitness and cannot maintain a finite growth rate.

Existence and position of the fitness cliff depend on the amount

of inducer present (see Figure 2, Figure 5, and Figure S2). For

IPTG concentrations used in our and other experiments, the cliff is

far from the wild type (Figure S2B). We note, however, that lactose

is often used in higher concentrations, and lack of growth due to

the presence of lactose (lactose killing) has indeed been observed

[22].

Discussion

We have shown that in the presence of an inducer, the fitness

cost of the lac pathway arises not only from protein production, but

also from transport activity of the permease LacY. The cost is

governed by a feedback loop, which is the result of two repressive

interactions: protein activity results in reduced growth, and growth

dilutes proteins as well as transported molecules (see Figure 3). We

note that our feedback mechanism does not rely on a limitation of

cellular resources to generate a nonlinear relation between lac gene

expression and growth (in contrast to the model of ref. [9]). This

feedback produces a strongly nonlinear dependence of fitness on

pathway phenotypes or on genotype and environment, as shown

in the fitness landscapes of Figure 4 and Figure 5. Both landscapes

contain a fitness cliff, which is an extinction threshold for cell

populations. The nonlinearity of fitness is likely to persist for any

substrate of the permease LacY and sets an upper bound for its

rates of expression and activity. Thus, changes in lac permease

activity or expression can have strong impacts on fitness. This is

consistent with the observation that lacY is under particularly

strong selection [23], as reflected notably by its low number of

synonymous single-nucleotide polymorphisms [24].

The nonlinearity of fitness and its consequences are expected to

hold in the presence of lactose. If the benefit conferred by lactose

(or other sugars) also depends on its internal concentration, we

expect an effect of diminishing return: the faster a cell grows, the

more it will dilute lactose, which leads to a sublinear increase of

fitness with lactose concentration. Hence, combining costs and

benefits of the lac proteins will lead to more complex fitness

landscapes; their detailed dependence on pathway phenotypes will

be addressed in a future study. Importantly, the full landscapes are

expected to have a fitness cliff similar to the cost landscapes

derived in this paper. This might explain why induced cells grown

in a chemostat die after exposure to high concentrations of lactose,

a phenomenon known as lactose killing [22]. Moreover, many

other metabolic pathways in microorganisms contain a membrane

pump or transporter accumulating substrates inside the cell, which

often uses the proton motive force as an energy source. Our results

are expected to apply to these pathways as well. In particular, we

note the similarity of our fitness landscapes and those of the

glucose utilization pathway in yeast [25] (see Figure 5 and Figure

S2). Other protein activities such as hydrolysis of substrates can

produce the same type of feedback, because they also depend on

internal concentrations of molecules.

The shape of the fitness landscape described here has various

implications for the genomic evolution of the lac pathway. Our

fitness model of protein production and activity contains two types

of epistasis on the operator lac O1. Within the operator, the fitness

reduction caused by two mutations that increase expression is

larger than the sum of the fitness costs of either one (see Figure 5).

Furthermore, the selection pressure on expression depends on the

protein activity rate and, hence, on the sequence of the

downstream gene lac Y. The total pumping rate of the cell also

depends on the concentration of LacY substrates in the

environment, which generates fitness interactions between the

operator genotype and the inducer environment. In a broader

context, the costs of gene expression due to protein activity and

due to protein production affect the evolution of regulatory

systems in a different way. Taking into account only protein

synthesis, we expect the length of genes to be the main

determinant of the fitness cost of gene expression. Including

protein activity, however, the selective pressure against expression

of a gene can depend primarily on the coding sequence of

functional domains and on the environment. For the lac pathway,

the cost contributions of protein production and of protein activity

are of similar magnitude, and both effects contribute to selection

on regulatory sequences.

Generalizing the results of this study, we expect the full

landscape of a metabolic network to be filled with cliffs and valleys,

whose importance depends on which pathways are more active in

a given environment. In addition, a metabolic pathway with

growth feedback generates ubiquitous epistasis. For example, any

mutation under selection has fitness interactions with mutations in

the lac operon: In the presence of IPTG, deleterious (beneficial)

mutations outside the lac pathway affect the protein production

rate a and the transport rate C, and hence increase (reduce) the

fitness cost of lac activity-enhancing mutations. Thus, higher-

dimensional fitness landscapes including more and more metabolic

phenotypes are expected to be increasingly rugged.

