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Abstract

An epistatic interaction between two genes occurs when the phenotypic impact of one gene depends on another gene,
often exposing a functional association between them. Due to experimental scalability and to evolutionary significance,
abundant work has been focused on studying how epistasis affects cellular growth rate, most notably in yeast. However,
epistasis likely influences many different phenotypes, affecting our capacity to understand cellular functions, biochemical
networks adaptation, and genetic diseases. Despite its broad significance, the extent and nature of epistasis relative to
different phenotypes remain fundamentally unexplored. Here we use genome-scale metabolic network modeling to
investigate the extent and properties of epistatic interactions relative to multiple phenotypes. Specifically, using an
experimentally refined stoichiometric model for Saccharomyces cerevisiae, we computed a three-dimensional matrix of
epistatic interactions between any two enzyme gene deletions, with respect to all metabolic flux phenotypes. We found
that the total number of epistatic interactions between enzymes increases rapidly as phenotypes are added, plateauing at
approximately 80 phenotypes, to an overall connectivity that is roughly 8-fold larger than the one observed relative to
growth alone. Looking at interactions across all phenotypes, we found that gene pairs interact incoherently relative to
different phenotypes, i.e. antagonistically relative to some phenotypes and synergistically relative to others. Specific
deletion-deletion-phenotype triplets can be explained metabolically, suggesting a highly informative role of multi-
phenotype epistasis in mapping cellular functions. Finally, we found that genes involved in many interactions across
multiple phenotypes are more highly expressed, evolve slower, and tend to be associated with diseases, indicating that the
importance of genes is hidden in their total phenotypic impact. Our predictions indicate a pervasiveness of nonlinear effects
in how genetic perturbations affect multiple metabolic phenotypes. The approaches and results reported could influence
future efforts in understanding metabolic diseases and the role of biochemical regulation in the cell.
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Introduction

An epistatic interaction between two genes occurs when the

phenotypic impact of at least one of the genes is dependent on

the other [1]. This dependence is often a consequence of an

underlying functional relationship between the two genes [2,3].

By extending the study of epistasis from individual interactions

to networks of interactions, recent work in S. cerevisiae has

demonstrated that genome-wide patterns of epistasis can be

used to uncover the global organization of biological systems

[4–7]. In such studies epistatic interactions are identified as

instances where the effect of a double perturbation on growth

differs from the expectation based on the observed effects of the

corresponding single perturbations [8]. The choice of growth

rate as a phenotype is motivated by the role of epistasis in the

dynamics of selection [9], and by the fact that growth rate, a

proxy for fitness, can be accurately measured in a high-

throughput manner [10]. In parallel to the experimental

efforts, large-scale studies of epistasis on growth phenotypes

have also been pursued computationally, especially using the

approach of flux balance analysis [6,11,12]. Such computa-

tional studies have offered preliminary novel insight before the

availability of corresponding experimental data, e.g. in

predicting a coherence principle (monochromaticity) in the

organization of epistatic interaction networks [6], subsequently

observed experimentally [7,13]. Overall, large-scale studies of

epistasis have become increasingly relevant to functional

genomics [4,7,14], drug development [13,15,16] and evolu-

tionary biology [17,18].

Albeit important, growth rate is just one of many possible

phenotypes relative to which genes can interact epistatically with

each other. In contrast with the rapidly increasing understanding

of the nature and scope of epistatic interactions relative to growth,

many questions remain unresolved with respect to epistasis relative

to non-growth phenotypes. Are interactions relative to non-growth

phenotypes as widespread as interactions with respect to growth?

Do genes tend to interact relative to more than one phenotype,

and if so, is the type of epistasis consistent across phenotypes? How

much more dense can an epistatic network become upon adding

new phenotypes? Do interactions with respect to specific
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phenotypes provide biological insight than cannot be obtained

from knowing interactions relative to growth rate? Most

importantly, does the potential presence of multi-phenotype

epistasis affect the way cells operate and evolve? While these

questions have not, to our knowledge been asked before, epistasis

relative to non-growth phenotypes is not in itself a new concept.

Interactions between polymorphisms have been detected by using

multiple mRNA transcript levels as phenotypes [19]. Another

recent study searched for interactions among genes conferring

resistance to a DNA-damaging agent and showed that a denser

network was observed with respect to the capacity to cope with the

damaging agent, than was found with respect to growth rate under

standard conditions [20]. In addition, in the study of human

genetic diseases, while epistasis relative to disease-related traits

poses challenging technical problems, it is a potentially important

component, especially in light of the relative paucity of

explanatory power detected through the analysis of individual

loci [21–23]. Hence interactions relative to diverse phenotypes are

likely widespread and informative. However, the combinatorial

complexity resulting from the large number of possible genetic

perturbations and phenotypes has prevented so far a systematic

analysis of the extent and biological implications of this

phenomenon.

In this work we report the computational study of epistatic

interactions in a flux balance model of metabolism that is simple

enough to allow an exhaustive computation of all possible

perturbations relative to all possible phenotypes, but at the same

time realistic enough to provide meaningful biological insight.

Specifically, we use an experimentally informed variant of the

method of minimization of metabolic adjustment (MOMA) in a

genome-scale metabolic network model of Saccharomyces cerevisiae

[24] to predict all steady state metabolic reaction rates (fluxes) in

response to all possible single and double enzyme gene deletions.

By comparing single and double mutant values for all fluxes and

defining appropriate metrics, we construct an epistatic map for

each flux phenotype (Figure 1). This multi-phenotype genetic

interaction map allows us to explore for the first time the

properties and significance of epistasis across a combinatorial set of

perturbations and phenotypes.

Author Summary

An epistatic interaction between two genes occurs when
the phenotypic impact of one gene is dependent on the
other. While different phenotypes have been used to
uncover epistasis in different contexts, little is known
about how cell-scale genetic interaction networks vary
across multiple phenotypes. Here we use a genome-scale
mathematical model of yeast metabolism to compute a
three-dimensional matrix of interactions between any two
gene deletions with respect to all metabolic flux pheno-
types. We find that this multi-phenotype epistasis map
contains many more interactions than found relative to
any single phenotype. The unique contribution of
examining multiple phenotypes is further demonstrated
by the fact that individual interactions may be synergistic
relative to some phenotypes and antagonistic relative to
others. This observation indicates that different pheno-
types are indeed capturing different aspects of the
functional relationships between genes. Furthermore, the
observation that genes involved in many epistatic
interactions across all metabolic flux phenotypes are
found to be highly expressed and under strong selective
pressure seems to indicate that these interactions are
important to the cell and are not just the unavoidable
consequence of the connectivity of biological networks.
Multi-phenotype epistasis maps may help elucidate the
functional organization of biological systems and the role of
epistasis in the manifestation of complex genetic diseases.

