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Abstract

The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more
recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear
through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and
structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel
statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns
of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a
substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin
and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect
substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using
sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently
been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for
widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the
predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude
that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with dN=dSv1,
which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions
with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the
course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs.
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Introduction

Influenza A is among the most extensively studied viruses,

owing to its importance as a human pathogen [1–6]. With a large,

public database of genetic sequences, influenza viruses also offer a

model system for studying molecular evolution in general. The

evolution of influenza viruses is characterized by frequent

reassortment events within subtypes [3,7] as well as high rates of

amino-acid substitutions in the viral surface proteins hemaggluti-

nin (HA) and neuraminidase (NA) [8–10]. Such high evolutionary

rates reflect both the poor fidelity of the viral polymerase [10], and

the strong selection pressures to evade the human immunity

[8,9,11–13] and, more recently, to develop drug resistance [14–

16].

Numerous experimental studies and statistical analyses of

genetic and antigenic data have identified sets of residues in HA

and NA proteins, the so called epitopes, that are bound by human

antibodies [17–20]. As a consequence, the epitopic sites tend to

evolve especially quickly, in order to evade immunity [8,21,22].

Moreover, several recent studies have suggested lists of amino

acids at specific residues in HA that evolved under positive

selection over the past 40 years [23–25].

In addition to escaping human antibodies, several other

selective forces act on hemagglutinin. As with any functional

protein, HA must maintain its stability and its function – namely,

to bind the sialic acid receptor of host cells and subsequently

mediate membrane fusion [17,18,20,26]. Thus, antibody escape

mutations must not compromise these properties. Yet, numerous

studies of protein evolution in vitro [27–29] as well as studies in

bacteria [30] and viruses [20,31,32] have shown that beneficial

mutations are often pleiotropic: in addition to their original

beneficial effect, they cause some, usually negative, side effects on

other protein properties, such as stability [28,33]. These negative

effects can typically be alleviated or compensated by other

mutations, making certain combinations of mutations substantially

more beneficial than single mutations alone [34,35]. This

phenomenon is known as positive epistasis between mutations

[36]. Epistasis can also be negative, if a combination of mutations

confers a smaller fitness gain than would be expected under

additive effects of the individual mutations [36].
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Epistasis is commonplace in eukaryotes [37–39], bacteria

[30,40,41], and viruses [31,34,35,42], and it plays an important

role in the evolution of immune escape and drug resistance in

various pathogens [35,43–46] including influenza [16,32]. Sur-

prisingly, the extent of epistatic interactions in influenza proteins

has not been systematically quantified or utilized. Yet, the

knowledge of such interactions might provide a powerful tool for

predicting future antigenically important substitutions and,

consequently, for selecting better vaccine strains.

Numerous methods have been developed for detecting epistasis

between mutations, based on sampled genetic sequences [47].

Early methods were based on the idea that co-evolving pairs of

sites in a protein should leave a typical signature in a sequence

alignment, which can be detected using quantities such as mutual

information [48–50]. However, such methods ignore the phylo-

genetic relationships among sequences and so are justified only if

the divergence times between samples are very large [51]. Various

corrections for the phylogenetic non-independence have been

proposed [52–54], and their performance has been shown to be

satisfactory in some cases [55–57]. Nevertheless, methods that

explicitly take account of the phylogeny are preferable [58].

Several such methods have been proposed recently [42,59–66].

Most of them attempt to detect unusually frequent co-occurrences

of substitutions at pairs of sites on individual branches of the

phylogeny. This approach is conservative since it detects only

those positively epistatic pairs of sites for which a mutation at one

site increases the beneficial effect of a mutation at the second site

so dramatically that one mutation could not fix without the other

one [42]. Such strong epistasis can occur, for example, when one

mutation confers a strongly deleterious effect that is compensated

by a second mutation. However, a mutation at one site in a protein

may lead to only a moderate increase in the beneficial effect of a

mutation at another site, so that the latter substitution occurs at an

accelerated rate, but it does not necessarily appear exclusively on

the same branch of the phylogeny [59,62,64,65]. In other words,

substitutions at positively epistatic pairs of sites are likely to be

temporally clustered [67]. In this paper, we exploit this idea to

design an ‘‘epistasis statistic’’ that allows us to detect a broad class

of epistatically interacting pairs of sites.

In essence, for each ordered pair of sites in a protein we measure

the amount of phylogenetic time that typically elapses between a

substitution at the first site and a subsequent substitution at its

partner site. The epistasis statistic is defined as a decreasing

function of this time interval. Thus, pairs in which the substitution

rate at the second site tends to be increased after a substitution at

the first site will have a larger value of the statistic. We obtain the

null distribution of this statistic for all pairs simultaneously, by

randomly shuffling the identities of substitutions on the phylogeny.

We show that the number of site pairs in the surface proteins of the

human influenza A/H3N2 virus with large values of the epistasis

statistic significantly exceeds the null expectation—thus, influenza

surface proteins evolve under substantial positive epistasis. We

characterize the epistatically interacting sites we have inferred in

terms of their overall patterns of evolution, protein locations, and

functional significance. For type-1 neuraminidase, we compare the

identities of the epistatic sites we have inferred with those that have

been experimentally verified. We discuss the implications of our

results both for practical issues surrounding influenza’s antigenic

drift and drug resistance, and for broader issues surrounding

protein evolution in general.

Results

Identifying epistatic pairs of sites
We reconstructed the phylogenetic trees for HA and NA

proteins (subtypes H3N2 and H1N1) and inferred the nucleotide

sequences at internal nodes by maximum likelihood as described

in ‘‘Materials and Methods’’. In order to detect pairs of codon sites

in a protein that have evolved under positive epistasis we used the

‘‘epistasis statistic’’ described in ‘‘Materials and Methods’’.