Previous experiments have produced fitness landscapes as a

function of genotype (see for example [26,27]). This kind of fitness

landscapes omits the intermediate level of phenotypes, which

describes how genotype changes affect biophysical functions.

Here, we record fitness as a function of well-defined phenotypes of

a metabolic pathway. These can be connected to a biophysical

model, which describes the dependence of fitness on the operator

sequence and on the inducer concentration. Phenotype- and

model-based fitness landscapes are predictive: Once the model

constants are fixed by one set of measurements, the model predicts

the outcome of further experiments with different input param-

eters. In this study, the most striking model prediction is the

extinction of populations beyond a fitness cliff.

Our fitness landscape also differs from previous phenotype-

fitness maps, perhaps the most popular of which is Fisher’s

geometric model [28]. Fitting this model to fitness data is a method

to infer distributions of fitness effects of mutations and of epistasic

effects between mutations [29,30]. Fisher’s geometric model

contains an a priori arbitrary number of unknown molecular

phenotypes. In contrast, our model contains a small number of

known phenotypes associated to a specific pathway, which are

shown to capture salient features of fitness variation between

Nonlinear Fitness Landscape of a Molecular Pathway
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populations (clearly, this does not rule out further phenotypes of

this pathway affecting fitness). In the classical geometric model, the

fitness landscape is assumed to be smooth, and different

phenotypes to contribute additively to fitness. Our fitness

landscape contradicts both of these assumptions: there is strong

epistasis and ruggedness. These features have been extensively

analyzed for genotype-fitness maps (a well-known example is the

NK model [31]), but the dependence of fitness on quantitative

phenotypes is generally assumed to be smoother. Our study shows

that strong epistasis and ruggedness can persist in phenotype-

fitness landscapes. It calls for new statistical models of such

landscapes, which address their broad consequences for speed and

constraints of molecular evolution. An interesting example is a

recent extension of the geometric model, which contains epistasis

and a fitness cliff [32].

In summary, our measurements and modeling show that the lac

pathway of E. coli is governed by a strongly nonlinear fitness

landscape depending on phenotypes of protein production and

activity. These phenotypes, in turn, depend on the lac operon

genotype and on environmental parameters in a coupled way.

Fitness nonlinearities and genotype-environment interactions are

not specific to the system studied here, but are likely to be general

features of metabolic pathways. Thus, the fitness landscape of a

metabolic network is much more than a simple superposition of

the cost of protein production and the benefit of protein activity. It

describes the entire network as a unit of natural selection. Such

system-level fitness landscapes emerge already at simplest level of

cell growth and metabolism.

Materials and Methods

Strain construction
The background of all strains used in this study is Escherichia coli

BW30270 (K12 MG1655 rphz). The lacO1 mutant strains

(summarized in Table S1 and Table S2) are constructed as

described in [33]. First, the complete lac promoter is deleted and

replaced with the chloramphenicol resistance cassette from

plasmid pKD3 (see Table S3 for a list of plasmids used in this

study). This yields strain S4146 which is CmR, AmpS and lac{.

The full lac promoter and 59UTR of wild-type Escherichia coli are

amplified and cloned (see Table S4 for a list of oligonucleotides

used in this study). Specific lac O1 mutations are inserted using

PCR mediated mutagenesis [34], and the mutant sequences are

cloned in a high-copy-number plasmid (derived from pUC12).

The same gene replacement method [33] is then used to replace

the chloramphenicol resistance cassette in strain S4146 with the

chosen lac promoter and O1 operator. The strains produced in this

way are all CmS, AmpS and lacz. We noticed that these strains

have a general lower fitness than strain BW30270 that cannot be

explained by the inserted mutations (see Figure S5) so we use

T4GT7 mediated transduction [35] to transfer the lac mutations

back to the parent background (BW30270). First, the resistance

cassette from strain S4146 is transduced to BW30270, producing

strain T218. Then, the mutated lac operon is transduced from

each lacO1 mutant to T218. The lac promoter and O1 operator

are then sequenced to confirm the correct insertion of the lac

operator allele. As a control for the transduction, a wild type

construct is obtained in the same way (T273). It has the same

fitness as BW30270. The reference strain for the competition

(S4085{DlacIZYA), the lac permease and the lac repressor

mutants (T407{DlacY and T523{DlacI) are constructed as

described in [33]. Strain DlacIDlacZ is constructed by first

deleting lac Z following [36] and then deleting lac I following [33].

