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Abstract

Genome-wide association studies (GWAS) have identified hundreds of associated loci across many common diseases. Most
risk variants identified by GWAS will merely be tags for as-yet-unknown causal variants. It is therefore possible that
identification of the causal variant, by fine mapping, will identify alleles with larger effects on genetic risk than those
currently estimated from GWAS replication studies. We show that under plausible assumptions, whilst the majority of the
per-allele relative risks (RR) estimated from GWAS data will be close to the true risk at the causal variant, some could be
considerable underestimates. For example, for an estimated RR in the range 1.2–1.3, there is approximately a 38% chance
that it exceeds 1.4 and a 10% chance that it is over 2. We show how these probabilities can vary depending on the true
effects associated with low-frequency variants and on the minor allele frequency (MAF) of the most associated SNP. We
investigate the consequences of the underestimation of effect sizes for predictions of an individual’s disease risk and
interpret our results for the design of fine mapping experiments. Although these effects mean that the amount of
heritability explained by known GWAS loci is expected to be larger than current projections, this increase is likely to explain
a relatively small amount of the so-called ‘‘missing’’ heritability.
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Introduction

Genome-wide association studies (GWAS) have been extremely

successful across many diseases in identifying loci harbouring

genetic variants that affect disease susceptibility. Virtually all

associated variants identified from GWAS to date have relatively

small effects: each additional copy of the risk allele typically

increases disease risk by 10%–30% (see for example [1]). It has

become clear that the variants discovered thus far account for only

a small proportion of the genetic basis of each of the diseases, and

there has been considerable speculation about where the

‘‘missing’’ heritability might lie [1].

One of several important factors in the success of the GWAS

design has been the pattern of linkage disequilibrium in human

populations. The strong correlations between nearby SNPs mean

that commercially available genotyping chips, which assay

300,000–1,000,000 SNPs, can capture much of the common

variation in the human genome, particularly in Caucasian

populations [2]. Because genotypes at the causative loci will often

be correlated with those at SNPs that are typed on the genotyping

chip, it is typically not necessary to assay the true causative variant

directly in order to detect a genetic association with disease.

While linkage disequilibrium is extremely helpful for GWAS

discovery, the downside is that in most reported regions of

association, the true causal variant or variants remain unknown.

Therefore it is possible that many of the associated SNPs are only

surrogates for the true causal variant(s). When it comes to

quantifying the genetic effect, the genotype at the reported SNP

acts as a noisy measurement of the genotype at the causal variant.

This noise can dilute the apparent strength of the effect, and

obscure the true relationship between genotype and phenotype. As

we progress towards the identification of the causal variants,

estimates of effect sizes for associated loci will thus tend to increase.

In turn, the proportion of disease susceptibility explained by

GWAS loci will also increase. Thus in addition to other plausible

sources, such as secondary signals in GWAS loci, rare variants

(,1% frequency), copy number polymorphisms, and epigenetic

effects, some of the missing heritability is actually contained in loci

already identified by GWAS, and is driven by common variation

(.1% frequency).

In this paper we use an extensive simulation study to investigate,

and quantify, this phenomenon. We show that estimates of the size

of the genetic effect based on the best SNP from the GWAS

genotyping chip can often closely approximate the effect size at the

true causal SNP. In some cases the causal SNP has a large effect

and is poorly tagged, leading to substantial underestimation of the

true effect size. We investigate how much of the ‘‘missing’’

heritability could thus be hidden in reported GWAS loci, under

several sets of assumptions about the nature of the effects at true

causal SNPs. Our results also inform the design and value of fine

mapping experiments in GWAS loci.

Results

Patterns of linkage disequilibrium (LD) in human populations

are complicated, and preclude analytical results, so we adopted a
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simulation approach (see Methods for details). We describe the

approach informally before describing our results. First, we chose

each allele at each SNP in the HapMap ENCODE regions in turn,

assuming it to be causative with a given effect size. We then used a

previously reported simulation scheme (HAPGEN, [3]) to simulate

a large population of chromosomes with European ancestry,

whose patterns of LD match those in the CEU HapMap analysis

panel. From this population a case-control sample is taken, with

the controls sampled randomly from the population and the cases

chosen by oversampling chromosomes carrying the causal allele in

the appropriate way given its frequency and assumed effect size.

To simulate a GWAS, we considered samples of 2000 cases and

2000 controls typed on the Affymetrix GeneChip Human

Mapping 500K Array Set (see www.affymetrix.com). No single

sample size can model all reported GWAS, but this size is typical

of many. (Later, when considering associated loci from specific

diseases that have been studied extensively, we simulated GWAS

of larger size.) To simulate a GWAS on a particular commercial

chip, we examined data at only those SNPs on the chip in question

and checked to see whether any of these SNPs showed a p-value

for association ,1026. If this occurred we then modelled a

replication study, using an additional 2000 cases and 2000 controls

for definiteness. We took the best SNP from the simulated GWAS

and examined it in the simulated replication sample to check

whether it had p,0.01 in this replication sample. In what follows

we only considered those simulations where the best SNP on the

genotyping chip met both these criteria, as these model the

ascertainment implicit in reported GWAS associations. For these

simulations, we estimated the effect size at this associated SNP,

which we call the hit SNP, in the replication datasets and compared

it with the true effect size at the causal variant used for the

simulation. The fact that we estimate the effect size from the

replication data set is important, because it minimises the effect of

‘‘winner’s curse’’, which would otherwise lead to the effect sizes

being over estimated [4]. Simulated GWAS and replication

samples were generated for a range of assumed true effect sizes.