Briefly, the epistasis statistic considers an ordered pair of sites,

the first of which is called the ‘‘leading site’’ and the second is

called the ‘‘trailing site’’. The epistasis statistic tends to be large for

pairs of sites (i,j) in which a non-synonymous substitution at site j

tends to quickly follow a non-synonymous substitution at site i, and

for which substitutions at the trailing site occur in multiple lineages

(see schematic in Figure 1). We measure time between a pair of

non-synonymous substitutions as the number of synonymous

substitutions that occur between them. Since we are interested in

positive epistasis and would like to detect only those pairs of

substitutions in which the second substitution is beneficial, we

excluded all substitutions at terminal branches, because many such

substitutions are likely to be deleterious. We also discarded all sites

that experienced fewer than two substitutions at the internal

branches (Table 1).

The epistasis statistic depends on the parameter t that sets the

timescale over which substitutions contribute information. Pairs of

substitutions that are separated by times much shorter than t
contribute significantly to the epistasis statistic, whereas pairs of

substitutions that are separated by times much longer than t do

not. We set t to be equal to the average time StnsT, measured in

the number of synonymous substitutions, that elapses between two

non-synonymous substitutions randomly sampled from a phylog-

eny (see Text S1 and Table 1). For each phylogeny (H1, N1, H3,

and N2) and its corresponding value of t, we computed the

epistasis statistic for all qualifying ordered pairs of sites and, for

each such pair, we computed the distribution of the epistasis

statistic under the non-epistatic null hypothesis (see ‘‘Materials and

Methods’’ for details). We then selected all pairs of sites whose

nominal P-value was smaller or equal to 0.01. In H3, we identified

333 site pairs with a nominally significant epistasis statistic; we

identified 225 such pairs in H1, 205 such pairs in N1, and 188

Author Summary

Epistasis describes non-additive interactions among ge-
netic sites: the consequence of a mutation at one site may
depend on the status of the genome at other sites. In an
extreme case, a mutation may have no effect if it arises on
one genetic background, but a strong effect on another
background. Epistatic mutations in viruses and bacteria
that live under severe conditions, such as antibiotic
treatments or immune pressure, often allow pathogens
to develop drug resistance or escape the immune system.
In this paper we develop a new phylogenetic method for
detecting epistasis, and we apply this method to the
surface proteins of the influenza A virus, which are
important targets of the immune system and drug
treatments. The authors identify and characterize hun-
dreds of epistatic mutations in these proteins. Among
those identified, we find the specific epistatic mutations
that were recently shown, experimentally, to confer
resistance to the drug Tamiflu. The results of this study
may help to predict the course of influenza’s antigenic
evolution and to select more appropriate vaccines and
drugs.

Epistasis in Influenza Surface Proteins
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such pairs in N2 (see Table 1, and Table S1). Examples of epistatic

site pairs in HA and NA are shown in Figure 2 and Figure 3.

We computed the false discovery rate (FDR) as well as the

overall P-value for the observed number of significant pairs (see

‘‘Materials and Methods’’). Although the FDR in all proteins was

high, around 60%, the observed number of nominally significant

pairs was much larger than would be expected by chance

(pv0:015, see Table 1). Reducing the nominal P-value cutoff

somewhat reduced the FDR but also disproportionately reduced

the number of inferred positives (see Figure S1).

We tested the sensitivity of our method with respect to the

choice of the timescale parameter, t in the range from t~1 to

t~200, as well as to uncertainty in phylogeny and internal node

reconstruction. The results remained qualitatively similar to those

reported here (see Text S1, Figure S2, and Table S4). As a

negative control, we performed 100 simulations in which sites

evolved independently (i.e. without epistasis) along a given

phylogenetic tree (see ‘‘Materials and Methods’’). In 52 out of

100 simulations, the number of significant pairs at the P-value
cutoff 0.01 was smaller than expected, in 47 cases this number was

larger that expected, but not significantly so. In only one

simulation out of 100 was this number larger than expected and

significant (Pv0:01). We are therefore confident that our method

indeed detects epistatic pairs of sites, and it does not systematically

report more false positives than our FDR computation indicates.

Characterizing epistatic pairs of sites
Having obtained a list of pairs of sites with putative epistatic

interactions (Table S1, Figure 2 and Figure 3), we inspected the

properties of these pairs, compared to an appropriate null set. In

particular, we compared the true, epistatic pairs to the pairs that

had appeared as nominally significant in the 400 ‘‘fake data sets’’

Figure 1. Detecting positive epistasis between mutations at
two sites, i and j. The epistasis statistic is defined in terms of the total
time elapsed between all pairs of consecutive substitutions at sites i
and j (see ‘‘Materials and Methods’’). In this schematic figure,
substitutions at sites i and j are denoted by red and blue circles,
respectively. Substitutions (A,C) and (B,D) form consecutive pairs.
Substitutions (B,C) are not consecutive because they occur on different
lineages. Substitutions (A,D) are not consecutive because substitution
B at site i occurs between them.
doi:10.1371/journal.pgen.1001301.g001

Table 1. Summary of data used in our analysis.

H3N2 H1N1

H3 N2 H1 N1

number of sequences 2149 2339 1219 1836

PDB accession number 2VIU 1NN2 1RUZ 3BEQ

protein length 566 469 565 470

number of epitopic sites1 131 45 – –

sites considered 141 111 115 113

pairs considered 19740 12210 13110 12656

t used 63 54 78 60

pairs significant at 0.01 (exp) 196 122 132 122

pairs significant at 0.01 (obs) 333 188 225 205

FDR, % 58.8 64.8 58.7 59.3

P-value2
v0:01 0:015 v0:01 v0:01

1epitopic sites are taken from [8,17] for H3, from [8,19,20] for N2;
2P-value is for the number of nominally significant pairs. FDR stands for ‘‘false
discovery rate’’ (see ‘‘Materials and Methods’’).