Media and growth conditions
Unless stated otherwise, all measurements are made in M9

minimal medium with glycerol (0.1% v/v) as carbon source. To

distinguish strains in competition, tetrazolium lactose (TL)

medium (1% bacto-tryptone, 0.1% yeast extract, 0.5% NaCl,

1% lactose, 0.005% tetrazolium chloride and 1.5% agar) is used.

Lacz colonies are white and Lac{ colonies are red in TL plates

[37]. DlacY is also white on TL plates. To distinguish this strain

from DlacIZYA and DlacIDlacZ, LB-XGal-IPTG plates are used

(1% bacto-tryptone, 0.5% yeast extract, 0.5% NaCl, 1 mM

isopropyl-1-thio-b-D-galactoside (IPTG), 40 mg=ml 5-Bromo-4-

chloro-3-indolyl-b-D-galactoside (X-Gal) and 1.5% agar).

Protein expression
Protein concentration is estimated using a b-galactosidase

(LacZ) activity assay [38]. Since all our mutants have the same

coding sequence for this protein, changes in activity reflect

changes in protein concentration inside the cell. The LacZ assays

are performed as described in [38]. Overnight cultures are diluted

in fresh medium to an optical density at 600 nm (OD600) of 0.05

and harvested after growth in the indicated media at 370C to an

OD600 of 0.3. IPTG was added to the overnight culture and to

the test cultures in the concentrations mentioned in the text. The

enzyme activities are determined from at least three independent

cultures. Figure S6 shows the measured LacZ levels for all strains

used in this study, in absence and presence of IPTG.

Fitness measurements
Fitness is measured in head to head competition as described in

[39]. Briefly, frozen cultures (stored at {800C) are streaked on a

Luria broth agar plate and grown over night at 370C. An isolated

colony is randomly selected and grown overnight in 3 ml of the

same medium used in the competition, in particular with the same

amount of IPTG. Both the reference strain (DlacIZYA, unless

stated otherwise) and assay strains are treated in this way

separately. The strains are then mixed and diluted in saline

solution (10 mM MgSO4 and 0.85% NaCl), such that about

50,000 colony forming units (CFUs) of each strain are used to start

the competition. The mixed dilutions are also used to count the

starting titer. Cultures are grown for 24 h on 96 deep-well plates in

1 ml of medium, shaken at 150 RPM, reaching saturation (*108

CFUs). They are then diluted and plated on TL or LB-XGal-

IPTG medium.

We measure the Malthusian fitness F , i.e., the growth rate, of

each strain in units of the growth rate of the reference strain (such

that Fr~1). The fitness value of a mutant is inferred from a

competition experiment with the reference strain,

F~
ln (Nf =Ni)

ln (Nf ,r=Ni,r)
,

where Nf , Ni are the final and initial number of mutant CFUs

after and before the competition, and Nf ,r,Ni,r are the corre-

sponding numbers for the reference strain. The growth rate of the

reference strain is not affected by IPTG (see Figure S7). Thus, the

doubling time of the reference strain is a fixed time unit and fitness

measurements across environments are directly comparable. We

report the fitness cost of a mutant compared to the reference

strain, DF~Fr{F (which is proportional to its selection

coefficient measured in units of doubling time, DF~{s= ln 2
[40]).

The DlacIDlacZ strain has the same phenotype as the reference

strain (both are red on TL plates and white on LB-XGal-IPTG
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plates), so the two cannot be competed directly. Instead, we

measure the fitness of this strain by competing it with DlacY.

DlacY has the same fitness as the reference strain in competition in

glycerol minimal medium with 1 mM lactose (DF~0:00+0:02).