Figure 1. A schematic representation of the 3D epistatic map. The 3D epistatic map is represented as a 3-dimensional entity (perturbation by
perturbation by phenotype). Each ‘‘slice’’ of the 3D epistatic map represents an epistatic interaction network, created with respect to a single
phenotype. Previous genome-scale studies of epistasis in yeast metabolism have focused on a single ‘‘slice’’, whose interactions were computed with
respect to the biomass production phenotype.
doi:10.1371/journal.pgen.1001294.g001

Multi-Phenotype Epistasis in Metabolic Networks
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Results

Generalizing the study epistasis to multiple metabolic
flux phenotypes

Quantifying epistasis relative to multiple metabolic flux

phenotypes introduces three fundamental challenges, one specific

to the use of flux balance models and two broadly relevant to any

study of multi-phenotype epistasis.

The first issue is the reliability of flux predictions for deletion

mutants. The availability of experimentally determined growth

phenotypes for all gene deletion mutants in S. cerevisiae has allowed

for extensive evaluation of the yeast model’s capacity to predict

mutant growth. These previous studies [25,26], including a

comparison of model predictions against experimental growth

measurements for 465 gene deletion mutants under 16 metabol-

ically diverse conditions [26], have demonstrated that the yeast

model can predict deletion mutant viability with high accuracy.

Furthermore, observed discordances between model predictions

and experimentally determined mutant growth phenotypes have

been used in refinements of the existing yeast model, further

bolstering the ability of the model to accurately mimic the effect of

different gene deletions [25,27]. In addition to effectively

predicting single mutant growth, flux balance models have also

been shown to predict viabilities of double deletion mutants with

high accuracy [28]. However, while model predictions of mutant

growth have been evaluated extensively, comparisons between

measured and predicted fluxes through the underlying metabolic

reactions in different mutants are less readily available [29]. To

address this need we recently evaluated the ability of the yeast

model to predict the fluxes through central carbon metabolism in

single gene deletion mutants by comparing model predictions to a

previously released compendium of experimentally measured

mutant fluxes [30]. An assessment of different approaches for

mutant flux prediction revealed that an experimentally driven

variant of the minimization of metabolic adjustment [31] gives the

best correlation with measured fluxes (Spearman rank correlation

greater than 0.90, Figure S1), and hence chose it for our

calculations (See Materials and Methods). In essence, this method

implements the hypothesis that the metabolic response to genetic

perturbation will be a minimal rerouting of flux around the insult.

A conceptual illustration of the methodology for predicting mutant

fluxes is shown in Figure 2, with a detailed quantitative description

provided in the Materials and Methods and Text S1.

A second issue, which is critical to any multi-phenotype study of

epistasis, is the choice of a metric for quantifying epistasis. The

quantification of epistasis requires an assumption as to how the

phenotypic effects of non-interacting mutations combine: devia-

tions from this expectation are inferred to be indicative of epistasis.

While previous work has provided both theoretical and empirical

evidence for how the effects of mutations on fitness combine [8],

no comprehensive study has yet explored how the effects of

mutations on metabolic fluxes combine. To this end we evaluated

two standard metrics for computing epistasis (multiplicative and

additive definitions), in addition to a novel metric. This novel

metric was designed so as to avoid making any assumption on how

the phenotypic effects of two mutations combine. Avoiding such

assumptions is ideal for detecting epistasis across multiple

phenotypes, relative to which the effects of mutations may

combine differently (See Text S1 and Table S1). However,

comparing these three different quantitative definitions (See

Materials and Methods and Text S1), we found that epistasis

relative to metabolic fluxes is overall robustly detectable

independent of the metric used (Figure S2). In the following

analyses, based on this result, a multiplicative model is used, and

all main conclusions were verified to be robust relative to different

metrics.

A third issue arising in a global analysis of epistatic effects with

respect to metabolic fluxes is the partitioning of interactions into

different classes of epistasis [32]. These different classes of epistasis

represent different ways in which the combined effect of two

mutations may defy expectation, and can be indicative of different

types of underlying functional relationships between genes [2,6].

In moving from growth to flux phenotypes, the classification of

interactions becomes more complex, due to the fact that fluxes can

increase or decrease upon genetic perturbation, while the growth

rate typically only decreases. While the increased complexity

present in our data allows for discrimination of many different

classes of interactions (See Figure S3 and Text S1), for the current

analysis we consolidate all sub-classes of interactions into two

groups, synergistic and antagonistic (See Materials and Methods,

Figure S3). A synergistic interaction between two genes indicates

that the change in the observed flux (phenotype) caused by the

simultaneous deletion of both genes is greater than expected based

on the effects of the corresponding single deletions, while an

antagonistic interaction indicates a flux change in the double

mutant that is less than expected. Synergistic interactions are

indicative of a compensatory relationship between two genes, such

that the extreme phenotype of the double mutant is a consequence

of this compensation being lost. Antagonistic interactions are

indicative of two genes working together towards some function,

such that the reduced phenotypic effect of the double mutant

occurs because the common function is compromised by the loss of

either of the genes individually.

Overview of a multi-phenotype epistatic map
These preparatory steps allowed us to compute and analyze a 3-

dimensional epistatic map for the yeast metabolic network, as

illustrated in Figure 1. The complete set of synergistic and

antagonistic epistatic interactions were reduced to a high-

confidence set by independently applying a standard deviation

cutoff to the distributions of epistasis relative to each phenotype

(See Materials and Methods and Figure S4). Considering only

these high confidence interactions, it was found that 100 of the 672

genes in the model interact with respect to at least one of the 293

fluxes active under the modeled minimal glucose condition. To

simplify the subsequent analysis of the epistatic map, we

consolidated the 100 interacting genes into the 30 metabolic

processes to which they are assigned in the model, and counted an

interaction between two processes if any gene from one process

interacts with any gene from the other. This consolidated epistatic

map is represented in Figure 3A, where the total numbers of

synergistic (red), antagonistic (blue) and mixed (yellow) interactions

between pairs of biological processes, across all phenotypes, are

displayed as a stacked histogram. Mixed interactions between two

processes occur when some pairs of genes across the processes

interact synergistically, while others antagonistically. Figure 3A

indicates that such mixed process interactions are less frequent

than process interactions that are purely synergistic or antagonis-

tic, suggesting that the previously observed monochromaticity of

epistatic interactions between biological processes [6] applies to

diverse metabolic phenotypes. Monochromaticity is a consequence

of the fact that genes in the same biological processes function

cohesively, and hence share similar patterns of epistatic interac-

tions [4,5,7]. Notably, however, in our multi-phenotype epistatic

map, the ‘‘color’’ (synergistic or antagonistic) of the interaction

between two processes depends on the phenotype observed.

Figure 3B demonstrates that this dependence of process interac-

tion colors on phenotype is due to the fact that individual gene

Multi-Phenotype Epistasis in Metabolic Networks
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pairs often interact synergistically relative to some phenotypes and

antagonistically relative to others. This pattern reveals that the

class of an epistatic interaction is not an absolute characteristic of a

pair of genes, but rather a characteristic of the gene-gene-

phenotype triad. This suggests that the functional relationship

between two genes is not necessarily one dimensional, but may

depend on the function (the phenotype) being probed.