doi:10.1371/journal.pgen.1001301.t001

Figure 2. Phylogenetic tree of HA (subtype H3) illustrating a
putatively epistatic interaction between sites 391 (red circles)
and 73 (blue circles). Site 391 is not in an epitope, dN=dS~0:47; site
73 is epitope E, dN=dS~0:72. Only substitutions at internal nodes are
displayed. Branch lengths are equal to the total number of substitutions
across all sites. Vertical bars show the approximate years in which the
sequences were isolated. Substitutions C, D, E, and F at site 73 closely
follow substitution A at site 391, leading to a highly significant value of
the epistasis statistic (E63(391,73)~3:48, nominal P-valuev10{4). As a
result, the ordered pair of sites (391, 73) is detected as epistatic by our
method. At the same time, only a single substitution, B, at site 391
follows substitution F at site 73 – and only after a long period of time –
resulting in a low value of the epistasis statistic for the inverse pair
(E63(73,391)~1:20, nominal P-value~0:18). Therefore, the ordered pair
of sites (73,391) is not detected as epistatic by our method.
doi:10.1371/journal.pgen.1001301.g002

Epistasis in Influenza Surface Proteins

PLoS Genetics | www.plosgenetics.org 3 February 2011 | Volume 7 | Issue 2 | e1001301



produced by permutation (see ‘‘Materials and Methods’’). Thus,

we asked whether the pairs that we detected as epistatic differed

systematically from the false positive pairs. We investigated three

types of properties: the average dN/dS value at epistatically

interacting sites, their location in the protein with respect to known

epitopes (for H3N2 only), and the distances between interacting

sites. For comparison of physical and linear distances we also

excluded sites that were not present in the resolved crystal

structure (see ‘‘Materials and Methods’’). The results are

summarized in Table 2 and Table 3, and discussed below.

The dN/dS values at the leading sites among the putative

epistatic pairs were not significantly larger, on average, than at the

leading sites among pairs identified under permutation. However,

the average dN/dS value at the leading sites was less than one,

which is usually interpreted as evidence of purifying selection.

Therefore, without an analysis of epistasis, many of the leading

sites would not have been identified as experiencing positive

selection, even though they may play a critical role in facilitating

adaptation in co-ordination with substitutions at their partner sites.

By contrast to the leading sites, the dN/dS values at the trailing

sites were significantly larger than the null expectation, and they

exceeded one on average (with the exception of N1). Thus, the

trailing sites exhibit the characteristic signature of positive selection

[68], even though the positive selection they experience was likely

made possible (or, at least, more likely) by preceding substitutions

at their corresponding leading sites. In other words, many of the

positively selected substitutions that have occurred in HA and NA

may have been facilitated by previous substitutions at epistatically

interacting sites. In previous work, we have identified 25 sites in

H3 at which certain specific amino acids evolved under directional

positive selection [25]. Interestingly, 22 of these sites appear to be

involved in epistatic interactions: 10 sites appear as leading sites, 7

sites appear as trailing, and 5 sites appear as both.

We also studied the location of epistatic sites with respect to the

known antigenic regions of the influenza surface proteins, for H3

and N2. In both proteins, the leading site in an epistatic pair was

more likely to fall within an antigenic epitope than under the null

expectation (and significantly so in H3). The trailing site was

slightly more likely to fall outside of known epitopes, despite the

fact that the dN/dS ratio was typically greater than 1 at such sites.

Thus, pairs of sites in which the leading site was in an epitope and

the trailing site was not in an epitope, were typically overrepre-

sented (although not significantly so). This suggests that the leading

sites may often be directly involved in antigenic escape and the

trailing sites may subsequently compensate for deleterious (e.g.

destabilizing) side effects of the initial mutation. In some cases,

however, both the leading and trailing sites of an epistatic pair fall

within epitopes (47% of pairs in H3, 9% of pairs in N2). In such

cases, for H3, the leading and trailing sites were significantly more

likely to fall in different epitopes from each other, than expected –

suggesting that substitutions across multiple epitopes may be

particularly important for antigenic escape, at least in hemagglu-

tinin of the H3 subtype. This observation reflects the widely held

belief that antigenic change in hemagglutinin typically requires

multiple substitutions spread across multiple epitopes [21,26].

How far apart are the leading and trailing sites of epistatic pairs?

Surprisingly, neither the average linear (sequence) distance nor the

physical distance between the leading and the trailing sites in an

epistatically interacting pair was significantly smaller than would

be expected among false positive pairs.

Finally, we investigated the timing of consecutive substitutions

at the leading and trailing sites in epistatic pairs. On average, both

across pairs and across consecutive substitutions, a substitution at a

leading site in H3 was followed by a consecutive substitution at its

corresponding trailing site 3.7 years later (see Text S1 for details).

Similarly, in H1 the mean time between consecutive substitutions

was 5.8 years; 4.4 years in N1; and 4.2 years in N2. In all cases, the

mean time between consecutive substitutions exceeds two years –

which suggests that the observation of a substitution at the leading

site of a known epistatic pair may provide useful predictive value

for anticipating a subsequent substitution at its corresponding

trailing site, within the time-frame required for selecting a seasonal

vaccine strain [69].

Epistasis and the evolution of oseltamivir resistance
Our analyses of substitution patterns suggest that positive

epistasis is prevalent among sites in HA and NA. However, it is

important to verify experimentally that the identified pairs of sites

indeed show non-additive fitness effects. Fortunately, such

verification has recently been performed for two specific pairs of

sites in type-1 neuraminidase.

Currently circulating variants of the seasonal H1N1 subtype are

resistant to the drug oseltamivir, which inhibits neuraminidase

[15]. Resistance to this drug is conferred by the mutation

His?Tyr at site 275, which is referred to as the ‘‘H274Y’’

mutation in the literature [15]. However, this mutation is known

to be strongly deleterious in the absence of the drug [70].

Recently, Bloom et al. demonstrated that mutations R222Q and

V234M restore the drug-resistant mutant’s fitness in vitro [16], for

seasonal H1N1. They also observed that mutations R222Q and

V234M were fixed in the seasonal H1N1 population prior to the

emergence of the H275Y mutation, and thus they likely acted as

epistatic ‘‘permissive mutations’’ for the emergence of drug

resistance in competent viruses.

