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Abstract

Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet
predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype
is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and
systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with
permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an
innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we
showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer
lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their
epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition
in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was
elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a
permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in
internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore
facilitate an improved understanding of the role of interindividual epigenetic variation in human disease.
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Introduction

Epigenetic mechanisms maintain mitotically heritable differ-

ences in gene expression potential without alterations in DNA

sequence [1], enabling the diverse cell types of multicellular

organisms to stably regulate appropriate patterns of gene

expression. The established role of epigenetic mechanisms in

cancer and various developmental syndromes has spurred

increasing interest in the role of epigenetic dysregulation in a

broad range of human diseases including neurological disorders,

cardiovascular disease, diabetes, and obesity. A major obstacle to

studying epigenetics and human disease, however, is the inherent

tissue specificity of epigenetic regulation. In studies of genetic

epidemiology, DNA from peripheral blood can be used to assay

for a genetic variant present throughout the body. Conversely,

epigenetic regulation [2,3] (and hence dysregulation) may be

tissue- and cell-type specific [4,5]; in many cases, therefore,

epigenetic information present in easily obtainable biopsy samples

will not provide insights into the epigenetic etiology of disease.

Another major obstacle is that interindividual epigenetic variation

may often be a consequence of genetic variation [6], making it

difficult to disentangle epigenetic and genetic causes of disease.

Hence, genomic loci at which systemic interindividual epige-

netic variation occurs independently of genotype would offer

major opportunities to advance our understanding of epigenetics

and human disease. Such loci have been identified in the mouse; at

murine metastable epialleles (MEs) epigenetic regulation is

established stochastically in the early embryo then maintained in

all germ-layer lineages, resulting in dramatic and systemic

interindividual variation in locus-specific epigenetic regulation.

Murine MEs cause obvious phenotypic variation among geneti-

cally identical mice. For example, the Agouti viable yellow (Avy) ME

affects the expression of the Agouti gene which regulates fur

pigmentation; isogenic mice heterozygous for Avy range from

yellow to mottled to brown [7]. Similarly, the Axin Fused (AxinFu)

ME confers epigenetic stochasticity upon Axin, resulting in

interindividual variation in tail kinking among isogenic AxinFu

heterozygous mice [8]. Rather than affecting fur color or tail

development, however, MEs in the human genome could affect

individual susceptibility to various diseases. Indeed, because agouti
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protein binds antagonistically to the melanocortin 4 receptor in the

hypothalamus [9], yellow Avy/a mice become hyperphagic and

obese, illustrating how epigenetic dysregulation at MEs can result

in metabolic disease.

Maternal nutrition and other environmental exposures before

and during pregnancy influence the stochastic establishment of

epigenetic regulation at murine MEs, with permanent phenotypic

consequences [10–12]. Hence, if MEs can be identified in humans,

they would not only facilitate an advanced understanding of the

role of epigenetics in human disease, but also provide excellent

candidate loci at which to test epigenetic pathways in the

developmental origins hypothesis, which proposes that early

environmental influences affect developmental mechanisms,

causing permanent metabolic changes that affect risk of adult

disease [4,13]. Of various interacting epigenetic mechanisms

including cytosine methylation in DNA, covalent histone modifi-

cations, and autoregulatory DNA binding proteins, DNA

methylation is recognized as the most stable epigenetic mark

[14], making it a prime candidate to mediate the life-long

epigenetic changes postulated in the developmental origins

paradigm [5,13].

Here, we have designed an innovative epigenomic screen based

upon the epigenetic characteristics of murine MEs, and have

screened for MEs in the human genome. We provide evidence

that MEs do exist in humans. At the loci we identified, systemic

interindividual variation in DNA methylation was confirmed in

autopsy samples, and stochastic establishment of epigenotype was

supported by epigenetic discordance within monozygotic (MZ)

twin pairs. Further, by studying children conceived during

different seasons in rural Gambia we show that, as in mice,

developmental establishment of DNA methylation at such sites is

responsive to maternal environment around the time of concep-

tion.