The intuition that different phenotypes convey complementary

insight into the functional associations between genes and

processes was confirmed in a quantitative manner by determining

how many unique interactions each phenotype contributes to the

3D epistatic map. Figure 4 shows that the total number of

interactions identified when considering all phenotypes is ,8 times

larger than can be identified relative to any individual phenotype,

although the exact increase in interaction coverage is dependent

on the threshold for defining a significant interaction (See

Materials and Methods). Figure 4 also shows that 83 of the 293

total metabolic flux phenotypes are required to identify all unique

epistatic interactions in yeast metabolism. Examining the distri-

bution of metabolic processes where these 83 phenotypes come

from (Figure S6), reveals that they are spread across all metabolic

processes. This suggests that a set of phenotypes that represents all

Figure 2. Schematic depiction of the main steps we used to generate predictions of metabolic fluxes for yeast single and double
deletion mutants. (A) As in any flux balance model, we implement a steady state approximation, yielding for each metabolite in the network a
linear constraint on reaction rates (fluxes). (B) We then generate the best possible flux state for the wild type, using flux and growth rate data from
the literature [30] as additional constraints, and (C) minimizing the sum of the absolute values of all fluxes. This last step prevents the generation of
arbitrarily large loops of fluxes associated with alternative optima. (D) Lastly, to generate flux predictions for the deletion mutants, we impose that
the fluxes associated with the deleted genes be set to zero, and identify the flux state for the mutant that is as close as possible to the wild type state,
identified in step C. Note that this approach does not employ growth rate maximization, as often done in flux balance analysis. Instead, using the
concept of minimization of metabolic adjustment [29], it searches for mutant fluxes that undergo minimal rerouting relative to the (experimentally
tuned) wild type flux solution. This approach was proven to be the most accurate way of predicting fluxes in yeast knockout strains.
doi:10.1371/journal.pgen.1001294.g002

Multi-Phenotype Epistasis in Metabolic Networks
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Figure 3. Interactions in the yeast multi-phenotype epistatic map. (A) Histogram of the number of phenotypes relative to which different
metabolic processes interact with synergistic (red), antagonistic (blue) or mixed (yellow) interactions. Two processes are said to interact with respect
to some phenotype if any two genes belonging to those processes interact. Mixed interactions occur when different gene pairs from the same pair of
processes interact differently (antagonistic or synergistic) relative to the same phenotype. (B) Interaction classes for gene pairs across multiple
phenotypes. In the multi-phenotype interaction map, one can ask how many gene pairs interact synergistically with respect to a number ns of

Multi-Phenotype Epistasis in Metabolic Networks
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metabolic functions is required to identify all epistatic interactions.

Conversely, this implies that different phenotypes are providing

insights into unique aspects of the functional relationships between

genes.

Epistatic interactions with respect to secretion
phenotypes reflect functional interconnectivity of
metabolic processes

To solidify the observation that different flux phenotypes reveal

unique aspects of the functional relationships between genes, we

next focus on the epistatic networks relative to two secretion

phenotypes (succinate, Figure 5B, and glycerol, Figure 5C). We

chose to focus on secretion flux phenotypes because they are the

most tractable fluxes to measure experimentally, and hence

potentially the most relevant for future experimental studies. Both

of these secretion flux epistatic networks contain several interac-

tions that are not detected relative to the growth phenotype

(Figure 5A). In particular, in the succinate secretion network, the

genes that are part of complex II of the electron transport chain

(ETC II) display synergistic interactions with several other

biological processes (Figure 5B). Among these interactions, which

are indicative of an unexpectedly large increase in succinate

secretion in the double mutant, the one between serine

biosynthesis and ETCII has been reported in previous experi-

mental efforts to overproduce succinate [33]. This interaction

occurs because the predicted alternate pathway for serine

biosynthesis produces succinate as a byproduct, and ETC II is

the primary route through which this succinate is metabolized in

the wild-type (Figure 6A, Figure S7). Thus, interactions with

respect to succinate may in general probe the way in which TCA

cycle intermediates are produced and consumed.

In the glycerol secretion phenotype network there is enrichment

for synergistic interactions between glutamate biosynthesis and

respiratory processes (Figure 5C). Among these interactions, the

interaction between glutamate synthase and the electron transport

chain is supported by experimental data gathered in the context of

ethanol production optimization [34]. This epistatic interaction is

a consequence of the fact that glutamate biosynthesis, the electron

transport chain and glycerol biosynthesis correspond to three of

the major routes for cytosolic NADH oxidation (Figure 6B, Figure

S9). Thus, interactions with respect to glycerol secretion may

reflect the way in which different processes contribute to cellular

redox balance. These examples, and others in Text S1 and Figure

S8, further demonstrate that interactions with respect to metabolic

flux phenotypes can provide detailed insights into different aspects

of the functional relationships between genes.

Properties of genes involved in many interactions across
all metabolic phenotypes

So far, we have shown that epistatic interactions between gene

deletions relative to metabolic flux phenotypes are ubiquitous, and

can provide an understanding of the relationships between

different phenotypes and antagonistically with respect to a number na of phenotypes. In this graph, for each pair (ns, na) we plot a circle with
diameter proportional to the number of gene pairs displaying such interaction pattern. Only gene pairs that interact relative to at least one flux
phenotype are included.
doi:10.1371/journal.pgen.1001294.g003

Figure 4. Coverage of the 3D epistasis map. The total number of antagonistic and synergistic interactions for each phenotype are displayed as
stacked bars, with the cumulative sum of interactions at a given point in the list being represented by a black circle. Phenotypes were sorted
according to the number of unique interactions added to a cumulative tally. It should be noted that the first phenotype in the list is the biomass flux,
which does not have the maximal number of interactions. It was placed first so as to clearly demonstrate the gain in interaction coverage by
observing non-growth phenotypes. Only the first 83 phenotypes are shown, as the number of unique interactions reaches saturation at this point.
doi:10.1371/journal.pgen.1001294.g004

Multi-Phenotype Epistasis in Metabolic Networks
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different processes in the cell. The ubiquity of epistasis relative to

metabolic flux phenotypes brought to our attention the possibility

that these complex network-level functional interdependencies

might impose constraints on evolutionary trajectories. We

hypothesized that this phenomenon might manifest itself in the

form of increased evolutionary constraints on enzymes that are

involved in many epistatic links with other genes. Such a

relationship between epistatic connectivity and evolutionary rate

has been recently observed in the experimentally constructed

global genetic interaction network with respect to growth rate in

yeast [7]. Thus, we set out to explore whether predicted

connectivity with respect to metabolic phenotypes other than

growth rate are also correlated with evolutionary constraint. To

this end we calculated the Spearman rank correlation between the

number of interactions in which different genes participate and the

evolutionary rates of such genes, as measured by their non-

synonymous to synonymous substitution ratios. This correlation

was calculated separately for synergistic and antagonistic interac-

tions relative to each of the 293 flux phenotypes, for a total of 586

correlations. The distributions of correlation coefficients for

synergistic and antagonistic interactions across all phenotypes

are shown in Figure 7A. Both distributions significantly deviate

from zero, with an overall bias towards negative correlations (Sign

test, p = 8.5610225 (synergistic), 2.2610254 (antagonistic),

n = 293). This trend towards negative correlations suggests that

genes involved in many interactions with respect to metabolic flux

phenotypes do indeed evolve slower.