Figure 3. Phylogenetic tree of NA (subtype N1) illustrating a
putatively epistatic interaction between the leading site 344
(red circles) and the trailing site 275 (blue circles). Other
notations are as in Figure 2.
doi:10.1371/journal.pgen.1001301.g003
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Our statistical analysis of epistasis in N1, based on patterns of

sequence evolution alone, is remarkably concordant with the

experimental findings of Bloom et al. In particular, our analysis

indicates that sites 222 and 234 interact strongly with site 275 (see

Table S1). Moreover, among the top 10 most significantly epistatic

pairs in N1 there are 6 other pairs that involve the drug-resistance

site 275 as the trailing site; the leading sites in these pairs are 214,

287, 329, 354, 382, and 344. In all cases the subsequent mutation

at site 275 is His?Tyr. Therefore, aside from sites 222 and 234,

our analysis predicts that these six additional sites may be

permissive mutations that, in combination with H275Y, produce

competent, drug-resistant viruses. Although no epistasis between

two of these sites (214 and 382) and site 275 was found

experimentally [16], one of the mutations (D344N) has subse-

quently been shown to help counteract the decrease in total

surface-expressed activity associated with the mutant neuramini-

dase ([71] and Jesse Bloom, personal communication), and it,

along with 224 and 234, may have played a role in the emergence

of oseltamivir resistance in seasonal H1N1 viruses before 2009.

Although further experimental validation is required, the

remarkable concordance between our statistical inferences and

experimentally verified epistatic interactions [16] suggests that

patterns of sequence evolution contain extremely useful informa-

tion about a protein’s fitness landscape. In the case of oseltamivir

resistance, this information is highly specific and of significant

import to public health.

Table 2. Characterization of epistatic pairs in subtype H3N2 surface proteins, compared to expectations for randomly chosen
pairs.

H3 N2

exp obs exp obs

leading site average dN/dS 0:88 0:91 (ns) 0:84 0:70 (ns)

fraction ept 0:59 0:82 * 0:26 0:43 (ns)

trailing site average dN/dS 0:86 1:12 ** 0:83 1:29 **

fraction ept 0:58 0:54 (ns) 0:27 0:20 (ns)

fraction of pairs both npt 0:17 0:11 (ns) 0:54 0:46 (ns)

(npt, ept) 0:24 0:07 * 0:20 0:12 (ns)

(ept, npt) 0:25 0:35 (ns) 0:19 0:34 (ns)

same ept 0:07 0:07 (ns) 0:03 0:03 (ns)

diff. ept 0:27 0:40 * 0:04 0:06 (ns)

time btw. consec. subst. (in syn subst) mean N/A 14.71 N/A 13.82

std N/A 16.76 N/A 15.72

time btw. consec. subst. (in years) mean N/A 3.68 N/A 4.22

std N/A 4.20 N/A 4.80

average distance1 linear 135:5 114:3 (ns) 124:3 124:3 (ns)

physical, Å 43:1 38:9 (ns) 28:6 28:2 (ns)

P-values are obtained from two-tailed tests, except for the last two rows which report one-sided tests regarding distances between sites. Single and double asterisks
denote significance at 0.05 and 0.01 level, respectively; ‘‘ns’’, ‘‘ept’’, ‘‘npt’’, ‘‘obs’’, ‘‘exp’’, and ‘‘N/A’’ denote not significant, epitopic, non-epitopic, observed, expected,
and not applicable respectively.
1Average distances are computed only over those significant pairs in which both residues are present in the crystal structure (see ‘‘Materials and Methods’’).
doi:10.1371/journal.pgen.1001301.t002

Table 3. Characterization of epistatic pairs in subtype H1N1 surface proteins, compared to expectations for randomly chosen
pairs.

H1 N1

exp obs exp obs

leading site average dN/dS 0:94 0:89 (ns) 0:75 0:91 (ns)

trailing site average dN/dS 0:93 1:90 ** 0:73 0:76 (ns)

time btw. consec. subst. (in syn subst) mean N/A 25.56 N/A 14.75

std N/A 28.64 N/A 17.09

time btw. consec. subst. (in years) mean N/A 5.80 N/A 4.40

std N/A 6.50 N/A 5.10

average distance linear 117:4 106:9 (ns) 130:1 108:6 (ns)

physical, Å 37:5 37:6 (ns) 27:7 28:6 (ns)

Notations as in Table 2.
doi:10.1371/journal.pgen.1001301.t003

Epistasis in Influenza Surface Proteins
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The oseltamivir resistance mutation, H275Y, was known in

advance of the drug’s widespread introduction. Moreover, this

prior knowledge was used by Bloom et al. [16] to focus their

experimental search for an epistatic partner to site 275.

Nonetheless, our method of identifying epistatic pairs from

sequence data implicates site 275 – without any prior knowledge

of its role in drug resistance – as extremely important in the

adaptive evolution of N1, especially in combination with sites 222,

234, and six other leading sites (Table S1). This demonstrates the

practical, predictive power of our method for inferring the specific,

epistatic interactions that shape viral adaptation. Thus, our

method may, in the future, help us identify sites important for

drug resistance or antigenic drift, even when no prior experimental

data are available.

Finally, we note that our analysis implicates sites 222 and 234,

which have been verified as important epistatic partners of the

oseltamivir resistance site 275, as significant epistatic leading sites

even when we restrict our data set to those viral isolates prior to

the introduction of oseltamivir. In particular, based on sequence

data prior to 2001, our method identifies sites 222 and 234 as

participating in epistatic interactions with sites other than 275 (see

Table S1). Thus, sites 222 and 234 may be structurally important

and experience epistatic interactions even in the absence of

selection for oseltamivir resistance.

Discussion

We have developed a statistical method to detect positive

epistasis between pairs of sites in a protein, based on patterns of

thoroughly-sampled sequence variation. The essential idea

underlying this method is simple: a substitution at one site should

rapidly follow a substitution at another site if the sites interact

epistatically. We applied this method to identify putative epistatic

pairs in the influenza surface proteins hemagglutinin and

neuraminidase, and we found a highly significant number of

interacting pairs. We characterized the properties of the leading

and trailing sites identified as epistatic. Finally, we validated our

approach by comparison to experimentally verified epistatic

interactions in neuraminidase, with significant implications for

public health.