Results

We devised a human genome-scale screening approach based

on a definitive characteristic of murine MEs: systemic interindi-

vidual variation in DNA methylation [11,12]. Genomic DNA

from peripheral blood leukocytes (PBL) and hair follicles (HF)

(mesodermal and ectodermal lineages, respectively) of 8 healthy

Caucasian adults was screened for interindividual differences in

DNA methylation by methylation-specific amplification micro-

array [15] (MSAM). We employed a parallel, 2-tissue interindi-

vidual cohybridization design: the same four interindividual

comparisons (matched for age and sex) were performed in both

PBL and HF DNA (Figure 1). Consistent with previous studies

[2,16], most CpG sites assayed did not show measurable

interindividual differences in methylation (Table S1). Moreover,

interindividual differences were more often observed in a single

tissue than in both tissues (Table S1). Nonetheless, our approach

identified 107 genomic loci exhibiting concordant interindividual

MSAM differences in both tissues (Table S2A).

MSAM is based upon serial digestion of genomic DNA with the

methylation sensitive/insensitive isoschizomers SmaI and XmaI;

our screen could therefore detect genetic variation in addition to

systemic epigenetic variation. Indeed, initial attempts to validate

several candidates by bisulfite pyrosequencing failed to detect

differences in DNA methylation and instead identified single

nucleotide polymorphisms (SNPs) within SmaI/XmaI sites. We

bioinformatically annotated all potentially informative human

SmaI/XmaI intervals with a known SNP within either SmaI/XmaI

Figure 1. Two-tissue MSAM screen. (A) Agarose gel images
showing MSA product from PBL and HF genomic DNA of the 8
individuals included in the screen. MSA amplifies methylated SmaI/XmaI
intervals ranging from ,100 bp to 2 kb. (B) Results of the MSAM screen
at chromosome 2 for one pair of PBL and HF interindividual
cohybridizations. Each bar represents the average of all probes within
a single SmaI/XmaI interval on chromosome 2. The y axis is a log10

transformation of the P value of the interindividual signal ratio. Red and
blue bars represent positive and negative interindividual differences,
respectively, with P,1024. SmaI/XmaI intervals showing concordant
interindividual differences in PBL and HF are ME candidates; the
location of the hit at PAX8 is indicated.
doi:10.1371/journal.pgen.1001252.g001

Author Summary

There is growing interest in the possibility that interindi-
vidual epigenetic variation plays an important role in a
broad range of human diseases. The tissue-specificity of
epigenetic regulation, however, will in many cases make it
difficult to obtain the appropriate tissues in which to
perform large-scale studies linking epigenetic dysregula-
tion to disease. We have used an innovative two-tissue
DNA methylation screen to identify genomic regions that
exhibit interindividual epigenetic variation which occurs
systemically—i.e. similarly in all tissues. Such regions—
called metastable epialleles—have previously been iden-
tified in mice because they cause visible phenotypic
variation amongst genetically identical individuals. Indeed,
we found that even monozygotic twins show substantial
epigenetic discordance at these loci. Further, we show
that, as in mice, establishment of DNA methylation at
these putative human metastable epialleles is labile to
maternal environment around the time of conception.
Metastable epialleles should facilitate an improved under-
standing both of the role of interindividual epigenetic
variation in human disease and of the effects of early
environment on the establishment of human epigenotype.

Human Metastable Epialleles
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site (CCCGGG). SNPs that introduce a SmaI/XmaI site within a

consensus SmaI/XmaI interval also could affect the MSAM signal,

and were likewise annotated. Of 107 SmaI/XmaI intervals

originally identified in our screen, 34 were associated with SmaI/

XmaI SNPs, a significant over-representation (P = 1.361028). After

excluding these (Table S2B), we observed that the remaining 73

candidate MEs tended to localize in subtelomeric regions (Figure

S1A). Given the propensity for copy number variation in

subtelomeric regions [17], we identified all potentially informative

SmaI/XmaI intervals located within known human copy number

variants and segmental duplications. Nearly half (35) of the

remaining 73 candidate MEs were located within these genetically

variable regions, many more than expected by chance

(P = 2.1610223). After excluding these (Table S2C), the subtelo-

meric localization was eliminated (Figure S1B).