While the negative skew of these distributions is robustly

maintained upon removal of most potential confounding factors

(see Figure S11) we found that it is significantly reduced when

controlling for the codon bias of the genes (Figure 7B). Codon bias

is a proxy for gene expression level, which previous research has

shown to be the dominant correlate of evolutionary rate [35,36].

Therefore, we cannot rule out that a portion of the apparent

evolutionary importance of genes with a high degree of genetic

interactions across different phenotypes may be explainable by the

expression level of the genes. Yet, regardless of whether the

interaction degree correlates with evolutionary rate or gene

expression level, either result indicates the functional importance

of these multi-phenotype hubs. The increased expression level of

these hubs in fact supports their central role in metabolic function.

Furthermore, in our model, epistatic interaction degree with

respect to growth flux alone is not significantly anti-correlated with

evolutionary rate, even without controlling for expression level

(Figure S12). This indicates that the importance of genes is

associated with their total phenotypic impact, not just their impact

on growth.

While the distributions of correlations between evolutionary

rate, and both synergistic and antagonistic interaction count, shift

towards zero when controlling for codon bias, the distribution

Figure 5. Epistatic networks with respect to growth rate and two other flux phenotypes. To explore the biological diversity underlying the
different epistatic networks, the presence of synergistic and antagonistic interactions between pairs of metabolic processes were determined for (A)
growth, (B) succinate secretion and (C) glycerol secretion phenotypes. These process interactions are visualized as networks, where nodes are
biological processes and edges indicate that gene pairs in the two biological processes interact antagonistically (blue), synergistically (red) or mixed
(yellow). Visualizing the interaction networks in this way demonstrates that the variability in interaction coverage found relative to different
phenotypes is a consequence of phenotype-specific interactions among completely different biological processes. Specific process interactions
observed in these networks are described in detail in Figure 6 and in Text S1.
doi:10.1371/journal.pgen.1001294.g005
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Figure 6. Examples of epistatic interactions (red dashed lines) with respect to flux phenotypes (red circles), overlaid on the
corresponding metabolic pathways. (A) In Figure 5B, there is an abundance of synergistic interactions between complex II of the electron
transport chain (ETC II) and various other biological processes, with respect to succinate secretion. The basis for these interactions is the fact that ETC
II catalyzes the succinate dehydrogenase reaction (SDH), which is the major flux consuming succinate under the modeled condition. If SDH is deleted,
succinate is predicted to be secreted from the cell. Therefore, a gene deletion resulting in an increase in flux through SDH, will be observed to interact
synergistically with SDH relative to succinate secretion. (B) A second predicted interaction is a positive synergistic interaction between glt1 and cox1
relative to glycerol secretion as a phenotype. The metabolic basis for this interaction is the involvement of both the genes and the phenotype in
NADH/NAD balancing. Specifically, glt1 is an NADH dependent reaction, and in its absence, glutamate is synthesized by the NADPH dependant
glutamate dehydrogenase reaction. Therefore, the deletion of glt1 leaves an excess of NADH, which is in turn oxidized via the respiratory chain. In the
cox1 mutant, the respiratory chain is no longer functional, and the redox imbalance is alleviated through glycerol production (Figure S9). Hence, there
is an unexpectedly large increase in glycerol secretion in the double mutant, relative to what is observed in the single mutants.
doi:10.1371/journal.pgen.1001294.g006

Figure 7. Evolutionary significance of epistasis with respect to metabolic flux phenotypes. The number of antagonistic and synergistic
epistatic interactions for each of 39 genes was determined across each of the 293 flux phenotypes. (A) For each phenotype, the number of synergistic
and antagonistic interactions involving the genes was correlated separately with the Ka/Ks of the genes, yielding distributions of Spearman Rank
Correlation r values for synergistic (red) and antagonistic (blue) interactions. Both distributions are significantly skewed towards negative r values
(sign test p = 8.5610225 (synergistic), 2.2610254 (antagonistic)). The red and blue circles indicate the correlation coefficient when the total numbers
of synergistic (r = 20.27, p = 0.09, n = 39) and antagonistic (r = 20.41 p = 0.01, n = 39) interactions across all phenotypes are considered. (B) The above
correlations were repeated, but controlling for the codon bias of the genes using partial correlation analysis. The distributions of r move closer to
zero, with only the distribution for antagonistic interactions remaining significantly different from zero (sign test p = 0.07 (synergistic), 2.3610231

(antagonistic)).
doi:10.1371/journal.pgen.1001294.g007

Multi-Phenotype Epistasis in Metabolic Networks
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remains significantly different from zero only for antagonistic

interactions (p = 0.07 (synergistic), p = 2.3610231 (antagonistic)).

We believe that this observation can be understood by considering

more closely the relationships between genes that interact

antagonistically, versus synergistically. An antagonistic interaction

implies that the phenotypic effect of deleting a gene is reduced in

the absence of its interaction partner. A possible interpretation of

this is that a gene’s full function, as manifested in its associated

phenotypic effect, is contingent on the presence of its antagonistic

interaction partner. Therefore highly antagonistic genes are

phenotypic hubs, whose evolutionary changes are constrained by

the dependency of other genes upon them. Conversely, the

reduced constraint on synergistic hubs can be understood by

considering that a synergistic interaction between two genes

implies that the phenotypic impact of deleting a gene is increased

in the absence of its interaction partner. This can be interpreted as

a gene’s function being compensated for by its synergistic

interaction partners. Therefore, the reduced correlation with

evolutionary rate for synergistic hubs may reflect the fact that the

phenotypic effect of changes in such hubs is dampened by the

presence of their interaction partners.

Genes associated with human genetic disorders have
higher epistatic connectivity

The implications of the current analysis are not limited to yeast.

In fact, multi-phenotype epistatic interactions may be relevant to

the manifestation and treatment of human disease. Given the

previously discussed importance of multi-phenotype hub genes, it

is likely that perturbations of these genes would have major effects

in a biological network. Translating this observation to humans,

we hypothesize that the disruption of more highly connected genes

in the human metabolic network would be more likely to result in

a disease state. We sought evidence for this by evaluating whether

the epistatic connectivity of genes in the yeast model was predictive

of the role of their human homologs in genetic diseases. Indeed, we

observe a significant difference between the connectivity of yeast

homologs of human genes that have been associated with a genetic

disease, versus those that have not (Figure 8). While the statistical

significance is limited due to the small sample size, this result

provides support for the growing sentiment that majority of

human genetic disorders are a consequence of complex interac-

tions between numerous cellular components [1,21].