Reported genome-wide association studies differ in many

particular details, including the choice of genotyping chip used

and the sizes of the discovery and replication samples. Specific

assumptions are necessary for any simulation study, and ours aim

to capture the general features of many reported studies.

Investigation of different simulation scenarios, including different

genotyping chips and sample sizes, did not change the broad

conclusions that follow (data not shown).

Effect size estimates
To begin, we compare the estimated effect size at the replicated

hit SNP with the true effect size at the causal SNP in the

simulation. Figure 1 illustrates this comparison for three different

values of the true effect size. For each we see a peak of estimates

around the true effect size assumed at the causal SNP. But note

also that there is often underestimation of the true effect size (mean

estimated effect size 1.24, 1.86 and 3.32 for true relative risk of

1.25, 2 and 4 respectively), and that this underestimation can be

substantial when the true effect is large. For example, when the

true relative risk is 4, the estimated effect size was less than two in

12% of simulations of successful GWAS discovery of the effect.

In Figure 2 we plot the relative under- (or over-) estimation of

the effect size (estimated effect size divided by true effect size) as a

function of the correlation (as measured by the r2 which is the

Author Summary

Genome-wide association studies (GWAS) exploit the
correlation in genetic diversity along chromosomes in
order to detect effects on disease risk without having to
type causal loci directly. The inevitable downside of this
approach is that, when the correlation between the marker
and the causal variant is imperfect, the risk associated with
carrying the predisposing allele is diluted and its effect is
underestimated. Using simulations, where we know the
true risk at the causal locus, we quantify the extent of this
underestimation. We show that, for loci which have a
modest effect on disease risk and are common in the
population, the risk estimated from the most associated
SNP is very close to the truth approximately two thirds of
the time. Although the extent of the underestimation
depends on assumptions about the frequency and
strength of the risk allele, we predict that fine mapping
of GWAS loci will, in rare cases, identify causal variants with
considerably higher risk. Using three common diseases
as examples, we investigate the expected cumulative
effects of underestimation at multiple loci on our ability to
stratify individuals by disease risk and to explain disease
heritability.

Figure 1. Distribution of estimated effect sizes. Histograms of estimated relative risks (RR), for three different true relative risks indicated by a
vertical dashed line in each plot. Histograms include all simulations where the most associated (hit) SNP was significant in both the initial study and
the replication study.
doi:10.1371/journal.pgen.1001337.g001

Relative Risks in GWAS
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square of Pearson’s correlation coefficient) between the hit SNP

and the true causal variant. The underestimation is seen to be due

to imperfect tagging: when the true causal variant is not well

tagged by SNPs on the genotyping chip (the correlation is weak),

the estimated effect at the hit SNP is often much lower than the

true effect. Conversely, when the causal SNP is well tagged by a

SNP on the chip, the estimated effects cluster around the true

effect size. Note that while underestimation decreases as the

correlation between the hit SNP and the causal SNP increases,

there remains systematic underestimation even when the hit SNP

has r2<0.8 with the causative SNP. For example in one third of

simulations when the true effect is two, the estimated effect will be

under 1.8. Note also that when the true effect size is large,

significant and replicable associations can be detected when the

best tag SNP only has r2<0.2 with the causal variant (Figure 2,

relative risk = 4).

Imperfect tagging and an ascertainment effect also explain the

feature of the plots whereby the underestimation is much less for

smaller true effect sizes. If the true effect is small and the true

causal variant is not well-tagged on the genotyping chip, there will

not be enough power for the GWAS and subsequent replication to

reach significance [5], with the result that the corresponding

simulation will not contribute to the plot. But if the true effect is

large there may still be power to see a significant result when the

true variant is not well tagged, so the simulation contributes to the

plot and shows the underestimation. Put another way, if the true

effect is small, it will only be detected in an association study if the

causal SNP is well tagged, and in this case the effect size will be

estimated reasonably well. This second ascertainment effect

explains the lack of underestimation at hit SNPs not strongly

correlated to the causal SNP in the left panel of the Figure 2.

Lastly, as low frequency SNPs are less well tagged by other SNPs

[6], the extent of the underestimation also depends on the

frequency of the risk allele (see Figure S1). Interestingly, the effect

sizes at rare alleles are underestimated to a great extent, but only

when the true effect size is large enough for the tag SNP of a rare

allele to be detected and replicated in the simulated GWAS.

What true effects might underlie the effects estimated
from GWAS?

The results above describe the distribution of estimated effect

sizes as a function of known true effect sizes and the frequency of

the risk allele. In practice we are actually interested in the reverse

question, namely what true effect sizes are plausible in the light of

the effect size actually estimated from a GWAS and follow-up

study? We will see that this requires assumptions about the true

distribution of effect sizes. Indeed, writing RR for relative risk, and

RAF (risk allele frequency) for the allele frequency at the risk allele,

application of Bayes’ theorem gives

Pr true RR and RAF jobserved RR and RAFð Þ!

Pr observed RR and RAF jtrue RR and RAFð Þ|Pr true RR and RAFð Þ,
ð1Þ

where ‘‘true’’ refers to the value at the causal SNP and ‘‘observed’’

refers to the value at the hit SNP. Our simulation study allows us

to estimate the first factor on the right hand side of (1), and we do

so by discretising both the observed and true RR and RAF and

creating a matrix of counts based on our simulations over the

ENCODE regions. The second factor on the right hand side of (1)

is the assumed joint distribution of true risk allele frequencies and

effect sizes, which is of course unknown.