Excluding all candidate SmaI/XmaI intervals associated with

known SNPs, copy number variants, and segmental duplications is

extremely conservative, and likely excludes MSAM hits that are in

fact caused by interindividual variation in DNA methylation.

Indeed, 2 hits in which interindividual DNA methylation

differences had already been validated before we performed the

bioinformatic filtering were among the affected intervals: the

interval at ZNF696 is associated with a SmaI/XmaI SNP, and that

at FLJ20433 is within a copy number variant. These 2 loci were

retained in the final list of candidate MEs, bringing the number to

40. Of 13 we analyzed by bisulfite pyrosequencing, interindividual

variation in PBL and HF DNA methylation was confirmed in 8.

(Failure to validate could be caused by uncharacterized SNPs and

CNVs, inability to assay both of the informative SmaI/XmaI sites,

or low overall methylation levels.)

Our screen was performed using DNA from Caucasians, using 2

tissues that can be sampled relatively non-invasively. To verify

concordance across tissues derived from all 3 germ layers, and

determine if interindividual epigenetic variation at candidate MEs

is conserved across genetically divergent populations, post-mortem

liver, kidney and brain tissue was obtained from 8 Vietnamese

motor vehicle accident victims (healthy donors). Of the 8 genomic

regions with confirmed interindividual variation in DNA methyl-

ation in the Caucasian PBL and HF samples, 5 (BOLA3,

FLJ20433, PAX8, SLITRK1, and ZFYVE28) showed interindivid-

ual variation that was highly correlated among liver, kidney, and

brain in the Asian sample (Figure 2A–2E, and Table S3).

(SLITRK1 was exceptional in that methylation in brain did not

correlate with that in liver and kidney (Figure 2E). This is

potentially analogous to the murine AxinFu ME, at which DNA

methylation in tail differs from that in all other tissues [11].) For

comparison, we similarly analyzed regions within IGF2, GNASAS,

and IL10, at which DNA methylation in PBL DNA has been

associated with early famine exposure [18,19]. Although substan-

tial interindividual variation in DNA methylation was confirmed

at these loci, not a single statistically significant inter-tissue

correlation was found (Figure 2F–2H, and Table S3).

To identify specific genomic characteristics that may confer the

special epigenetic behavior of these loci, we bioinformatically

compared 6 kb windows encompassing the 40 putative ME SmaI/

XmaI intervals and 5000 ‘control’ intervals on the array. We

assessed several characteristics of associated CpG islands, as well as

the distribution of various classes of tranposable elements (Figures

S2, S3, S4, S5, S6, S7, S8, S9). The only significant finding was in

the distribution of long-terminal repeat (LTR) retrotransposons;

these were depleted at and distributed symmetrically around

control intervals, but preferentially localized downstream of

putative ME intervals (P = 0.001) (Figure S7). Although clearly

insufficient to explain epigenetic metastability, this finding is

noteworthy in that nearly all known murine MEs are associated

with intracisternal A particle LTR-retrotransposons [20,21].

Our aim was to identify interindividual epigenetic variation that

occurs stochastically; the multiple-tissue screening approach could,

however, also detect epigenetic variation associated with genetic

variation [6,22,23]. Indeed, while performing pyrosequencing

validation of one candidate ME, ZNF696, a proximal SNP was

identified that explained most of the interindividual variation in

methylation (Figure S10). To attempt to rule out such effects, one

could map the genomic region flanking each candidate ME to

identify haplotype blocks correlated with methylation status. But

effects of genetic variation on DNA methylation can occur in cis

over tens or even hundreds of kb [23,24], or in trans [25]. By

genetic mapping alone, therefore, it is virtually impossible to

exclude that the systemic interindividual epigenetic variation at

these select loci is attributable to genetic variation.

Epigenetic discordance within pairs of MZ twins would provide

support that interindividual epigenetic variation at our candidate

MEs is truly stochastic. We measured DNA methylation at

BOLA3, FLJ20433, and PAX8 in buccal DNA from 23 pairs of MZ

twins (Figure S11). At PAX8, although there was significant inter-

twin correlation, about half of the variance in DNA methylation

was not shared by co-twins. At BOLA3 and FLJ20433 there was no

inter-twin correlation. These data provide evidence that the

interindividual epigenetic variation at our candidate MEs is not

genetically mediated.