Discussion

We described the systematic generation of epistatic interaction

networks relative to all observable phenotypes in a genome-scale

model of yeast metabolism. Analysis of these networks revealed

that different metabolic flux phenotypes yield different sets of

interactions, and that a large set of phenotypes is required to

capture all interactions. The basis for these observations is that

different metabolic flux phenotypes capture different aspects of

gene function. This is likely a consequence of the complex wiring

of metabolic networks, which include multiple branching path-

ways, shared pools of commonly used metabolites and a high level

of interconnectedness between different metabolic processes:

Figure 8. Disease association of genes involved in many interactions across all metabolic flux phenotypes. The relevance of multi-
phenotype epistasis to human disease was explored by comparing the total number of (A) antagonistic and (B) synergistic interactions across all
phenotypes for those yeast genes with a human homolog in OMIM to those yeast genes with a human homolog that is not in OMIM. The
distributions of interaction counts are displayed as box-plots with the boxes encompassing the 25th to 75th percentiles, and the line at the median
value. Genes with a human homolog in OMIM have more antagonistic and synergistic interactions, with the difference for antagonistic interactions
being significant at p,0.05 (Signed-rank test, p = 0.022 (antagonistic), p = 0.071 (synergistic), n1 = 30, n2 = 19).
doi:10.1371/journal.pgen.1001294.g008
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seemingly remote processes on the metabolic chart may

nonlinearly affect a third readout process (the phenotype).

Furthermore, because of this complexity, the relationships

between different genes and processes may not be easily captured

by straightforward patterns, as indicated by the observation that

the same genes can interact synergistically relative to some

phenotypes and antagonistically relative to others.

From a functional genomic perspective, the results imply that,

in future studies of epistasis, the set of observed phenotypes could

be selected so as to influence the set of interactions identified and

to maximize insight into the functional organization of the

biological process of interest. While the focus here has been on

metabolism, this concept can be generalized to other types of

biological networks. For instance, mRNA transcript levels may be

the most appropriate phenotype to tease out the logic of

transcriptional regulatory networks [37] and phosphorylation

states the most relevant for signal transduction pathways.

Furthermore, our results demonstrate that the particular mRNA

levels or protein phosphorylation states monitored should depend

on the particular regulatory module or transduction pathway of

interest. An additional layer of complexity that has not yet been

addressed here is the dependence of epistatic networks on

environmental conditions. As hinted to before (Supplementary

Figure 3 in [6]) epistatic networks will likely vary under different

conditions. Hence, future extensions of the current work may

explore the complexity and significance of environmental

conditions as a fourth dimension in the epistatic matrix of

Figure 1.

From an evolutionary perspective, we found that the number of

epistatic interactions with respect to multiple metabolic flux

phenotypes is strongly anti-correlated with the genes’ evolutionary

rates and expression levels. This anti-correlation is larger than

found with the number of epistatic interactions relative to growth

phenotype only. On the surface this result seems surprising, given

that growth rate and fitness are often taken to be synonymous with

one another, and genes that have a large impact on fitness would

be expected to evolve slower. However, one must consider that

growth in the model is based solely on the capacity to produce

biomass components, while fitness in an organism’s natural

environment is assuredly more complex. An organism’s success

(in other words, its fitness) likely depends on the complex interplay

of a multitude of biological properties, including the proportions

and efficiency of resources utilized, the choice of secreted

byproducts (which can influence the environment and the

interactions with other species), and how fluxes are managed in

the face of varying nutrient availability. Thus, the apparently

reduced importance of the growth flux, and conversely, the

increased importance of all metabolic phenotypes, may simply be

reflective of the relative simplicity of growth in the model, when

compared to the complexity of growth in the wild. More broadly,

our results raise the possibility that the apparent robustness

observed in the insulated environment of the laboratory may not

translate to an organism’s natural environment, where additional

constraints exist with respect to not just how fast one grows, but

the precise manner in which this is accomplished.

A potential limitation of past and present, computational and

experimental studies of the evolutionary impact of epistasis may lie

in the use of gene deletions as the mutation relative to which

epistasis is detected. While gene deletion mutations have been

effective in terms of uncovering functional dependencies and the

evolutionary constraints imposed by these dependencies, left

unanswered is the evolutionary impact of epistasis relative to

smaller perturbations to gene function. It is these minor

perturbations, such as those caused by amino acid substitutions

or stochastic fluctuations in protein levels that the cell must

constantly confront. If epistasis relative to these small perturba-

tions is as ubiquitous as has been observed relative to gene

deletions, this begs the question as to how the cell copes with the

complexity of a large number of long-distance nonlinearities

affecting virtually every metabolic function. While experimental

studies have begun to address this question [38], perhaps

computational frameworks such as flux balance analysis can be

used to extend these analyses to the genome-scale. For flux balance

analysis, or any computational framework, to adequately address

this problem much work will have to be done to more fully

understand the phenotypic consequences of small genetic

perturbations.

While our current analysis is purely computational, we

anticipate that xperimental measurements of interactions based

on multiple metabolic phenotypes will be increasingly feasible and

valuable in the near future. Our analysis provides predictions

about the properties of multi-phenotype epistatic networks, in

addition to a plethora of specific interaction predictions to which

these future experiments can be compared (data downloadable at

http://prelude.bu.edu/multi-phenotype-epistasis). Finally, being

the first genome-scale analysis of multi-phenotype epistatic

networks, we hope that the groundwork we have laid with respect

to quantifying, discretizing and analyzing multi-phenotype epi-

static interaction networks will aid future experimental and

computational studies using similar approaches to help unravel

the functional complexity of biological systems.

Materials and Methods

Flux balance analysis
To enable our study of multi-phenotype epistasis at a genome-

scale we utilized flux balance models [24]. Specifically, to compute

steady state reaction rates (the fluxes, vi) in deletion mutants, we

used the iLL672 yeast stoichiometric reconstruction. Flux balance

models take as input the stoichiometry of all known metabolic

reactions in the modeled organism, along with possible constraints

on flux ranges, and through a Linear Programming optimization

step provide predictions of fluxes through each metabolic reaction.

The complete stoichiometry of an organism is typically represent-

ed mathematically as the stoichiometric matrix, S. Each row i of

the matrix S represents a metabolite, and each column j represents

a reaction, with an entry Sij representing the stoichiometric

coefficient of metabolite i in reaction j. The set of possible flux

solutions is constrained by imposing a steady state assumption

along with bounds on individual fluxes. The set of steady state

solutions is described mathematically as the null space of the

matrix S, and dictates that the production of each metabolite is

equaled by its consumption. Bounds on individual fluxes are

described by inequality constraints, and are used to model known

limitations, such as nutrient availabilities, reaction reversibility and

maintenance requirements. Constraints on nutrient limitation in

the present study were set so as to mimic as closely as possible the

media conditions from a recent study by Blank et al. [30]. This

condition was selected since it allowed us to use experimental flux

data from that study to perform more accurate flux predictions

throughout our work (See below). Upon setting the linear

constraints, a particular flux solution is typically computed by

searching the optimal value of a given linear combination of the

fluxes. Previously utilized optimization criteria are maximal ATP

production [39], minimization of total flux [40], and the most

commonly used maximization of biomass production [41].