We proceed by making two different sets of assumptions about

these unknowns. In each case we assume that the distribution of

risk allele frequencies is given by the empirical distribution of allele

frequencies in the ENCODE regions. In effect this assumes that

any SNP variant is, a priori, equally likely to affect disease status.

What differs between the sets of assumptions is the assumed effect

size of a particular variant. Our first set of assumptions posits that

the distribution of effect sizes is the same for all putative causal

variants, regardless of their allele frequency, and that effect sizes

are close to those observed in GWAS studies. The second set of

assumptions explicitly assumes that there might be substantially

larger effects at variants with smaller minor allele frequency. These

priors are described in detail in the Methods section.

Different sets of assumptions about true effect sizes and risk

allele frequencies necessarily lead to different conclusions, and it is

impossible to study all possibilities. A number of theoretical

analyses [7,8,9,10] have argued for a relationship between effect

size, disease model, and minor allele frequency (MAF). As there is

no consensus on the exact form and extent of the relationship we

do not rely on them explicitly here, and instead our approach aims

to capture two different perspectives on unknown effect sizes, with

the subsequent analyses indicating a range of possibilities. The first

perspective is that the range of true effect sizes will be close to

those estimated from current GWAS. The second captures the

Figure 2. Relationship between underestimation and correlation. Scatter plots of the ratio of estimated to true relative risk against the
correlation (r2) between the disease SNP and the hit SNP, for three different true relative risks. The horizontal dashed line indicates a ratio of 1. Points
below the line are under-estimated, and above are over-estimated. (Note that in the case where the hit SNP is also the causal SNP the correlation is 1.)
doi:10.1371/journal.pgen.1001337.g002
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possibility that low-frequency variants may have considerably

larger effect sizes.

Under either set of assumptions, we can use our simulation study,

and Bayes’ Theorem (1) to estimate the conditional distribution of

true effect sizes and risk allele frequency (RAF) in the light of the

observed data at the GWAS hit SNP. Figure 3 illustrates this,

showing estimates of the posterior distribution of the true effect size

conditional on observing a risk estimate between 1.2 and 1.3, for

different observed risk allele frequencies, and under the two

different prior assumptions on effect size distributions.

A common feature of the histograms in Figure 3 is that the

mode of the posterior distribution on the true effect size is on, or

very closes, to the observed estimate. That is, current estimates

from GWAS studies of effect sizes from a common SNP, in the

range 1.2–1.3 are most likely to be very close to truth. As expected,

estimated effects within this range are more likely to be 1.3 than

1.2, because larger effects are more likely to generate a signal of

association strong enough to pass the p-value thresholds

commonly implemented in GWAS. This explains the left hand

tail of the distributions represented in Figure 3.

Figure 3 also shows that there is some probability that the effect

size at the causal variant is greater than estimated from the most

associated SNP. Interestingly, the observed risk allele frequency

impacts our posterior belief about the true effect size, under either

set of prior assumptions, with underestimation be more marked

when the risk allele at the hit SNP is rarer. Under the conservative

prior, when the risk allele at the hit SNP has less than 20%

frequency in the control population, the probability that the

relative risk is above 1.325 is 55%, compared to 35% when the risk

allele frequency is between 20–50%. The corresponding numbers

for the MAF-dependent prior are 77% and 49%. There are several

different phenomena at work here. If the hit SNP is the causal

SNP then, assuming that the association is strong enough to be

detected and replicated in the GWAS, there is no systematic under

estimation (and very little over estimation as we assume the effect

size is estimated from the replication sample). However,

conditional on the hit SNP not being causal, the distribution of

LD with true causal SNP, and therefore the propensity for under

estimation, depends on its allele frequency. The posterior

distribution on the true effect size given the observed frequency

and effect of the hit SNP can be viewed as a mixture of these two

scenarios, weighted by their conditional probability. Rarer SNPs

are less likely to be tagged well by single markers, and as noted

above, poor tagging leads to underestimation of effect sizes. In

contrast, for a common SNP, the associated allele is more likely to

be well correlated with the causal allele, so there is relatively less

under estimation. Under the MAF-dependent prior, when the

associated allele is low-frequency the causative allele will tend to

be low-frequency as well, and so potentially of larger effect. In the

scenario where we believe in larger effects at rare causal alleles and

have observed a SNP with low RAF with estimated relative risk

between 1.2 and 1.3 there is a 24% chance that the source of the

signal is a variant which actually doubles or more than doubles risk

with each copy of the risk allele.

Our observations are similar when the observed risk allele is the

most common allele in the population (RAF.50%) and therefore

Figure 3. Posterior distribution on true relative risk. Histograms showing the posterior distribution on the true relative risk (RR) conditional on
observing an estimated relative risk in the range 1.2–1.3 (vertical dashed lines). Left hand plots condition on the observed risk allele frequency (RAF)
being between 20 and 50%, while the right hand plots condition on a RAF less than 20%. Results are shown using two different priors on RR and RAF:
the blue histograms are the posterior distribution obtained using a conservative prior, and the red histograms are the posterior distribution obtained
using the MAF-dependent prior.
doi:10.1371/journal.pgen.1001337.g003
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the minor allele is protective (Figure S2). Qualitatively, the same

conclusions also apply when the estimated effect size at the hit

SNP is weaker, for example in the range 1.05 to 1.2 (Figure S3).

Consequences for individual disease risk
One consequence of the potential underestimation of effect sizes

from GWAS findings is that as we move to better identification of

the actual causal variants, through fine mapping and/or functional

studies of associated regions, our estimates of their effect sizes

might well increase. Assuming a multiplicative model of risk across

loci, these small expected changes could combine to increase the

relative risk of disease in those individuals with highest genetic risk

of disease.