Another way to determine whether the epigenetic variation at

these loci is truly stochastic is to test for an early environmental

effect. Unlike interindividual epigenetic variation that is secondary

to genetic variation, the stochastic epigenetic variation at bona fide

MEs can be influenced by maternal nutrition during early

embryonic development [10–12]. Demonstrating an effect of

periconceptional nutrition on DNA methylation at the identified

genomic regions would therefore provide further support that they

are MEs. The rural villagers in West Kiang, the Gambia are

subsistence farmers whose nutritional status varies dramatically by

season. During the rainy season (July–November) depletion of food

stores from the previous harvest, combined with an intense

agricultural workload, causes negative energy balance and

consequent effects on reproductive outcomes [26]. Relative to

the dry season, average birth weight during the rainy season is

200–300 g lower and the incidence of small for gestational age

infants is doubled [27]. Importantly, seasonal effects on fetal

development persist to affect adult mortality in this population

[28], but the underlying biologic mechanisms remain unknown.

To test the hypothesis that periconceptional nutrition affects

developmental establishment of DNA methylation at candidate

MEs, we compared DNA methylation in peripheral blood

leukocytes (PBL) of Gambian children conceived during either

the dry or the rainy season. Effects of seasonality vary from year to

year; we therefore used retrospective birth weight data to identify

1991, 1994, 1995, 1997, and 1998 as years with strong effects of

seasonality (Figure S12). Individuals conceived during August–

September (rainy season) were compared with those conceived

during March–May (dry season), matching for sex and year of

conception (n = 30/season). Blood was collected from the children

at age 8.960.5 years (mean 6 sem); age at blood collection did not

differ between the season of conception groups. Preliminary

analyses of the DNA methylation data showed a highly significant

(season of conception) 6 (year of conception) interaction

(P = 0.005), indicating that the effect of seasonality was not

consistent in all years. Examining the effects in each year indicated

that 1997 was an outlier. Excluding individuals conceived in 1997

eliminated the (season of conception) 6 (year of conception)

Human Metastable Epialleles
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interaction (P = 0.17) and left n = 25 individuals per season,

representing four years (1991, 1994, 1995, and 1998) in

subsequent analyses.

Since maternal supplementation with dietary methyl donors

increases DNA methylation at MEs in murine offspring [10–12],

we anticipated that DNA methylation would be reduced in

Figure 2. Candidate MEs, but not control genes, show systemic interindividual variation in DNA methylation. (A–E) Scatter plots
illustrating inter-tissue correlation of interindividual differences in DNA methylation at candidate MEs BOLA3, FLJ20433, PAX8, SLITRK1, and ZFYVE28.
The top of each panel indicates the genomic region. Vertical lines represent CpG sites, and gray horizontal bars represent CpG islands. The CpG sites
covered by each pyrosequencing assay are indicated by an asterisk. All 5 candidate MEs show significant inter-tissue correlation, indicating systemic
interindividual variation in DNA methylation. (F–H) Control genes IGF2, GNASAS, and IL10 exhibit interindividual variation in DNA methylation
comparable to that of the candidate MEs, but there is no significant inter-tissue correlation. (Correlation coefficients and P values for all regions are
provided in Table S3.)
doi:10.1371/journal.pgen.1001252.g002
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individuals conceived during the nutritionally challenged rainy

season. We found the opposite. At all 5 putative MEs, DNA

methylation was significantly higher among individuals conceived

during the rainy season (Figure 3A). The overall effect of season of

conception on DNA methylation at the 5 MEs combined was

highly significant (P = 0.0001). (Detailed statistical analyses pro-

vided in Text S1.) Unlike persistent changes in DNA methylation

associated with periconceptional famine exposure [18,19] the

effect sizes at the genomic regions we identified were not subtle;

rainy season conception was associated with absolute methylation

increments of over 10% at both PAX8 and ZFYVE28 (Figure 3A).