Formally, this can be expressed as a Linear Programming (LP)

problem:
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max
XR

r

cr
:vr

s:t: S:v~0

ajƒvjƒbj

where cr is the coefficient of flux r in the objective function (r = 1,

…, R, with R is the total number of reactions), and aj and bj are the

upper and lower bounds on reaction j, respectively. Because of the

nature of our study, accurate predictions for all individual fluxes

are desirable. Hence, we wanted our flux predictions to match

available experimental data as closely as possible. To this end we

evaluated several optimization criteria for predicting fluxes in

deletion mutants by comparing flux predictions to a previously

released set of experimentally measured fluxes in yeast single

deletion mutants [30] (see Text S1). Our evaluation demonstrated

that the most accurate optimization criteria utilized the previously

described Minimization of Metabolic Adjustment (MOMA)

criteria [29], along with an experimentally constrained wild type

solution [24]. In effect, this criterion assumes that upon a gene

deletion, fluxes will undergo a minimal rearrangement, compatible

with the flux constraints imposed by the gene deletion. We found

that the performance of this approach is highly dependent on the

accuracy of the wild-type solution from which the distance is

minimized. Therefore the wild type fluxes were computed using

the following LP optimization:

min
XR

r

jvWT
r j

s:t: S:vWT~0

ajƒvWT
j ƒbj

v
exp
j {(v

exp
j
:d){ejƒvWT

j ƒv
exp
j z(v

exp
j
:d)zej

where v
exp
j is the experimentally measured value for flux j, d is a

parameter that describes the stringency of the requirement

(currently set to 0.10, as done previously [24]) and e represents

the error associated with the experimental measurement. This

approach identifies, among all states compatible with the

experimentally measured fluxes, the one with minimal overall

flux. Mutant fluxes were computed by constraining to zero the flux

through any reaction requiring the protein product of the deleted

gene(s), and then identifying the flux solution with the minimal

Manhattan distance from the wild type flux solution vWT. The

optimization problem, which can be solved using LP, is formulated

as follows:

min
XR

i~1

jvKO
r {vWT

r j

s:t: S:vKO~0

ajƒvKO
j ƒbj

vKO
gi

~0

where vKO
gi

represents the flux(es) requiring the protein product of

gene gi. This approach for determining mutant fluxes has been

described in detail elsewhere [24]. All LP calculations were

performed using the software Xpress, under free academic license.

Filtering of genes used analyses
From the total set of genes present in the model, only a subset

was used in our analyses. First, all essential genes were excluded, as

by definition they cannot participate in any epistatic interactions

when considering gene deletion mutations. Second, for genes

assigned to complexes in the model, only a single representative

gene from the complex was used. This was done because

complexes are treated in a trivial way in the model, wherein

removal of any gene in the complex is assumed to have the

equivalent effect of disabling the complex. Finally, only genes

whose deletion affected at least one metabolic flux relative to the

wild-type were included. This filter was applied in response to the

trivial way in which isozymes are treated in the model, wherein

complete backup is assumed.

Calculation of epistatic interactions
The predicted fluxes for all single and double gene deletions can

be represented as a three-dimensional matrix V, whose element Vijk

indicates the normalized k-th flux for the deletion of genes i and j

(single mutants being represented by the diagonal elements i = j). The

three-dimensional matrix of epistatic interactions, E, is in turn

defined by measuring how much the flux for each double mutant

differs from expectation, based on the flux in the corresponding

single mutants. Specifically, we define an element of E as Eijk = Vijk –

F(Viik, Vjjk), where the specific shape of the function F is discussed in

the next section. The element Eijk represents the interaction between

genes i and j relative to the phenotype k. Two genes i and j were

considered to have an epistatic interaction relative to phenotype k if

|Eijk|.ssk, where sk denotes the standard deviation for the

distribution Eijk values across all pairs (i,j). For assessing total

interaction coverage and process interaction patterns a value of

s = 1.0 was used, so as to provide a cleaner picture by retaining only

the most high confidence interactions. For the evolutionary rate

analysis, a value of s = 0.5 was used, as we deemed the inclusion of

weaker interactions to be conceptually important here. Note that

none of the major conclusions change with respect to varying of s (see

Figures S5 and S10 for sensitivity analysis relative to s). Note that flux

values were rounded to 5 digits after the decimal point, in order to

avoid numerical errors associated with the optimization software.

Metrics of epistasis (shape of the function F)
To identify an appropriate metric for quantifying epistasis with

respect to metabolic phenotypes, we evaluated two commonly

used metrics, as well as a newly defined one. The two previously

applied metrics correspond to a multiplicative definition and an

additive definition of epistasis respectively. The multiplicative

metric assumes that the expected wild-type-normalized phenotype

(flux) change for the double mutant is the product of the

corresponding changes for the two single mutants. The additive

metric, on the other hand, assumes that the expected double

mutant change is the sum of the two individual mutant changes

(see Text S1 and reference [8] for details). The novel metric we

developed is a Z-score based metric that quantifies the difference

in the effect of a mutation in the wild type and mutant

backgrounds (See Text S1 for details).

Classes of epistasis
All interactions were classified as either antagonistic or

synergistic. In general, an interaction was deemed as antagonistic

if the phenotype of the double mutant was less severe than

expected based on a multiplicative definition and as synergistic if

the double mutant phenotype was more severe than expected (See

Text S1 for details).
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Ka/Ks analysis
For our analysis of the relationship between the number of

epistatic interactions associated with perturbed genes and the ratio

of the rate of non-synonymous substitutions to the rate of

synonymous substitutions (Ka/Ks), we computed the total number

of synergistic and antagonistic interactions associated with 39

genes across 293 flux phenotypes. The 39 genes were selected on

the basis of Ka/Ks data being available from a previous study

[42]. Statistical tests were performed as described in figure legends.

Partial correlation analysis was done to control for single mutant

fitness defects, metabolic network connectivity and codon bias (See

Figure S11).

Relationship between multi-phenotype epistasis and
human disease

In order to assess the potential relevance of multi-phenotype

epistasis to the manifestation of human disease the number of

epistatic interactions was compared between yeast genes that have

a human homolog in Online Mendelian Inheritance in Man

(OMIM) database [43] and those genes that have a human

homolog that is not in the OMIM database. Human homologs of

yeast genes were determined based on the Kyoto Encyclopedia of

Genes and Genomes [44]. The OMIM morbid map data set was

downloaded on April 9th, 2009.

Supporting Information

Figure S1 Correlation between predicted and experimentally

measured fluxes. Experimentally measured fluxes through 36

reactions from central carbon metabolism, in 13 single gene

deletion mutants, are plotted against corresponding model

predictions on a log-log scale (in units of mmol/grDM h). Model

predictions were made with an experimentally constrained variant

of the minimization of metabolic adjustment algorithm (See Text

S1). Overall good agreement was found for all mutants, with

Spearman rank correlation coefficients ranging from 0.90 to 0.99.

A more detailed discussion of model predictions can be found in

reference [1] in Text S1.