To investigate this, we simulated genotypes at known associated

loci in a population of individuals (assuming Hardy Weinberg

equilibrium and no linkage disequilibrium across loci) for each of

breast cancer, type 2 diabetes and Crohn’s disease, based on

reported risk allele frequencies [11,12,13] (see Tables S3, S4, S5

for a list of loci). First treating the causal loci and relative risks for

each disease as given by current GWAS estimates, we measured

the average risk of individuals in the top x%, by risk, of the

population (for differing values of x) and compared this to the

mean risk in the population. We then repeated this simulation,

allowing for the uncertainty in the estimation of true effect sizes by

averaging over the uncertainty in both the RAF and effect size of

the causal variant on the basis of the posterior distributions of

these, given the GWAS findings, under the two priors described

above. We assumed that risks combined multiplicatively across

loci. For NOD2 and IL23R in Crohn’s disease where the causal

variant is thought to be known, here and below, we used the effect

sizes for the known variant, and did not average over uncertainty

in these. Because all three diseases have been extensively studied,

we approximated the GWAS discovery process as corresponding

to a GWAS discovery sample of 5000 cases and 5000 controls, and

a replication sample of 10,000 cases and controls. The actual

discovery process for each of the diseases is complicated, often

involving meta-analysis and/or multistage discovery, and not

straightforward to model accurately, but the approach we use

should capture the fact that GWAS-discovery were ascertained

through study of large numbers of samples.

The results of the three simulations are given in Table 1.The

unadjusted simulations give estimates of how much more at risk

individuals with the greatest genetic propensity to disease are,

based only on GWAS loci, relative to the average person in the

population. As expected, the fold change in risk of individuals

carrying a large fraction of risk variants is dependent on the

number and magnitude of known loci. For example, individuals in

the top 0.1% of risk for Crohn’s disease are 20 times more likely

Table 1. Adjusted estimates of individual risks.

Type II Diabetes

x% 50 25 10 5 1 0.5 0.1

Unadjusted 1.31 1.58 1.92 2.17 2.73 2.96 3.49

(1.3–1.32) (1.56–1.6) (1.89–1.95) (2.12–2.21) (2.64–2.82) (2.85–3.1) (3.25–3.8)

Conservative 1.42 1.83 2.36 2.78 3.8 4.26 5.38

(1.36–1.52) (1.69–2.05) (2.12–2.77) (2.44–3.36) (3.19–4.9) (3.52–5.62) (4.25–7.58)

MAF-dependent 1.54 2.12 3.05 3.97 6.7 8.16 12.43

(1.41–1.74) (1.81–2.7) (2.34–4.74) (2.76–6.99) (3.75–15.08) (4.21–20.64) (5.26–43.06)

Crohn’s Disease

x% 50 25 10 5 1 0.5 0.1

Unadjusted 1.67 2.41 3.66 4.89 9.25 11.91 20.07

(1.64–1.7) (2.35–2.48) (3.53–3.79) (4.63–5.13) (8.39–10.31) (10.5–13.74) (15.88–27.04)

Conservative 1.78 2.71 4.28 5.82 11.2 14.56 25.41

(1.71–1.9) (2.52–3) (3.86–4.9) (5.18–6.81) (9.54–13.67) (12.04–18.24) (18.84–36.27)

MAF-dependent 2 3.36 6.01 8.87 19.77 27.19 54.11

(1.82–2.27) (2.83–4.26) (4.56–8.69) (6.29–14.13) (12.32–38.88) (15.91–58.84) (26.59–150.26)

Breast Cancer

x% 50 25 10 5 1 0.5 0.1

Unadjusted 1.2 1.38 1.58 1.71 2.02 2.14 2.4

(1.19–1.22) (1.36–1.4) (1.55–1.6) (1.68–1.74) (1.96–2.05) (2.05–2.19) (2.27–2.55)

Conservative 1.25 1.46 1.71 1.89 2.29 2.46 2.82

(1.2–1.33) (1.37–1.62) (1.57–1.99) (1.71–2.27) (2.02–2.92) (2.13–3.21) (2.39–3.9)

MAF-dependent 1.29 1.59 2.14 2.74 4.06 4.69 6.41

(1.2–1.5) (1.4–2.25) (1.64–4.25) (1.8–6.09) (2.14–11.12) (2.28–16) (2.58–36.14)

The median (and 95% confidence interval) of the increase in risk of individuals who are in the top x% of risk, relative to the average, for three common diseases. Values
are estimated (using 100,000 simulations of a population of 10,000 individuals) from a set of replicated associations (see Tables S2, S3, S4) using published point
estimates of the risk attributed to carrying a copy of the risk allele and its frequency in population controls. Unadjusted values use these numbers directly in the
simulation of individual risks. For the adjusted values we simulate the relative risk and risk allele frequency from its posterior distribution using two different priors:
conservative and MAF-dependent (see text).
doi:10.1371/journal.pgen.1001337.t001
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than the average person to develop the condition, whereas for

breast cancer, where the number of common loci and associated

relative risks is typically smaller, the equivalent number is just over

two-fold.