To determine if the association of season of conception with DNA

methylation might be due to chance genetic differences between

the groups (such as, for example, differences in one carbon

metabolism), we compared DNA methylation at generic LINE1

elements (an indicator of genome-wide methylation [29]) and the

same 3 ‘control’ genes studied in the Asian sample (IGF2, GNASAS,

and IL10). Contrary to large studies which have associated early

famine exposure with subtle persistent changes in DNA methyl-

ation at IGF2, GNASAS, and IL10 [18,19], we found no effect of

season of conception in the non-ME control regions, either singly

or combined (Figure 3B), indicating that developmental establish-

Figure 3. DNA methylation at putative MEs is influenced by season of conception in the Gambia. (A) Percent methylation at putative
MEs BOLA3, FLJ20433, PAX8, SLITRK1, and ZFYVE28 in PBL DNA of Gambian children, relative to season of conception. Each circle represents one
individual, and the black lines represent group means (n = 25/group). At all 5 genomic regions, DNA methylation is higher in individuals conceived in
the nutritionally challenged rainy season (BOLA3 P = 0.03, FLJ20433 P = 0.03, PAX8 P = 0.02, SLITRK1 P = 0.006, ZFYVE28 P = 0.002; overall P = 0.0001). (B)
At generic LINE1 elements, as well as at 3 control genes (IGF2, GNASAS, and IL10), DNA methylation in these same individuals is not correlated with
season of conception (overall P = 0.24), indicating that establishment of epigenotype at the regions we have identified is particularly labile to
periconceptional environment.
doi:10.1371/journal.pgen.1001252.g003
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ment of DNA methylation at MEs is exceptionally sensitive to

maternal environment.

The overall effect of season of conception at these putative MEs

is especially compelling given that each individual’s DNA

methylation at one was generally not predictive of methylation

at others (Table S4), meaning that stochasticity at these genomic

regions is not coordinated. Underscoring the broad relevance of

these findings, the genomic loci we identified exhibit similar

epigenetic behavior across genetically distinct human populations

(Figure S13) indicating that they are ancestral features of the

human genome.

Discussion

Murine MEs have attracted extensive study because of their

mysterious ability to cause dramatic phenotypic variation among

isogenic animals [7,21,30,31]. Viewed by some as an epigenetic

oddity, however, their relevance to humans has been questioned

[32]. Here, we have for the first time identified elements that are

likely to be human MEs, which are characterized by stochastic and

systemic interindividual epigenetic variation. These loci exhibit

similar interindividual variation in DNA methylation across tissues

derived from all 3 germ layers of the early embryo, indicating

setting of epigenotype prior to gastrulation. Epigenetic discordance

at these genomic loci within MZ twin pairs indicates that

establishment of their epigenetic state is determined not geneti-

cally, but stochastically. Further, as at murine MEs [10–12],

developmental establishment of epigenotype at these loci is

exquisitely sensitive to maternal periconceptional environment.

Interindividual epigenetic variation that is both systemic and

stochastic has not been previously documented in humans. In

many cases human interindividual epigenetic variation has been

found to be caused by genetic variation [6,22,23]. Recent studies

of MZ twin pairs have identified epigenetic differences that occur

independent of genetic variation [33,34], but since those

differences were studied only in specific tissues it is not clear if

they occur systemically. Our results suggest that interindividual

epigenetic variation is more often tissue-specific than systemic.

Only about half of the SmaI/XmaI intervals showing interindivid-

ual variation in PBL, and 15% of those showing interindividual

variation in HF, exhibited consistent interindividual variation in

both tissues (Table S1).

A key issue is whether establishment of epigenotype at the loci

we have identified is truly stochastic. One might argue that the

systemic interindividual differences in DNA methylation could be

caused by genetic variation, but two pieces of evidence suggest

otherwise: the epigenetic discordance within MZ twin pairs, and

the effect of season of conception. We must, however, note some

caveats. Since we studied DNA methylation in only one tissue

from MZ twins, we can not definitively say the observed MZ twin

discordance arose in the very early embryo. Future studies should

examine ME methylation in MZ twins using DNA from multiple

tissues representing the three embryonic germ layers. Likewise, in

the Gambian studies, we studied DNA methylation in only one

tissue. Hence, although the most parsimonious interpretation of

the season of conception effect on PBL DNA methylation is an

environmental influence on the early embryo, other interpreta-

tions are plausible. For example, if 3 months of age (i.e. 1 year

after conception) is a critical window for developmental epigenet-

ics in PBL, there could be a seasonal influence on these processes.