This study sheds some light on methodological and empirical

questions in molecular evolution generally, as well as practical

questions about influenza viral evolution in particular. Method-

ologically, it is instructive to compare our approach to identifying

epistasis with other techniques in the literature. Over very long

timescales, interacting sites in a protein have been identified by

inspecting multiple sequence alignments, ignoring the phyloge-

netic relationship among the sequences being compared. Such an

approach is justifiable over timescales so long that each site may be

treated independently, and indeed it has proven successful at

identifying epistasis in proteins conserved across all domains of life

[51]. However, such techniques are not justified for shorter

timescales, because correlations between sites may arise simply as

the result of linkage and shared ancestry [58]. Although techniques

exist to control for phylogeny in such tests [52–54], it is preferable

to leverage the phylogeny in the design of a more powerful statistic

for epistasis – which is the approach we have taken here.

Even among the techniques that account for phylogeny,

methods differ in their power to detect epistasis. Some methods

will be more powerful in some contexts, and others in other

contexts – depending upon the structure of epistasis among sites,

the selection coefficients involved, and the density of sampling.

Most existing methods that utilize phylogenetic information

assume that epistatic substitutions will co-occur along the same

branch of the phylogeny [42,60,63,64]. This assumption will not

always be met, however, if the selective advantage conferred by a

substitution at the trailing site is only moderate; in such cases,

substitutions at trailing sites will occur at an accelerated rate but

they may likely fall on subsequent branches in the phylogeny. To

demonstrate this point, we applied the method of Poon et al [64],

implemented in the HyPhy package [72], to the same data set of

influenza sequences. That method detected 4 to 10 times fewer

epistatically interacting pairs of sites than our method did, at the

same false discovery rate (see Text S1 and Tables S2 and S3).

Importantly, the method by Poon et al. failed to detect epistatic

interactions between sites 222 and 234 and the drug-resistance site

275 in neuraminidase subtype N1, even though those pairs were

highly ranked by our method and those epistatic interactions were

confirmed experimentally. Although a thorough comparison

between various existing methods is beyond the scope of this

paper, we believe that the additional power of our method to

detect epistasis in the influenza data arises because we allow for

time lags between substitutions at interacting sites.

The epistasis statistic developed here is admittedly ad-hoc,

compared to systematic, likelihood-based methods for jointly

inferring phylogeny and epistasis under Markov substitution

models [73–75]. At the same time, the vast dimensionality

associated with substitution models incorporating pairwise epista-

sis, of order (20L)2 for a sequence of length L, is daunting;

whereas the frequentist statistic defined here seems to perform

quite well. The strong performance of our approach likely arises

from our ability to infer ancestral states reliably, due to the high-

resolution sampling of influenza sequences.

Our method has several important shortcomings. One draw-

back is that it requires a large number of substitutions per site in

order to discriminate between truly interacting site pairs and pairs

that sustain substitutions in close succession just by chance.

Moreover, even if the protein evolves rapidly, as influenza surface

proteins do, the false discovery rate is still very high. Our method

will likely perform much worse for proteins that evolve slowly or

have been sampled sparsely.

Two other concerns are problematic for our approach, as well

as most other methods of detecting epistasis from phylogenetic

data. Such approaches generally suffer from the inability to weed

out spuriously epistatic pairs, which leads to high false discovery

rates. There are at least two sources of spuriously significant pairs:

hitchhiking and coordinated temporal variation in selection

pressures across sites. Imagine, for example, that sites A and B
interact epistatically and that multiple substitutions at site B in

independent lineages rapidly follow a single substitution at site A.

Then site pair (A,B) would be detected by our method. However,

if the variant that carries the leading mutation at site A also, by

chance, happens to carry a mutation at site C (which is not

epistatic with B), then mutation C hitchhikes to fixation together

with mutation A and so the site pair (C,B) may also be detected as

epistatic. In fact, mutation at site C may be advantageous while

mutation at site A may be a neutral or slightly deleterious

mutation that hitchhikes to fixation together with C, but then

‘‘permits’’ the beneficial mutation at site B. It may be possible to

reduce the false discovery rate by designing statistics that consider

only those site pairs for which consecutive substitutions involve

multiple independent substitutions at the leading site as well as the

trailing site.

Coordinated temporal variation in selection pressures across

sites is another source of potential false positives under this and

other tests of epistasis. Consider, for example, sites 391 and 73 in

H3 illustrated in Figure 2. Substitutions at site 73 appear to quickly

follow substitutions at site 391 in the early 1990’s. Apart from
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epistasis, the clustering of substitutions at these two sites could be

explained if both sites independently experienced positive selection

during this time period, and otherwise negative selection.

However, if this explanation were the dominant one for the

observed clustering of substitutions, then, for each nominally

significant ordered pair of sites, we would expect its inverse pair

also to be nominally significant, on average. Yet, we do not find a

single nominally significant pair whose inverse pair is also

nominally significant, even though consecutive substitutions do

occur in the direct and reverse order (see for example, Figure 2

and Table S1). It is unlikely that this observation is caused by

insufficient sampling. Indeed, in H3, there are typically more than

6 substitutions (at internal branches) at either a leading or trailing

site in an identified epistatic pair, and similarly for the other

proteins. Moreover, many sites appear in our lists as both leading

and trailing. Thus, leading and trailing sites exhibit similar number

and pattern of substitutions, and there is plenty of power to detect

a significant epistasis statistic in both directions. This suggests that

the excess of significant pairs we observe is likely caused by

epistasis, rather than coordinated temporal variation in selection

pressures.