Dependence of pathway phenotypes on genotype and
environment

As explained in the Results section, the protein production rate

a and the transport rate C can be expressed in terms of genotypic

and environmental parameters, and fitness. This map relates the

fitness landscapes of Figure 4 and Figure 5 and can be obtained as

follows.

The first phenotype of the lac pathway, the protein production

rate a, has two main components: one is independent of the lac

repressor (LacI) and the other depends on the probability of the

repressor to bind the operator. The independent component is

given by the direct effect of the operator sequence (quantified by

the first genetic component a0) and by the growth rate F (through

a function fG specified below). The LacI-dependent component of

a depends on the affinity of the operator sequence (measured by

the second genetic component r) and on the concentration of

inducer C in the environment. The dependence on C has the form

of a Hill function fI (C)~Cn=(Kn
z zCn) with parameters Kz (the

half saturation constant, taken to be 20mM) and n (the Hill

coefficient, taken to be 4:5) [18]. The protein production rate is

then a(a0,r,C,F )~a0fG(F )½rz(1{r)fI (C)�. We now derive the

form of fG, and estimate a0 and r.

As mentioned before, fG is the dependence of the production

rate on the growth rate F . Following [13,14], fG is expressed

relative to the fitness of a strain growing at the rate of 1 doubling/

hour, F0, such that fG(F0)~1. Note that the reference strain has a

growth rate of 0:008 min{1, so F0~1:5. The parameter fG reflects

the following observation: When the growth rate changes due to

nutrient quality, there is a linear inverse correlation between

protein concentration (Cz) and growth rate [14],

Cz(C,F )~Cz(C,F0)(1=3)½4{(F=F0)� (see Figure S8A). This

relationship can be extended to the protein production rate a,

because Cz(C,F )~a(a0,r,C,F )=V (F )F at steady state. We

choose a linear dependence of the cell volume V on the fitness,

V (F )~F=F0; see Text S1 and Figure S8B. Using the depen-

dences inferred above and assuming r to be independent of F , the

dependence of protein production on growth rate can be

estimated: fG(F )~(1=3)½4{(F=F0)�(F=F0)V (F ). We have veri-

fied that including fG significantly improves the agreement

between model and data (see Text S1), although it is not obvious

a priori that a correlation between Cz and growth rate is relevant in

the context of our experiments.

The two genetic components, a0 (the maximal protein

production rate at fixed growth rate) and r (the ratio of repressed

to unrepressed protein production rates), depend only on the

genotype and were calculated for each strain separately. a0 can be

derived from the protein concentration and fitness measured at a

concentration C1~1 mM IPTG, where the LacI proteins cannot

bind DNA (fI (C1)~1). As explained above, the cell volume V , the

growth rate F , and the effects of growth on expression fG affect Cz,

such that a0~Cz(C1,F1)V (F1)F1½1=fG(F1)�, where F1 is the

measured growth rate at 1 mM of IPTG. Similarly, r can be

estimated using Cz and F measured at 0 mM of IPTG:

ra0~Cz(0,F1)V (F1)F1½1=fG(F1)�, where F1 is fitness in the

absence of IPTG. Both a0 and r are independent of the model in

Equation 1 and of the growth-dependence of the volume. Inferred

values of a0 and r are shown in Figure S9 and Table S1. The

parameter r is related to the ‘‘repression level’’ R defined by

Müller-Hill and co-workers as the ratio of LacZ activity between

strains differing only by the presence/absence of the lac repressor,

R~Cz(lacI{)=Cz(lacIz) [19]. Neglecting the growth difference

between both strains, these quantities are inversely related,

R&1=r.

The second phenotype of the lac pathway, the total transport

rate C, is the product of the number of LacY molecules in the cell

and the transport rate per LacY molecule, C~Nyc. The number

Ny is equal to a=F , with a the protein production rate and F the

growth rate, because LacY molecules are diluted by cell divisions.

Note that a is measured for LacZ, but all proteins of the operon

are produced proportionally. The ratio of LacY molecules per

LacZ molecule, which is close to 3 [10], and other numerical

constants are absorbed in the coefficients a, b and c. The transport

rate c depends on the external IPTG concentration, C, and on the

half-saturation constant for inducer uptake, Kp~420mM [41]. An

expression for c can be derived from the known functioning of the

permease [42], with efflux neglected (see Text S1). We obtain

c(C)~(C=C1)½(KpzC1)=(KpzC)�, normalizing c to C1~1 mM
of IPTG.