Alternatively one could postulate reverse causality, whereby

physiological changes induced by seasonal influences on develop-

ment lead to secondary alterations in DNA methylation. Studying

the effect of season of conception on ME DNA methylation in

multiple tissues (which is currently underway) will test both of these

alternative hypotheses. It is unlikely that postnatal seasonal effects

or secondary effects of altered physiology would induce similar

epigenetic changes in diverse tissues.

Although DNA methylation at the PAX8 ME was significantly

correlated within MZ twin pairs (Figure S11), this does not

necessarily indicate a genetic effect on epigenotype. If setting of

epigenotype at MEs occurs prior to blastocyst cleavage during MZ

twinning, both members of an MZ twin pair could carry

concordant epigenetic states at MEs, despite stochastic establish-

ment. Given the different timing of blastocyst cleavage in

dichorionic vs. monochorionic MZ twins, examining ME DNA

methylation among these different subtypes of MZ twin pairs may

prove informative.

The identification of human MEs should advance the study of

epigenetics and human disease. Because individually-variable

DNA methylation at these loci exhibits little tissue-specificity,

epigenetic dysregulation in pathophysiologically relevant tissues

such as thyroid and brain, for example, can be inferred from PBL

DNA. Indeed, among the putative MEs we identified are genes

implicated in hypothyroidism (PAX8) [35], and Tourette’s

syndrome (SLITRK1) [36]. Such sites therefore represent excellent

candidate loci for future studies of epigenetic epidemiology which

will utilize existing DNA sample collections to explore associations

between epigenetic variation and human disease. Moreover, given

their epigenetic lability to early environmental influences, human

MEs may enable the elaboration of mechanistic pathways linking

early environment to later risk of disease [4,37]. To the extent that

epigenetic variation at MEs is associated with diseases such as

cardiovascular disease, type-2 diabetes, and obesity, we may better

understand how early nutrition and other environmental expo-

sures predict adult risk of these diseases [5].

By no means should it be inferred that MEs are the sole

genomic substrate for early environmental influences on epigenetic

regulation. Extensive data from animal [38,39] and human studies

[18,19] indicate that environmental factors affect epigenetic

processes over a broad range of developmental periods, with

long-term consequences. Stochastic establishment of epigenotype

at MEs, however, does appear to be particularly sensitive to

periconceptional environment. For example, by studying 60

famine-exposed humans and their unexposed same sex-siblings,

Heijmans et al detected persistent effects of periconceptional

famine exposure on PBL DNA methylation at the IGF2 DMR

[18], GNASAS, and IL10 [19]. Here, we show that seasonal

variation in periconceptional nutrition – likely a milder perturba-

tion – induced significant changes in DNA methylation at all 5

putative MEs studied, but not at the IGF2 DMR, GNASAS, or

IL10. Moreover, unlike epigenetic changes that occur only in

specific tissues, environmentally-induced epigenetic changes at

MEs affect the entire body, and are therefore more likely relevant

to human physiology and disease.

Enormous interest in transgenerational epigenetic inheritance

has recently been stimulated by provocative data indicating that

environmental influences during development might affect the

health of subsequent generations [40,41]. Since transgenerational

epigenetic inheritance is known to occur at murine MEs [7,30], it

is logical to consider whether MEs may likewise provide

opportunities to understand non-genetic inheritance in humans.

Our findings raise additional questions for future study. First,

what causes epigenetic metastability? The stochastic establishment

of epigenotype at MEs must fundamentally be a consequence of

the genetic sequence in these genomic regions. Indeed, known

murine MEs result from transposition of retrotransposons in or

nearby genes [21]. But among the genomic loci identified here, no

Human Metastable Epialleles
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obvious genetic signature of epigenetic metastability was detected.