The second and third simulations attempt to average over the

possible outcomes of our future efforts to map causal mutations, to

reveal the likely gains in our ability to stratify individuals on the

basis of risk. These use the methodology above, under both prior

distributions, to average over the posterior distribution of the allele

frequency and effect size at the causal SNPs underlying reported

GWAS loci for the three diseases. These adjusted estimates are

also shown in Table 1. Across diseases we see that there is a

significant increase in the risk associated with carrying multiple

risk variants. In particular we see that the biggest differences in risk

are for those individuals in the extreme tail. It is these individuals

who carry the stronger, likely rarer, risk alleles which are currently

insufficiently characterised by the most significant signal of

association in some regions identified to be important in disease.

For example, the risk of an individual in the top 0.1% of the

population for genetic risk typed at the causal loci underlying

currently known GWAS loci will likely be increased by a factor of

3–6.5, 5–12, or 25–50, compared to an average individual, for

breast cancer, type 2 diabetes and Crohn’s disease. These are

notably greater increases in risk than current prediction based in

the hit SNPs from GWAS loci which would be 2.4, 3.5 and 20

respectively.

Missing heritability
We have shown above that as we move to identification of the

true causal variants underlying GWAS associations, through fine

mapping and functional studies, their effect sizes will tend to

increase, in a minority of cases substantially, compared to current

estimates from GWAS. This will, in turn, increase the amount of

heritability explained by these diseases. We can use the approach

developed here to try to quantify this effect.

We investigated this question in the context of the three diseases

just described, namely breast cancer, type 2 diabetes, and Crohn’s

disease. For each disease we took the set of hit SNPs from

published associated loci [11,12,13] (see Tables S3, S4, S5), and

for our two prior distributions on effect sizes we estimated the

posterior distribution of both the effect size and the allele

frequency for the causal SNP at each locus, as described in the

previous section. One commonly used measure of heritability is

sibling recurrence risk ratio, often denoted by lS: the relative

increase in risk to an individual if their sibling has the disease

compared to the baseline risk in the population as a whole [14].

Assuming, as is usual for heritability calculations [15], that there is

no interaction between loci, lS can be calculated as a function of

the risk allele frequency and effect size for each causal variant. In

order to allow for the uncertainty in the allele frequency and likely

underestimation of the effect size at the causal variants underlying

GWAS associations, we averaged this expression over the posterior

distribution of these quantities, given the GWAS findings (see

Methods for details).

The results are shown in Figure 4. For each disease they show

that the heritability due to already identified GWAS loci will be

higher than current estimates, under either set of assumptions

about true effect sizes, but particularly under the MAF-dependent

prior. Whereas at the time of writing the current estimates of the

contribution to lS from GWAS loci are 1.03, 1.08, and 1.49 for

breast cancer, type 2 diabetes, and Crohn’s disease, these may well

be 1.06, 1.14, and 1.61 (mean under the conservative prior) and

they could plausibly be as high as 1.21, 1.39 and 2.46 (mean under

the MAF-dependent prior). Whilst some of the ‘‘missing’’ heritability

Figure 4. Adjusted estimates of explained heritability. Cumu-
lative density functions of the posterior distribution of estimated sibling
recurrence risk ratio (estimated lS) in breast cancer (BC), Type 2
diabetes (T2D), and Crohn’s disease (CD) under the conservative and
MAF-dependent priors. The dotted line indicates the lS based on
replicated loci in each of the three diseases. The quoted values of
sibling recurrence risk ratio (lower right hand corner) are from
references given in main text. Posterior distributions were calculated
assuming a GWAS of 5,000 cases and controls and a replication study of
10,000 cases and controls.
doi:10.1371/journal.pgen.1001337.g004
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is thus disguised rather than missing, we note that this effect is

unlikely to account for the extent of the gap between estimates of

sibling relative risk (2, 1.8, and 10, respectively, from family studies

[16,17,18]) and those explained by currently known loci. We

return below to a discussion of the discrepancy.

Discussion

The correlation between alleles along the human genome has

allowed GWAS to look for regions associated with disease without

having to either genotype all known genetic variation or guess a

priori which regions of the genome may be important. Although

this approach has been a significant success, there is a predictable

downside of using a subset of variation to tag, or predict, untyped

diversity: for the vast majority of the SNPs identified as mediating

disease risk, we are left uncertain as to whether they are causally

involved in the pathway from genotype to phenotype, or, much

more plausibly, are just a surrogate for the causal variation.

GWAS associations will thus typically relate to a noisy

measurement of the causal variant. One consequence of this is

that the size of the genetic effect associated with GWAS loci may

be underestimated. We quantified this through an extensive

simulation study designed to mimic patterns of linkage disequilib-

rium in European Caucasian populations. We draw two broad

conclusions from these analyses. Firstly, a significant proportion of

estimated relative risks will be biased downwards because the hit

SNP is a powerful, but imperfect, tag for the true causal variation.

In most cases this effect will be relatively minor, but in some

instances, the best associated SNP may actually be a poor

predictor of a, putatively rarer, SNP with a much larger effect, in

which case the effect size estimated from the GWAS finding will

substantially underestimate the true effect size.

The exact proportion of reported associations which fall into

these two categories depends on properties of the design of the

study from which the SNP was identified, and on one’s belief

about how likely low frequency (.1%) variants of large effect are

to cause common diseases. The statistical power afforded by any

particular association strategy sets a lower limit on the size of effect

that can be under-estimated because an imperfect tag of an allele

with a small effect size will simply fail to achieve genome-wide

significance. Other properties of GWAS strategy, such as sample

ancestry and the number of markers typed, also change our

interpretation of observed effect sizes because they influence the

distribution of linkage disequilibrium between putative hit SNPs

and causal variants.