The uncertainties on a0 and r are obtained by standard error

propagation, assuming independent experimental errors on F and

Cz (see Text S1). A possible error in the IPTG concentration C is

not considered, because it is expected to be small.

The coefficients a, b and c in Equation 1 are obtained by

likelihood analysis of our model and the experimental data. This

analysis is based on the dependence F (a0,r,C), where a0 and r
are inferred for each mutant as described above. The fitting

procedure and score-based model comparisons are detailed in

Text S1 (see also Figure S10 and Figure S11).

Supporting Information

Figure S1 Fitness cost DF as a function of the IPTG

concentration for five strains: (A) the wild type, (B) T274, (C)

T320, (D) T523{DlacI, (E) T275. The full lines are model

predictions; dots show the experimental data (the error bars

represent the standard error of the mean on 4 replicates, on 12

replicates for data at 0 and 1 mM IPTG). See Table S1 for a list of

strains and the corresponding values of a0 and r.

(TIF)

Figure S2 Fitness cost DF as a function of a0 and r, at fixed

external IPTG concentration (A) C~0, (B) C~30mM and (C)

C~1000 mM; as a function of a0 and C, at fixed (D) r~0, (E)

r~0:32 and (F) r~1. The dots are the experimental data, the grey

vertical bars show the distance between data and model prediction.

Strains shown: (A) and (C) all operator mutants, wild type,

T523{DlacI (D) wild type, T319, T320, T378, T379; (B) wild

type, T274, T275, T320, T523{DlacI; (E) T323; (F) T275,

T523{DlacI. The light-green surfaces show the stable solutions,

the dark gray the unstable one. The blue line marks their boundary:

when a0 or the external IPTG concentration is increased beyond this

‘‘cliff’’, the population falls on the no-growth solution, and thus goes

to extinction. Panel D is identical to Figure 5 of the main text.

(TIF)

Figure S3 Dynamical analysis. (A) H(F) for the wild type at

different IPTG concentrations: 0.1 mM (red), 1 mM (blue) and

100 mM (green). The steady-state solutions F~H(F ) lie at the

intersection of H with the first bisecting line (black line); if it

crosses it from above, the solution is stable (full dot), otherwise it is

unstable (empty dot). (B) Time evolution of the growth rate of the

wild type in 1 mM IPTG obtained by a discrete process (Equation

8 of Text S1, with a time step ln 2=Fn between step nz1 and n;

dots) and a continuous-time description (Equation 10 of Text S1;
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lines), for various initial growth rates. The generation time in

minutes is (1=mr)(ln 2=Fn), with mr the growth rate of the reference

strain measured to be 0:008 min{1. The full black line shows the

stable steady state, the dashed line the unstable one. See Text S1

for definitions.

(TIF)

Figure S4 Fitness cost DF as a function (A) of the protein

synthesis rate a, (B) of the protein concentration Cz. The dots show

the measured fitness cost for different strains, in absence of IPTG

(blue circles) and in 1 mM IPTG (mauve squares). The red dot

shows the fitness cost measured for T407{DlacY in 1 mM IPTG.

The data shown in panel B are the same as those shown in Figure 2

of the main text. Error bars represent the standard error of the

mean. The lines are the theoretical prediction, in absence of IPTG

(blue) and in 1 mM IPTG (mauve). The dashed lines show the

unstable solutions. The gray lines show the correlation of a and Cz

with DF due to growth effects (see Text S1), for different values of

a0. Starting from an initial selection coefficient (e.g., upon a

change of medium), a given strain moves along a gray line toward

the stable steady-state solution, and away from the unstable one.

(TIF)

Figure S5 Comparison of protein expression (left) and fitness cost

DF (right) on control strains. BW30270 is the wild type strain, T45 is

a direct Datsenko-Wanner wild type construction and T273 is a

transduction wild-type construction which went through the same

procedures as all the lac operon mutants. Measurements were made

in glycerol minimal medium without IPTG (white) and with 1 mM

of IPTG (blue). Fitness was measured in competition against

DlacIZYA. See Materials and Methods of the main text for a

description of the strain constructions and competition experiments.