Since our screen was limited to genomic regions containing

multiple SmaI/XmaI sites, we detected only a subset of human

MEs. Our parallel, 2-tissue screening approach is, however,

adaptable to various epigenomic platforms and should enable the

identification of many more human MEs. It may then be possible

to gain a better understanding of the molecular basis of epigenetic

metastability. Second, we still know very little about exactly how

maternal nutrition before and during pregnancy affects establish-

ment of epigenotype at MEs. Contrary to our expectations,

Gambian individuals conceived in the nutritionally challenged

rainy season gained DNA methylation at these putative MEs,

emphasizing that our original conjecture that hunger would be

associated with a functionally-limiting methyl donor deficiency

was overly simplistic. In light of earlier findings that maternal

blood folate levels paradoxically increase during the rainy season

in the Gambia [42] (potentially due to increased consumption of

leafy vegetables), our data suggest that rather than energy intake,

availability of one-carbon donors is of key importance. Studies in

mouse models and humans are currently underway to improve our

understanding of how maternal dietary and other environmental

exposures (e.g. insecticides [43] or naturally occurring toxins [44])

affect developmental epigenetics in the preimplantation embryo.

In summary, we have provided strong evidence that stochastic

establishment of epigenetic regulation occurs at specific human

genomic loci, resulting in interindividual epigenetic variation that

affects tissues from all 3 germ layers and persists to adulthood. We

have shown that seasonally variable maternal periconceptional

exposures affect this stochastic process. Systemic and persistent

epigenetic imprints at these loci are likely to be found among

diverse human populations that experience seasonal variation in

nutritional sufficiency [27,45,46] or other environmental expo-

sures during early embryonic development.

Materials and Methods

Sample collection and DNA isolation
Caucasians. Tissue samples from 8 healthy adults (Table S5)

were collected in accordance with institutional IRB regulations.

Peripheral blood leukocytes were isolated by ficoll gradient

centrifugation. Hair follicles (30–50) were obtained by plucking

scalp, eyebrow, or shin hair from the same 8 individuals. Tissues

were stored at 280uC until isolation of genomic DNA by

proteinase-k digestion and phenol-chloroform extraction [47].

Asians. Post-mortem liver, kidney, and brain tissues from 8

Vietnamese motor vehicle accident victims (Table S6) were

obtained from a human tissue bank (ILSbio, LLC, Chestertown,

MD, USA). The tissues were collected under IRB approved

protocols ensuring donor confidentiality. Tissues were flash-frozen

upon excision and stored at 280uC until isolation of genomic

DNA by proteinase-k digestion and phenol-chloroform extraction

[47]. Before DNA isolation, tissue was blotted on absorbent paper

to remove excess blood.

MZ twins. Malawian twins were being followed in a special

clinic as part of a larger study of the gut microbiota in

malnutrition. Permission for sample collection and testing was

obtained from the College of Medicine Research and Ethics

Committee, University of Malawi. Saliva samples (Table S7) were

collected using foam swabs inserted into the buccal cavity until

saturated, usually for 3–5 minutes, and then placed in the Oragene

preservative (DNA Genotek Inc, Kanata, Ontario). DNA was

isolated as recommended by the manufacturer (DNA Genotek).

Gambians. The DNA samples were part of a DNA collection

from all the residents of 3 rural villages in West Kiang, namely

Keneba, Kantong Kunda and Manduar, the Gambia; the field

work and DNA collection have been described [48]. Peripheral

blood (5–10 ml) was extracted from consenting subjects (Table S8)

according to guidelines established by the Gambia Government/

MRC Laboratories Joint Ethics Committee. Children were

generally healthy at the time of blood sampling, with no overt

clinical infection. DNA extraction was performed in MRC

Keneba, by a salting-out procedure [49]. DNA samples were

transported to the MRC Human Genetics Laboratory at Fajara

for quantification and stored at 220uC.