Our findings show that at any particular locus, especially if the

associated SNP has a low MAF, the true effect could be quite

large. But we would not expect this to be widespread. Were many

true effects this large it would be extremely surprising for so few of

them to have been observed: although any one such causal SNP

may not be well tagged on the genotyping chips used for GWAS,

some of them will happen to be at least moderately well tagged,

and their detection would lead to much larger estimates than have

been seen from current studies. In the context of this study these

early observations suggest that, of the two prior distributions we

investigated, it is the conservative prior that may better reflect the

true distribution of effect sizes attributed to low and common

frequency variants.

One way of viewing the posterior distribution on the true effects

shown in Figure 3 is as a probability distribution on the outcome of

efforts to fine map current regions of association. In this light, our

results inform questions of the design and value of fine mapping

experiments. First, simulations similar to those described above

(assuming causal variation to be distributed like SNPs in

ENCODE regions) suggest that less than 8% of the time will the

hit SNP actually be the causal SNP. We note that there may be

more reward in terms of gains in predictive ability and increases in

effect size from fine mapping SNPs with lower minor allele

frequency because they are, on average, more likely to be in poor

LD with an unobserved causal variant. On the other hand, our

simulations show that although they are unlikely to be causal, most

common hit SNPs are likely to be very good surrogates markers for

their causal variant. Indeed, in 25% of cases, the hit SNP will be a

near-perfect surrogate (ie r2.0.99) for the causal variant. Should

this be the case, further genotyping will not reveal other SNPs with

stronger associations, unless sample sizes are extremely large.

Here we have quantified the increased spread of genetic risk

with genotypes just at known loci, and only considering a

multiplicative disease model. But even in this restricted setting,

there will be substantial differences in risk between high- and low-

risk groups based on these genetic factors. For example the

propensity of individuals in the top 0.1% of the population

distribution of genetic risk of type 2 diabetes will be increased by a

factor of 5–10, compared to the average. For breast cancer, in the

analogous top-risk group this risk will be increased by a factor of

3–5 (on the basis of common variation). Importantly, with the

growth of GWAS findings, both in terms of numbers of diseases

and numbers of loci for particular diseases, more and more of the

population will be in this most at risk category for at least one

disease: assuming 100 independent diseases, nearly 10% of the

population will be in the top 0.1% of risk of at least one disease.

Knowing which individuals these are and what diseases they are

most at risk of is therefore potentially useful information, both to

the individual and at the population level. The issues involved in

utilising such information in screening programmes (discussed for

example in [13]) are complicated, but our results strengthen the

arguments for consideration of this possibility.

We have shown that some of the ‘‘missing’’ heritability for

common disease actually resides in known GWAS loci and have

estimated this deficit for three particular diseases. While rather

more heritability is likely to be explained by known GWAS loci

than has been reported, this effect alone falls well short of

explaining all the missing heritability. Note, however, that there

are other reasons why existing loci may explain more heritability

than currently thought. Current calculations (by others, and

above) focus on a single causal variant in each associated region:

more variants within regions will explain more heritability. They

also ignore possible non-multiplicative disease effects, and also

ignore interactions between variants at different loci. Power to

detect either is low [19], so it is misleading to put much weight on

the failure of existing designs to find such effects. As others have

noted [20], parts of the missing heritability could be due to

multiple rare variants of large effect, associations with other forms

of genetic variation such as copy number polymorphisms, and

epigenetic effects. Indeed it would be surprising if each did not

play some role. Another possibility is that estimates of the

‘‘genetic’’ component of disease susceptibility, from epidemiolog-

ical studies, confound shared environment with shared DNA, and

so inflate heritability estimates [21,22].

Methods

Choice of genomic regions
In order to model the signal of association generated by disease-

causing mutations, we chose to simulate data exploiting empirical

surveys of human diversity. For this purpose we used data from the

10 ENCODE regions [23] within the CEU analysis panel of

HapMap II [5], which have undergone SNP ascertainment by
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resequencing 48 individuals of diverse ancestry. These regions

therefore show a fuller spectrum of SNPs than are represented in

the HapMap data at large, and haplotypes are expected to be

accurate due to the trio design of the CEU HapMap panel [24].

The regions over which we simulate data are centred on each of

the 10 ENCODE regions (listed in Table S1) and include 500kb of

flanking HapMap variation at the boundaries of each region.

Simulation of population data
As the typical sample size of most GWAS is much larger than

the number of CEU HapMap individuals, we simulated 100,000

chromosomes using the HAPGEN software package. These

100,000 haplotypes we call the reference panel. GWAS case and

control samples were then subsampled from the reference panel, as

described below. HAPGEN uses a population genetic model that

incorporates the processes of mutation and fine-scale recombina-

tion to generate individuals from an existing set of known

haplotypes. We ran HAPGEN with an effective population size

of 11418 (as recommended for the CEU population), a population

scaled mutation rate of 1 per SNP, a population scaled

recombination rate from estimates described in [25], with the

known set of haplotypes taken from the CEU analysis panel of

HapMap II as described above (see http://www.stats.ox.ac.uk/

,marchini/software/gwas/hapgen.html).