The error bars represent the standard error of the mean.

(TIF)

Figure S6 Expression levels of the different lac operator mutants.

Protein expression was measured as described in Materials and

Methods of the main text without IPTG (white) and with 1 mM of

IPTG (blue). The error bars represent the standard error of the

mean, with at least three replicates in each condition.

(TIF)

Figure S7 Growth rate, in min{1, measured in the same

conditions as described for the competition experiments, except

each strain was grown separately. Every hour, for 10 hours, 10ml of

the culture was taken and diluted appropriately, then plated on LB

plates. Their mean lag phase was about 2 hours, therefore points 0,

1 hour and 2 hours were not used to estimate the growth rate. The

growth rate m was estimated as the slope of the regression of ln N(t)
on time t, where N(t) is the population size, such that:

N(t)~N(0)emt. The error bars represent the standard error of the

mean of 3 independent replicates. The Malthusian fitness F defined

in Materials and Methods of the main text is equal to m=mr, with the

growth rate of the reference strain mr~0:008 min{1.

(TIF)

Figure S8 Growth effects on gene expression and cell volume.

(A) The protein concentration Cz of a constitutively expressed

gene has been proposed to correlate linearly with the growth rate

F (red line), instead of the hyperbolic dependence dilution alone

would induce (black line) [14]. (B) The cell volume V also

correlates with F ; dots show experimental data taken from [13];

we choose to represent this correlation via a simple proportional

dependence (red line). (C) Both correlations lead to a dependence

fG(F ) of the rate of protein synthesis on the growth rate F (red

line; see Materials and Methods of the main text). Following

[13,14], the dependences are shown relative to the values at a

growth rate F0~(1 doubling=hour)=mr~(0:012 min{1)=(0:008 min{1)

~1:5. The highlighted area FƒFr~1&0:7F0 shows the range of growth

rates relevant in this study.

(TIF)

Figure S9 Estimated maximal rate of expression at 1 doubling/

hour a0 and ratio of repressed to unrepressed rates r (see Materials

and Methods of the main text), for all mutants used in this study. The

wild type (red) and T407{DlacY (orange) are barely distinguishable,

as expected. In purple, the mutants which have a r value very close to

that of the wild type and are shown on Figure 5 of the main text (these

are strains T319, T320, T378 and T379). In yellow, the whole

operator mutants (T274, T275, T318). In green, the strain

T523{DlacI. The values of a0 and r are reported in Table S1.

Errors were computed as described in Text S1.

(TIF)

Figure S10 Statistical score of the model for a range of coefficients b
and c, with a fixed at its fitted value. The higher the score, the lighter

the shading color. The contours are drawn at scores 2420, 2450,

2500, 2550, 2600, 2650, 2700, and 2750. The highest score

2417 is obtained for b~0:0026 and c~0:17 (red dot), significantly

better than the best model with c~0 (which has score 2426).

(TIF)

Figure S11 (A) Fitness cost DF as a function of r:a0, in absence of

IPTG. (B) Fitness cost DF as a function of a0, in 1 mM IPTG. Dots

show the selection coefficient measured for different strains (error bars

represent the standard error of the mean), lines are model predictions.

In presence of IPTG, the stable solution shown as a full line in panel B

was used to compute the score S and fit the data. a0 and r are

estimated for each strain as explained in Materials and Methods of

the main text. Errors were computed as described in Text S1.

(TIF)

Table S1 List of the strain studied, their lac O1 alleles and

sequences (starting at the +1 site; underlined: mutations with respect

to the wild type). The estimated values for the maximum rate of

protein synthesis at 1 doubling/hour a0 and ratio of repressed to

unrepressed rates r are also shown (see Materials and Methods of the

main text). Errors were computed as described in Text S1.

(PDF)

Table S2 List of the strains used in this study, their genotype and

the way they were constructed.

(PDF)

Table S3 List of the plasmids used in this study, their relevant

traits and the way they were obtained.

(PDF)

Table S4 List of the oligonucleotides used in this study, their

sequence and the strain for the construction of which they were

used.

(PDF)

Text S1 Supplementary Material.

(PDF)
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