Another shortcoming of our method is that it aims to detect

epistasis only between pairs of sites, whereas interactions among

residues in a protein are certainly more complex. This may be a

cause of our large false discovery rate. Imagine, for example, three

sites, A, B, and C, such that pairs (A,B) and (B,C) interact

epistatically, but the pair (A,C) does not. If substitutions at site B
quickly follow substitutions at site A and if substitutions at site C
quickly follow substitutions at site B, our method may detect the

pair (A,C) as epistatic, even though there is no direct epistatic

interaction between these sites. Indeed, in our list of putatively

epistatic pairs, we find 133 of such ‘‘circular’’ triplets in H3, 41

triplets in N2, 81 triplets in H1, and 71 triplets in N1. In order to

discriminate truly epistatically interacting site pairs from spurious

pairs, it may be possible to modify the Bayesian graphical models

recently used for detecting epistasis in HIV [64,66] to incorporate

a time lag between consecutive substitutions.

Finally, although our method detects epistatic interactions

between pairs of sites, it does not determine which specific

mutations at those sites were epistatic. Extending our permutation

technique to incorporate the information about specific mutations

may prove difficult, but in many cases it is unnecessary. Often we

can a posteriori identify the specific mutations that led to a

significant value of the epistasis statistic for a pair of sites. For

example, the drug-resistance site 275 is identified as trailing with

many leading sites in N1 (see Table S1), but the specific

substitutions at site 275 are all in fact identical: H275Y.

Methodological issues aside, our results on epistasis in HA and

NA have several important practical implications for our

understanding of influenza evolution. We have demonstrated that

our method reliably infers a critically important oseltamivir

resistance site, as well as the associated leading sites at which

initial mutations are required for the production of a viable, drug-

resistant virus. Remarkably, we can identify some of the leading

sites (222 and 234) even when restricted to sequence data prior to

the introduction of the drug. This degree of specificity and

accuracy may prove helpful in preparing for resistance to other

drugs that may be developed, or in predicting the emergence of

oseltamivir resistance in the recent type-1 swine neuraminidase

responsible for the 2009-10 influenza pandemic.

In addition to NA, we have also detected substantial amounts of

epistasis in HA, including in the known epitopes, likely associated

with antigenic drift. Knowledge of specific pairs of sites that

interact epistatically in HA may improve our ability to predict

future antigenic variants, and thus to calibrate vaccine strain

choices accordingly. Previous studies of HA antigenic evolution

have focused almost exclusively on those sites with the strongest

signatures of positive selection, e.g. elevated dN/dS ratios

[8,21,22]. However, our results suggest that this approach will

inevitably miss many sites of genuine importance to adaptation,

and will implicate others that are not directly involved in antigenic

escape. In particular, we have seen that the leading site of an

epistatic pair often falls within an epitope, but it also often exhibits

dN=dSv1. In contrast, the trailing site typically falls outside of an

epitope and it exhibits significantly elevated dN=dSw1. This

observation appears counter to our expectation that epitopic sites

have elevated dN/dS values and non-epitopic sites have depressed

dN/dS values. However, not all epitopic sites experience elevated

dN/dS values at all times because different epitopes may be

immunodominant at different times [76,77]. Thus, an average

dN/dS value at a site may be well below 1 even if this site

occasionally evolves under strong immune selection [78].

The patterns of epistatic interactions we have detected suggest

the the following speculative model for the evolution of influenza

surface proteins. If an epitope is immunodominant at a certain

period of time, the pressure for antigenic escape is so strong that

the leading site, of antigenic importance, substitutes despite a

negative side-effect (e.g. diminished protein stability or function).

This side-effect is subsequently compensated by a substitution at

another, relatively unconstrained, site, in an epitope or not. It is

possible that such unconstrained sites may act as ‘‘global

suppressors’’, i.e., compensate the destabilizing effects of many

mutations [79,80]. If there is a constant need for compensation

(caused by antigenically important mutations), such compensating

sites will continually evolve under positive selection and will

exhibit dN=dSw1. Under this scenario, the roles of the two sites

would both be misinterpreted by an analysis based on dN/dS

alone that neglects epistasis. In particular, our observations imply

that mutations at sites with dN=dSv1 may sometimes be

extremely important for antigenic adaptation, even though they

have been largely ignored in compilations of antigenically relevant

sites [8,11,21]. Conversely, some mutations at sites with

dN=dSw1 may be unimportant for antigenicity per se, but are

positively selected simply to compensate for prior antigenic escape

mutations with deleterious side effects. Another potential mech-

anism of epistasis in influenza surface proteins could be the

dynamic balance between mutations that simultaneously influence

receptor binding avidity and antigenicity, as suggested recently by

Hensley et al. [81].

Some of the epistatic pairs that we detect consist of an

apparently neutral but ‘‘permissive’’ mutation at the leading site

followed by a highly advantageous mutation at the trailing site,

such as the pair of mutations V234M and H274Y in N1 previously

identified by Bloom et al [16] and also detected by our method

(Table S1). This observation is consistent with the idea that neutral

or nearly neutral substitutions can facilitate adaptation at partner

sites that might not otherwise have been available—a concept that

has received much attention in theoretical studies of adaptation

[82,83] and of influenza evolution in particular [84].

Finally, we have observed that epistatic residues do not tend to

be significantly closer to each other in the folded protein structure

than would be expected by chance – a result that we expect to hold

generally, and which suggests that structural influences on epistasis

are probably not as straightforward as simple proximity of

residues. In the future, it will be important to investigate, by

computation or experiment, whether epistatic partner sites are

compensating for protein stability even if they are distant from

each other in a folded protein structure.
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Materials and Methods

Data
We downloaded all HA and NA coding region sequences of

human influenza A virus subtypes H1N1 and H3N2 that were

available in the NCBI’s Influenza Virus Resource [85] in June

2010. The amino acid sequences were aligned using Clustal W ver.

1.83 [86] and the alignments were reverse translated using

PAL2NAL [87]. Occasional gaps in the alignments were filled if

more than 70 percent of sequences agreed on the nucleotide at the

gap position; otherwise the sequence with a gap was excluded from

further analysis. To test some aspects of our method, we used a

smaller HA data set (subtype H3N2) which was downloaded in

April 2009. To investigate whether our method detected any of the

known epistatic site pairs in type-1 NA prior to the introduction of

oseltamivir, we also used a truncated data set of N1 sequences with

all sequences isolated subsequent to 2001 removed. All used

alignments are available upon request.