Generating a case-control sample
For SNPs greater than 1% in frequency in the ENCODE

regions we performed two hypothetical GWAS by letting each of

the two alleles be causal in turn. We denote the causal allele by A

and the protective allele by a. To generate the control sample we

sampled the required number of haplotypes, without replacement,

from the reference panel and combined these in pairs to form

diploid individuals. This mimics the common use of population

controls, rather than controls explicitly chosen for not having the

disease under study. For the case sample, we sampled pairs of

haplotypes from the reference panel according to the genotype

frequencies at the causal SNP dictated by the assumed disease

model: If d is the risk of the AA genotype, and a is the risk of the Aa

genotype, both relative to the aa genotype, then we sample case

individuals (without replacement) on the basis of their genotypes at

the SNP assumed to be causal with success probabilities

proportional to:

p(AA)!df 2 p(Aa)!2af (1{f ) p(aa)!(1{f )2, ð2Þ

where f is the frequency of the risk allele A in the reference panel.

Throughout, for definiteness, we adopted a multiplicative model

for disease risk (additive on the log scale) defined by d=a2. We

refer to a as the relative risk (RR) or effect size associated with the

causal variant. To approximate a GWAS, we thinned the

generated data set to include only those SNPs present on the

Affymetrix 500K array that had a minor allele frequency in

sampled controls of greater than 1%. This set may or may not

include the assumed causal SNP.

For analyses involving only simulated data, we sampled 2,000

cases and 2,000 controls from the reference panel to emulate a

typical large GWAS. For the subsequent analyses of heritability

and individual risk profiling for type 2 diabetes, breast cancer and

Crohn’s disease that studied particular reported associations, we

simulated 5,000 cases and 5,000 controls to obtain results more

comparable to the size of study from which the associations were

ascertained. We simulated under a range of relative risks at 24 grid

points from 1.05 to 6. In attempting to simulate the signal of

disease at rare alleles (1% to 5%) in a GWAS of 5000 cases and

controls there were a small number of simulations in which there

were insufficient haplotypes in our reference panel to generate the

required number of genotypes at the causal SNP for large effect

sizes. These simulations were discarded, but as the numbers were

small (3% when the RR = 4 and 11% when RR = 6) we do not

believe this greatly affects the results presented below.

Testing for association
Following common practice, for each simulated case control

sample, we tested for association between genotype and case

control status using the Cochran Armitage trend test [26] at each

SNP with frequency greater than 1% in the simulated panel of

chromosomes. We calculated the p-value of this test statistic which

is x2 distributed with 1 degree of freedom under the null

hypothesis of no association. If any test across the region obtained

a p-value,1026 the location of the most significant SNP (termed

the hit SNP) was recorded and we simulated this SNP in an

independent replication sample.

Simulating the replication processes
We simulated the replication experiment in three stages. First

we simulated the frequency of the causal allele in cases and

controls in the replication population. We then simulated the

frequency of the hit SNP conditional on the frequency of the

causal allele. Finally, we simulated the genotype counts for a

sample of cases and controls in this replication population.

We motivated sampling of the frequency of the causal allele in

controls in the replication population by thinking of the replication

sample as an additional sample from the same population as the

original GWAS sample. (Other assumptions are possible here, but

seem unlikely to affect the main conclusions.) Specifically, we

placed a uniform prior distribution on the unobserved population

frequency and sampled a value, f 9, from the posterior distribution

of this frequency given the data in the reference panel. (Given the

large size of the reference panel, the frequency in the replication

sample will be very close to that in the reference panel.)

Conditional on f 9, the population replication frequency in cases

was calculated from equation (2). To obtain the replication

population frequencies at the hit SNP we estimated the conditional

distribution in the reference sample of alleles at the hit SNP in

each of cases and controls, given those at the causal SNP, and used

these for the replication sample. This corresponds to assuming that

the LD between the causal and hit SNP in the replication sample

will be the same as that in the reference sample. Finally,

conditional on the population replication frequencies in cases

and controls, we take multinomial samples of the required size to

mimic the replication case and control samples. A test of

association using the trend test was performed at the hit SNP on

the simulated replication samples and deemed a significant

replication if the p-value was less than 1022.

Estimating effect sizes
We estimate the effect size, or relative risk, a, at the hit SNP by

maximum likelihood under the model described above by

equation (2). For studies with population controls this can be

achieved in practice by fitting a logistic regression model for case

status [27].

Priors on effect size
We implement two different sets of prior assumption on the

effect size and its relationship with minor allele frequency. Our

first set of assumptions is that if a is the effect size at a causal
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variant, then log(a) is normally distributed with mean 0 and

standard deviation 0.2, independent of RAF. We refer to this as

the conservative prior, since it places little weight on relative risks

greater than 1.5. To get a sense for this distribution, it assumes that

81% of true effect sizes are less than 1.3 with 96% less than 1.5,

and 99.9% less than 2. A further discussion of the choice of prior

on effect sizes can be found in [19] and [28].

Our second set of assumptions, which we call the MAF-dependent

prior, again assumes a normal distribution for log(a) with mean 0,

but here the standard deviation, s, is allowed to depend on the

RAF. The dependence of the distribution of the effect size on allele

frequency has no theoretical justification, but is chosen on

pragmatic grounds to give a gradual increase in the average effect

size as the alleles at causal SNP become rarer in the population. It

is implemented by increasing s by a weight defined by an

exponential density with parameters chosen such that, when the

RAF is near 0.5 (a common SNP), this prior is approximately

the same as the conservative prior, with s= 0.2. As the RAF

approaches 0 or 1 (corresponding to rarer SNPs), then con-

siderably more weight is put on larger RRs. See Figure S4 and

Table S2 for details. For example, when the MAF is less than 5%

the second prior gives an approximately 45% chance that the risk

associated with each copy of the causal allele is larger than 2.5.

Note that we used an empirical prior on the frequency of the risk

allele (Figure S5) by choosing each allele, at each SNP, with in the

ENCODE region to be causal in turn.