Found at: doi:10.1371/journal.pgen.1001294.s001 (0.39 MB TIF)

Figure S2 Metrics for quantifying epistasis. Three metrics of

epistasis were compared based on their abilities to accurately

identify epistatic interactions, with respect to metabolic flux

phenotypes. In addition to previously utilized multiplicative and

additive definitions, a novel Z score metric was evaluated. (A) The

additive, multiplicative and Z score metrics were assessed based on

their propensity to generate epistasis profiles for genes, such that

genes having similar profiles tend to function in the same

metabolic process. Specifically, for a given phenotype and epistasis

metric, all gene pairs were ranked based on the Pearson

correlations between vectors representing the epistatic interactions

of each gene with all other genes. Next, the mean sensitivity and

specificity across all phenotypes were computed at different rank

cutoffs. An interaction was counted as a true positive if the pair of

genes participated in at least one common metabolic process, with

process membership being defined in the iLL672 stoichiometric

model. The mean sensitivity is plotted against 1-specificity. This

plot indicates that the three metrics on average perform similarly

across all phenotypes. (B) Despite the similar performance of the

three metrics, we observed that all the metrics vary in their

performance across different phenotypes. For example, looking at

the 100 gene pairs with the most correlated epistasis vectors, with

respect to each different phenotypes, revealed that the number of

gene pairs that function in the same metabolic process varies

widely, depending on the phenotype considered. In Figure S2B

each circle represents a different phenotype, with the x axis

representing the number of pairs in the top 100 sharing a process

when correlations are computed between vectors of multiplicative

values of epistasis, and the y axis representing the number of pairs

in the top 100 sharing a process when correlations are computed

between vectors of Z score values. It can be seen that regardless of

metric, a similar number of gene pairs sharing a metabolic process

are identified. On the other hand, for both metrics, the number of

gene pairs sharing a metabolic process varies greatly with the

phenotype considered.

Found at: doi:10.1371/journal.pgen.1001294.s002 (0.65 MB TIF)

Figure S3 Classes of epistasis. Different classes of epistasis

(synergistic/red and antagonistic/blue) were designated based on

the flux changes in single and double mutants, relative to the wild-

type. Delineation of classes was based on the approach detailed in

reference [9] in Text S1. (A) In previous studies using flux balance

models to study patterns of epistasis with respect to the growth

flux, interactions were limited to either negative synergistic or

positive diminishing returns. This is a consequence of the

assumption of optimal growth in the wild-type and mutants.

Specifically, because of the optimality assumption, the implemen-

tation of an additional gene deletion could not result in increased

growth, hence limiting the scope of interaction classes. (B,C) In the

current study, all metabolic fluxes are considered as phenotypes.

As non-growth fluxes are free to change in any direction upon

gene deletion, the number of possible interaction classes expands

to eight. Flux v1 (B) decreases in response to the deletions of genes

x and y individually, but is unconstrained in the way it could

change in the double mutant. The class of interaction is

determined by the flux of v1 in the double mutant, with the

classes of interactions in different ranges noted on the figure. Flux

v2 (C) increases in response to the deletions of genes x and y

individually, but similar to v1, is unconstrained in how it may

change in the double mutant. Again, the class of interaction is

determined by the flux of v2 in the double mutant.

Found at: doi:10.1371/journal.pgen.1001294.s003 (0.51 MB TIF)

Figure S4 Distributions of e relative to different phenotypes.

Distributions of multiplicative e are shown relative to the

phenotypes: (A) biomass production, (B) succinate secretion, (C)

glycerol secretion and (D) acetate secretion. Dotted red lines

indicate a single standard deviation threshold, which was used to

discretize interactions for several of the analyses in the main text.

Found at: doi:10.1371/journal.pgen.1001294.s004 (0.47 MB TIF)

Figure S5 Sensitivity of classification into interaction types to

standard deviation cutoff. Figure 3A in the main text shows

number of phenotypes relative to which pairs of processes interact

antagonistically, synergistically or mixed. The analysis in the main

text was performed with a cutoff for epistasis distributions of 1.0

standard deviations. Using this cutoff we observed fewer mixed

interactions than synergistic or antagonistic. We take this as

evidence that the previously reported observation of ‘‘monochro-

maticity’’ of epistatic interactions holds with respect to various

metabolic phenotypes. As the set of interactions found with respect

to any phenotype depends on the standard deviation cutoff used,

here we explore how the presence of mixed interactions depends

on the cutoff. (A) The percentage of process interactions which are

synergistic (red), antagonistic (blue) and mixed (yellow) are shown

at different standard deviation cutoffs. As the standard deviation

cutoff to discretize epistatic interactions becomes more stringent,

the number of mixed interactions decreases. (B) Process interac-

tions which are composed of only a single gene pair by definition

cannot be mixed, because mixed interactions occur when both
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classes of epistasis are observed among the gene pairs which

interact between two processes. To check for this potential bias

against mixed interactions we calculated the percentage of process

interactions composed of at least two interactions which are

synergistic (red), antagonistic (blue) and mixed (yellow). While this

adjustment results in an increase in the percentage of mixed

interactions, the same trend still holds whereby the percentage of

mixed interactions decreases with an increase in standard

deviation cutoff.

Found at: doi:10.1371/journal.pgen.1001294.s005 (0.74 MB TIF)

Figure S6 Metabolic process distribution of 83 phenotypes

required to capture all epistatic interactions. The distribution of

metabolic processes which the 83 flux phenotypes in Figure 4 from

the main text (blue) and all 293 considered flux phenotypes (gray),

belong to. The 83 phenotypes span all 30 metabolic processes,

indicating that monitoring all processes is required to identify all

epistatic interactions.

Found at: doi:10.1371/journal.pgen.1001294.s006 (0.78 MB TIF)

Figure S7 Positive synergistic interactions between glutamate

biosynthesis and the electron transport chain, with respect to

glycerol secretion. As detailed in the Text S1, the interaction

between glutamate biosynthesis and the electron transport chain,

with respect to glycerol secretion is a consequence of the fact both

the deleted genes and the phenotype are involved in mitochondrial

NADH/NAD balancing. In all metabolic network maps showing

fluxes for the wild-type and mutant backgrounds, blue nodes

represent metabolites, red nodes represent reactions and edges

represent either absolute or relative fluxes, whose magnitude is

represented by the thickness of the edge. For the wild-type, edges

represent the absolute flux, and in mutants, edges represent flux

changes relative to the wild-type. (A) In the wild-type oxidation of

NADH is performed via many different metabolic processes,

including glutamate biosynthesis, electron transport and glycerol

production. (B) The glt1 reaction, involved in glutamate

biosynthesis, yields glutamate at the expense oxidizing one NADH

to NAD. Upon deletion of glt1, glutamate is synthesized via the

NADPH dependent glutamate dehydrogenase reaction. The

NADH previously oxidized by glt1, is predicted to be oxidized

via the electron transport chain. (C) The deletion of cox1 disables

the electron transport chain. The NADH oxidized by the electron

transport chain in the wild-type is predicted to be oxidized via

ethanol production and glutamate biosynthesis. (D) In the absence

of both glt1 and cox1, the excess NADH is predicted to be

oxidized via the pathway leading to glycerol production. Hence,

the synergistic interaction with respect to glycerol occurs because

only in the double mutant is an increase in glycerol production

required to alleviate the redox imbalance.