In computing the epistasis statistic we excluded all substitutions

at terminal branches, and we discarded all sites that experienced

fewer than 2 substitutions at the internal branches.

We also downloaded the HA and NA crystal structures from the

RCSB Protein Data Bank. In computing the linear (sequence) and

physical distances between residues we excluded all residues that

were not resolved in the crystal structures. We used the distance

between the alpha-carbon atoms as a proxy for the physical

distance between residues.

Phylogeny reconstruction and substitution mapping
We reconstructed the maximum likelihood phylogenetic trees

for HA and NA using PHYML [88] under the GTR substitution

model with the four-category discrete approximation of the

gamma distribution for the substitution rates. We reconstructed

the nucleotide sequences at the internal nodes of the phylogeny

using maximum likelihood algorithm in PAUP* 4.0b10 [89]. For

each codon site, we identified whether it experienced at least one

synonymous and/or non-synonymous substitution on each branch

of the reconstructed phylogeny. In those rare cases in which a

codon experienced more than one substitution of the same kind

(synonymous or non-synonymous) on a branch, we did not record

the number of substitutions, in order to simplify computations.

The epistasis test statistic
Consider an ordered pair of sites (i,j) in the protein of interest.

In order to detect a positive epistatic interaction for this pair, we

designed a statistic that detects the acceleration of non-synony-

mous substitutions at site j, which we call the trailing site, after the

occurrence of a non-synonymous substitution at site i, which we

call the leading site.

First, we obtained a strict temporal order in which non-

synonymous substitutions at sites i and j occurred on the

phylogenetic tree. Such an order is not actually known if the

phylogeny contains one or more branches on which both sites

have experienced a non-synonymous substitution. We say that

such branches are temporally unresolved with respect to the pair (i,j).
Since we do not know in which order the sites in the pair have

experienced substitutions on a temporally unresolved branch, we

assume that both orders are equiprobable. If there are mij

branches on the phylogenetic tree that are temporally unresolved

with respect to the pair (i,j), there are a total of 2mij equally likely

distinct strict temporal orders of substitutions on the tree with

respect to this pair.

Next, for each strict temporal order of substitutions O
(k)
ij ,

k~1, . . . ,2mij , at sites i and j, we find all pairs of substitutions that

are consecutive along the tree. Substitution B at the trailing site (in

this case j) and substitution A at the leading site (in this case i) form

a consecutive pair p~(A,B) if A has occurred in the lineage ancestral

to B and no other substitution at either site has occurred in the

lineage between them. This notion is illustrated in Figure 1. If

(A,B) is a consecutive pair, we also say that substitution B is

consecutive to substitution A. For each consecutive pair (A,B),
substitution A is called initial and substitution B is called subsequent.

Before defining the epistasis statistic we introduce some

notation. We denote the fact that branch a is ancestral to branch

b by a[b (‘‘a precedes b’’) or by b]a (‘‘b follows a’’); if a and b
denote the same branch, we naturally write a~b. We denote the

number of synonymous substitutions that occurred on branch a by

la. We measure time tp between the initial substitution A and the

subsequent substitution B of a consecutive pair p~(A,B) as the

expected number of synonymous substitutions that occurred

between them. More precisely, if substitutions A and B occurred

on branches a and b respectively, then

tp:t(a,b)~

la=3, if a~b

la=2z
X

c :

a[c[b

lczlb=2, if a[b

8><
>:

ð1Þ

The sum in this expression is taken over all branches on the lineage

connecting branches a and b. Note that tp can be zero if no

synonymous substitutions occurred between substitutions A and B.

Let S
(k)
ij denote the set of all consecutive substitution pairs at site

pair (i,j) found on the phylogenetic tree with the order of

substitutions O
(k)
ij . We define the epistasis statistic as

Et(i,j)~
1

2mij

X2mij

k~1

X

p[S
(k)
ij

exp {tp=tf g, ð2Þ

where tw0 is a time-scale parameter that we specify in the

‘‘Results’’ section. The choice of an exponential function of tp is

arbitrary. We expect that any monotonic decreasing function of tp

would yield similar results. Note that if mij~0, i.e. if sites i and j

never experience a non-synonymous substitution on the same

branch, the strict temporal order of substitutions with respect to

the ordered pair (i,j) is unique. In this simple case, the epistasis

statistic is equivalent to

Et(i,j)~
X

p[S
(1)
ij

exp {tp=tf g:

If we take the time-scale parameter t to be infinite, the statistic

E?(i,j) simply equals the number of consecutive substitutions for

the ordered pair (i,j). We also define Et(i,j):0 if all sets

S
(k)
ij , k~1, . . . ,2mij are empty for the pair (i,j). In other words, the

epistasis statistic is zero for pairs of sites that never experience

consecutive substitutions.

The value of the epistasis statistic Et(i,j) is large if substitutions

at the trailing site often follow substitutions at the leading site and

if the time-lag between initial substitutions at the leading site and

subsequent substitutions at the trailing site is typically small

(compared to t). We therefore expect that pairs of sites that evolve

under positive epistasis will have a larger value of the epistasis

statistic.
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The non-epistatic null hypothesis
If there were no epistatic interactions between sites and no

temporal variation in selection pressures then we would expect the

non-synonymous substitutions at each site to be distributed

randomly on the phylogenetic tree. In order to obtain the

distributions of the epistasis statistic under this null hypothesis for

all ordered pairs of sites, we utilize the following straightforward

permutation procedure. We shuffle all non-synonymous substitu-

tions on the phylogenetic tree while keeping two sets of marginal

quantities preserved: (a) for each branch of the phylogeny, we

preserve the number of non-synonymous substitutions that

occurred on that branch and (b) for each site, we preserve the

total number of non-synonymous substitutions that occurred at

that site on the tree. Condition (a) ensures that any possible

temporal biases in the sampling of viral isolates, which would

apply equally to all sites, are preserved in the null distribution.

Condition (b) ensures that the overall selective constraint on each

site is preserved. Synonymous substitutions are unaffected by this

shuffling procedure.