Estimating heritability
A commonly used measure of heritability is based on con-

sidering the risk of disease to an individual j conditional on them

having an affected (Y~1) sibling k relative to the unconditional

probability (which is just the prevalence of the disease):

ls~
Pr(Yj~1jYk~1)

Pr(Yj~1)
~

Pr(Yj~1,Yk~1)

Pr(Yk~1)
|

1

Pr(Yj~1)

We can calculate the above, using assuming that

Pr(Yk~1)~Pr(Yj~1), and by summing over the genotypes

g [ f0,1,2g of the siblings and of the mother M and father F
(see [15]):

P

gM

P

gF

P

gj

P

gk

Pr(Yj~1jgj)Pr(Yk~1jgk)Pr(gj jgM ,gF )Pr(gkjgM ,gF )Pr(gM )Pr(gF )

(
P

g

Pr(Y~1jg)Pr(g))2

If we divide through by the square of the risk associated with most

protective genotype (which we can define to be g~0) then we can

write the above in terms of the per allele relative risk a, and assume

the genotype probabilities follow Hardy-Weinberg equilibrium

with risk allele frequency f as above:

Pr (Y~1jg0)=Pr (Y~1jg0)~1, Pr (Y~1jg1)=Pr (Y~1jg0)~a,

Pr (Y~1jg2)=Pr (Y~1jg0)~a2

Pr (g0)~(1{f )2, Pr (g1)~2f |(1{f ), Pr (g2)~f 2

By making the further assumption that loci are independent

an estimate of the heritability explained by a set of hit SNPs

can be obtained by multiplying together the lS values calculated at

each individual locus. We calculated sibling relative risk in this

manner using estimates of RR and RAF of replicated loci from

studies of Type 2 diabetes, Crohn’s disease and breast cancer (see

Tables S3, S4, S5).

We then simulated 100,000 times from the posterior of true RR

and RAF of each locus conditional upon the reported RR and

RAF, using the simulation approach and the two different priors as

described in the paper. For each set of simulations, for each

disease, we recalculated lS at each locus and multiplied over loci,

giving a sample from the posterior distribution of sibling risk that

could be explained by the current set of report loci if the causal loci

where typed directly.

Supporting Information

Figure S1 Average relative underestimation of effect size as a

function of allele frequency and true effect size. Line plot shows the

mean ratio of the effect size estimated from the most associated

GWAS SNP to the true effect size at the causal locus. Lines are

shown for 4 different risk allele frequency (RAF) bins.

Found at: doi:10.1371/journal.pgen.1001337.s001 (0.01 MB EPS)

Figure S2 Posterior distribution on true relative risk when the

minor allele is protective. Histograms showing the posterior

distribution on the true relative risk (RR) conditional on observing

an estimated relative risk and risk allele frequency (RAF) at the hit

SNP. Results are shown using two different priors on RR and

MAF: the blue histograms are the posterior distribution obtained

using a conservative prior, and the red histograms are the posterior

distribution obtained using the MAF-dependent prior.

Found at: doi:10.1371/journal.pgen.1001337.s002 (0.92 MB EPS)

Figure S3 Posterior distribution on true relative risk for low

estimated effect sizes. Histograms showing the posterior distribu-

tion on the true relative risk (RR) conditional on observing an

estimated relative risk and risk allele frequency (RAF) at the hit

SNP. Results are shown using two different priors on RR and

MAF: the blue histograms are the posterior distribution obtained

using a conservative prior, and the red histograms are the posterior

distribution obtained using the MAF-dependent prior.

Found at: doi:10.1371/journal.pgen.1001337.s003 (0.92 MB EPS)

Figure S4 Priors on relative risks. Probability distributions of

relative risk as a function of minor allele frequency for the MAF-

dependent and conservative priors (the blue line). The MAF-

dependent prior is pictured for five values of MAF

Found at: doi:10.1371/journal.pgen.1001337.s004 (3.14 MB EPS)

Figure S5 Empirical prior on risk allele frequency. Cumulative

distribution of the frequency of SNPs within the ENCODE regions

used for simulations. At each SNP, each allele is chosen is turn

chosen to be the risk allele so the distribution is symmetric around

a half.

Found at: doi:10.1371/journal.pgen.1001337.s005 (3.14 MB EPS)

Table S1 ENCODE regions used in simulations. The build 35

coordinates of the regions of HapMap CEU data used by HapGen

to simulate genome-wide association study data. When simulating

haplotypes and testing for association a 500kb buffer window was

included either side of the listed regions.

Found at: doi:10.1371/journal.pgen.1001337.s006 (0.03 MB

DOC)

Table S2 MAF dependent prior. Table of the standard deviation

of the prior distribution of the log relative risk (RR) as a function of

risk allele frequency (RAF).

Found at: doi:10.1371/journal.pgen.1001337.s007 (0.06 MB

DOC)

Table S3 SNPs for Type 2 diabetes. (See main text for reference).

Found at: doi:10.1371/journal.pgen.1001337.s008 (0.04 MB

DOC)

Relative Risks in GWAS

PLoS Genetics | www.plosgenetics.org 9 March 2011 | Volume 7 | Issue 3 | e1001337



Table S4 Replicated SNPs for Crohn’s disease. (See main text

for reference).

Found at: doi:10.1371/journal.pgen.1001337.s009 (0.05 MB

DOC)

Table S5 Replicated SNPs for breast cancer. (See main text for

reference).

Found at: doi:10.1371/journal.pgen.1001337.s010 (0.03 MB

DOC)
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