Found at: doi:10.1371/journal.pgen.1001294.s007 (1.53 MB TIF)

Figure S8 Antagonistic interactions among phospholipids bio-

synthetic genes, with respect to myo-inositol uptake. As detailed in

the Text S1, the antagonistic interactions found among phospho-

lipids biosynthetic genes are a consequence of multiple pathways

existing for the production of certain phospholipids. In all

metabolic network maps showing fluxes for the wild-type and

mutant backgrounds, blue nodes represent metabolites, red nodes

represent reactions and edges represent either absolute or relative

fluxes, whose magnitude is represented by the thickness of the

edge. (A) In the wild-type, it is predicted that the Kennedy

pathway is used to synthesize phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) from choline taken up from the

media. (B/C) Upon deletion of any of the genes in the Kennedy

pathway, it is predicted that there is an alternate route by which

PC and PE are synthesized. This alternate route requires an

increased uptake of myo-inositol. Antagonistic interactions are

found because there are several gene deletions that are sufficient to

disable the Kennedy pathway, and cause this rerouting. Once a

gene required for Kennedy pathway activity has been removed,

deletion of a second gene in the pathways will have no additional

effect. Figure S8B shows that absolute fluxes upon disabling of the

Kennedy pathway and Figure S8C shows the fluxes in the mutant,

relative to the wild-type.

Found at: doi:10.1371/journal.pgen.1001294.s008 (1.68 MB TIF)

Figure S9 Positive synergistic interactions between serine

biosynthesis and the succinate dehydrogenase complex, with

respect to succinate secretion. As detailed in the Text S1, the

synergistic interactions between serine biosynthesis and succinate

dehydrogenase, with respect to succinate secretion, are a

consequence of the fact that alternate pathways for serine

biosynthesis produce different amounts of succinate as a

byproduct. In all metabolic network maps showing fluxes for the

wild-type and mutant backgrounds, blue nodes represent metab-

olites, red nodes represent reactions and edges represent either

absolute or relative fluxes, whose magnitude is represented by the

thickness of the edge. For the wild-type, the edges represent the

absolute flux and in mutants, edges represent flux changes relative

to the wild-type. (A) In the wild-type serine is produced via a

pathway originating from the glycolytic intermediate, 3-phospho-

glycerate. This pathway to serine biosynthesis does not directly

result in any succinate production. (B) The deletion of ser1 disables

the path to serine, originating from 3-phosphoglycerate. Instead,

serine is produced via a route originating from glyoxylate. The

glyoxylate required for serine biosynthesis is in turn produced via

the glyoxylate cycle, which results in the production of succinate as

a byproduct. This excess succinate is predicted to be consumed by

the succinate dehydrogenase reaction. (C) In the succinate

dehydrogenase mutant it is predicted that cytosolic TCA cycle

reactions can be used to bypass the missing reaction, and maintain

a functioning TCA cycle. (D) In the ser1/sdh double mutant, the

succinate produced via the glyoxylate cycle can no longer be

consumed by succinate dehydrogenase, and is instead predicted to

be secreted.

Found at: doi:10.1371/journal.pgen.1001294.s009 (1.87 MB TIF)

Figure S10 Influence of standard deviation cutoff on the anti-

correlation between the number of interactions involving a gene

across all phenotypes and Ka/Ks. Figure 7A in the main text

shows the distributions of correlations between the synergistic and

antagonistic interaction degree of genes across different pheno-

types and the genes Ka/Ks. However, the number of interactions

found for a given gene, with respect to a given phenotype, depends

on the standard deviation cutoff used to discretize epistasis

distributions. A cutoff of 0.5 standard deviations was used in

Figure 4, and here we demonstrate that the observed trend is

largely robust to the particular standard deviation cutoff used.

Found at: doi:10.1371/journal.pgen.1001294.s010 (0.48 MB TIF)

Figure S11 Impact of confounding factors on the anti-

correlation between the number of interactions involving a gene

and its Ka/Ks. (A) The distributions of Spearman rank r for the

correlation between the synergistic (red) and antagonistic (blue)

interaction degree of genes across different phenotypes and the

Ka/Ks of the genes is shown (same as Figure 7A). A signed rank

test was used to determine if the distributions were significantly

different from zero, with the result showing significance for both

synergistic (signed test p = 8.5610225, n = 293) and antagonistic

(signed test p = 2.2610254, n = 293) interactions. (B–D) To test

whether other known correlates of evolutionary rate could account

for the observed anti-correlation between epistatic interaction
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degree and Ka/Ks, partial correlation analysis was performed. (B)

Previous work has shown that the fitness impact of a gene’s

deletion is correlated to its evolutionary rate. Controlling for single

mutant fitness, as determined by Kuepfer et al. (see [3] in Text S1),

did not have a significant impact on either distribution (signed test

p = 7.3610221 (synergistic), 4.8610245 (antagonistic), n = 293). (C)

Other work has shown that degree of an enzyme in the metabolic

network is anti-correlated with evolutionary rate (see [11] in Text

S1). Controlling for enzyme degree as determined by Vitkup et al.

(see [11] in Text S1) did not have a significant impact on either

distribution (signed test p = 3.0610221 (synergistic), 2.5610240

(antagonistic), n = 293). (D) Finally, codon bias has been shown to

be a dominant correlate of evolutionary rate (see [12–14] in Text

S1). Controlling for Codon Adaption Index as determined by Wall

et al. (see [12] in Text S1), did impact the distributions, with the

significance being diminished (signed test p = 7.861022 (synergis-

tic), 2.4610231 (antagonistic), n = 293).

Found at: doi:10.1371/journal.pgen.1001294.s011 (0.51 MB TIF)

Figure S12 Sensitivity to standard deviation cutoff of the anti-

correlation between the number of antagonistic interactions of

genes relative to growth and the Ka/Ks of genes. The number of

interactions involving genes with respect to the growth flux is

correlated with the Ka/Ks of the genes. The number of

interactions found for a given gene depends on the standard

deviation cutoff used to discretize epistasis distributions, thus we

show the correlation for different standard deviation cutoffs in

order to demonstrate the robustness of the result to this parameter.

Irrespective of the standard deviation cutoff, there is no significant

negative correlation between the number of antagonistic interac-

tions with respect to growth and Ka/Ks. The lack of a significant

correlation also holds true when considering synergistic interac-

tions (data not shown).

Found at: doi:10.1371/journal.pgen.1001294.s012 (0.49 MB TIF)

Table S1 Toy example of Z score metric of epistasis. With the Z

score metric, epistasis between two mutations x and y, is computed

by comparing the effect of mutation x in the wild-type background,

to the effect of mutation x in the y knockout background. In this

example, the deletion of gene A is found to interact with the

deletion of gene z, because in the wild-type background the

deletion of A has the smallest impact on the phenotype compared

to all other mutations, while in the z mutant background, the

deletion of A has the largest phenotypic impact. See the Text S1

for specific details.

Found at: doi:10.1371/journal.pgen.1001294.s013 (0.14 MB PPT)

Text S1 Supporting Methods and Discussion.

Found at: doi:10.1371/journal.pgen.1001294.s014 (0.11 MB

DOC)
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