Although this permutation procedure is conceptually simple, its

computational implementation is challenging. A priori, it is

unclear how to efficiently sample the space of possible substitution

configurations while preserving the aforementioned marginals.

This problem can be rephrased as follows. We can represent the

phylogenetic tree with non-synonymous substitutions as an M|N
matrix, where M is the number of branches on the phylogeny and

N is the number of sites, so that each cell in the matrix is either 1

or 0 depending on whether or not the given site experienced a

non-synonymous substitution on the given branch. Thus, we

would like to randomly permute the entries of this matrix while

preserving the row and column sums. This problem is equivalent

to the problem of obtaining the null distribution for the matrix of

associations between individuals across a set of observations, which

has been extensively studied in the ecology literature [90–92]. The

method typically employed in ecology to sample the space of

matrices that satisfy the constraint on the marginals is called the

‘‘swap method’’ and is based on the idea of swapping the entries of

certain specific 2|2 submatrices in a way that does not violate the

constraints. This method, although computationally efficient,

generates matrices that are not independent [91]. An alternative

‘‘fill method’’ permutes the matrix entries and simply discards

those resulting matrices that do not satisfy the constraints [92].

This method can be prohibitively computationally expensive if

many matrices are discarded, but it guarantees independent

sampling.

We employed the ‘‘fill method’’ and found that only about

between 0.05% and 5% of matrices are accepted, yet this did not

present a serious computational limitation. We generated 104 valid

permutations per protein, which required about 10 minutes on a

desktop computer.

Computing the false discovery rate
We compute the value of the epistasis statistic and its associated

nominal P-value for many thousands of site pairs. We therefore

need to quantify the fraction of false positives among the observed

nominally significant pairs [93]. Because the values of the epistasis

statistic for different site pairs are not independent, we estimate the

distribution of the number of false positives in the data through

bootstrap by designating 400 out of 104 permutations generated by

the procedure described above as ‘‘fake data sets’’. For each such

fake data set, which represents one draw from the null hypothesis,

we computed the number of nominally significant site pairs. This

allowed us to estimate the full distribution of the number of false

positives in the data. In particular, we recorded the expected

number of false positives in our data, which is typically referred to

as ‘‘false discovery rate’’ (FDR), and overall P-value for the total

number of positives actually observed.

Simulations without epistasis
To ensure that our method does not detect epistatic interactions

when there are none, we have performed detailed simulations of

sequence evolution along a phylogenetic tree, with independent

sites, as described in [25]. Briefly, the simulation algorithm takes as

input a phylogenetic tree with branch lengths equal to the number

of nucleotide substitutions and the nucleotide sequence at the root

of the tree; it outputs the nucleotide sequences at all internal and

terminal nodes. The sequence at a node is generated recursively,

given that the sequence at the parental node is already known,

using the following stochastic procedure. If the branch length

connecting the focal node to the parental node is l, then l
mutations are randomly distributed along the parental sequence

proportionally to the entries in the 4|3 nucleotide mutation

matrix and the codon-specific dN/dS values. We used the HA

phylogenetic tree to perform this simulation as well as to infer the

nucleotide mutation matrix and the codon-specific dN/dS values

[25]. Using this simulation algorithm, we generated 100

independent sequence data sets. On each of them, we performed

the analysis described above with 103 permutations, 100 of which

were considered ‘‘fake data sets’’.

Supporting Information

Figure S1 Dependence of the results for HA (subtype H3N2) on

the nominal P-value cutoff. Top panel shows the number of

nominally significant pairs (solid line: data; dashed line: expecta-

tion). Middle panel shows the P-value for the observed number of

significant pairs. Bottom panel shows the resulting FDR.

Found at: doi:10.1371/journal.pgen.1001301.s001 (0.02 MB EPS)

Figure S2 Dependence of the results for HA (subtype H3N2) on

the scale parameter t. Top panel shows the number of nominally

significant pairs. Bottom panel shows the resulting FDR. Colors

represent different nominal P-value cutoffs. The P-value for the

observed number of significant pairs always stays below 0.05 and

therefore not shown. The April 2009 version of the HA data set

was used to generate this figure (see ‘‘Materials and Methods’’).

Found at: doi:10.1371/journal.pgen.1001301.s002 (0.17 MB EPS)

Table S1 Lists of putatively epistatic pairs identified by our

analysis.

Found at: doi:10.1371/journal.pgen.1001301.s003 (0.21 MB

XLSX)

Table S2 Posterior probabilities of co-evolution inferred by the

BGM analysis (all branches). See Text S1 for details.

Found at: doi:10.1371/journal.pgen.1001301.s004 (5.92 MB

XLSX)

Table S3 Posterior probabilities of co-evolution inferred by the

BGM analysis (only interior branches). See Text S1 for details.

Found at: doi:10.1371/journal.pgen.1001301.s005 (1.36 MB

XLSX)

Table S4 Summary of epistasis analyses for 10 bootstrap

phylogenetic trees. ‘‘tree’’ is the bootstrap tree identifier; t is the

expected number of synonymous substitutions between a pair of

non-synonymous substitutions randomly drawn from the given

bootstrap tree; ‘‘sites’’ is the number of sites that experienced at

least 2 substitutions at the internal nodes of the tree; ‘‘pairs’’ is the

corresponding total number of ordered site pairs; ‘‘obs’’ is the

number of site pairs with the nominal P-value of 0.01 (in this
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column asterisk indicates that this number is significant at 0.05

level, and double asterisk indicates significance at 0.01 level);

‘‘FDR’’ is the false discovery rate and ‘‘overlap’’ is the number of

pairs that are significant at the 0.01 level with the given bootstrap

tree that are also in the list of pairs found in our original analysis;

percentages in the parentheses are computed with respect to the

333 nominally significant pairs found in our original analysis (see

Table 1 in the main text and Table S1).

Found at: doi:10.1371/journal.pgen.1001301.s006 (0.01 MB PDF)

Text S1 Supplementary information.

Found at: doi:10.1371/journal.pgen.1001301.s007 (0.15 MB PDF)
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