MSAM screen
MSAM was performed as previously described [15], using a

starting quantity of 0.5 mg genomic DNA. MSA products from 2

individuals were differentially dye-labeled and cohybridized to a

custom 4644k array. Array probes were within potentially

informative SmaI/XmaI intervals (60–1500 bp) and were selected

from Agilent’s proximal promoter and CpG island probe libraries

(Agilent Technologies, Santa Clara, CA, USA). The 43,222 probes

on the array cover 19,187 SmaI/XmaI intervals (average 2.3

probes/interval). Genomic coordinates are based upon hg18

(NCBI Build 36.1). Relevant details of the microarray experiment,

including experimental design, microarray probe listing, and

hybridization data sets are available in the GEO database (http://

www.ncbi.nlm.nih.gov/geo/) (accession # GSE19823).

Four 2-individual MSAM comparisons (Table S5) were

performed using PBL DNA, and the same four 2-individual

comparisons were performed using HF DNA (incorporating a dye

swap) (Table 1).

The analysis was performed at the level of SmaI/XmaI interval;

average and median signal intensity, signal ratio, and P value of all

probes within each SmaI/XmaI interval were calculated. Candidate

MEs were identified as follows. For a given paired comparison (say

comparison A) we selected all SmaI/XmaI intervals with both an

average A1/A2 signal ratio .1.8 or ,0.556 and median

P,0.0002 in both PBL and HF. All candidates identified in this

manner were further filtered to eliminate those in which the 2

tissues showed discordant interindividual ratios in any of the other

pairwise comparisons; only SmaI/XmaI intervals for which the ratio

of the PBL:HF signal ratios was .0.445 and ,2.25 for all

comparisons (A, B, C, D) were retained. (If there is no tissue-

specificity in DNA methylation, this ‘ratio of ratios’ equals 1. The

maximum departure from this we allowed (2.25) corresponds to a

signal ratio of 1.5 in one tissue and 0.667 in the other.) This

procedure resulted in the 107 candidate MEs listed in Table S2A.

Bioinformatic analyses
Identification of SmaI/XmaI intervals potentially

affected by genetic variation. We identified 90,807 SmaI/

XmaI human genomic intervals between 60–1500 bp based on the

hg18 genome version. We then used the UCSC Genome Browser

Table 1. Four 2-individual comparisons performed using HF
DNA (incorporating a dye swap).

Comparison Individuals

A A1 vs. A2

B B1 vs. B2

C C1 vs. C2

D D1 vs. D2

doi:10.1371/journal.pgen.1001252.t001
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SNPs (129) track (http://genome.ucsc.edu/cgi-bin/hgTrackUi?g =

snp129) to identify those in which a SNP disrupts a SmaI/XmaI site

(N = 10,651), introduces a new XmaI/SmaI site within the consensus

interval (N = 867), or both (N = 425). We used the Centre for

Applied Genomics Database of Genomic Variants, version vari-

ation.hg18.v7.mar.2009.txt (http://projects.tcag.ca/variation/) to

identify SmaI/XmaI intervals located within CNVs, and the UCSC

Genome Browser Segmental Duplications track (http://genome.ucsc.

edu/cgi-bin/hgTrackUi?g = genomicSuperDups) to identify SmaI/

XmaI intervals located within segmental duplications. A total of 8631

SmaI/XmaI intervals were found to be located within CNVs or

segmental duplications.

Genomic features in vicinity of MEs. The genomic

contexts of the ME intervals (n = 40) and control intervals

(n = 5026) were investigated by determining the distance from

the midpoint of the intervals to genomic annotations within

3000 bp upstream and downstream. Genomic annotations were

obtained from the CpG island and RepeatMasker tracks from the

UCSC Genome Browser Human hg18 build (http://genome.ucsc.

edu/). All CpG islands in addition to SINE, Alu, LINE, LTR,

Simple Repeats and Low Complexity repeats were examined.

Quantitative analysis of DNA methylation
Site-specific analysis of CpG methylation was performed by

bisulfite pyrosequencing. Genomic DNA (0.5–2 mg) was bisulfite

modified [38] and pyrosequencing was performed as previously

described [50]. The quantitative performance of each pyrose-

quencing assay was verified by measuring methylation standards

comprised of known proportions of unmethylated (whole genome-

amplified) and fully methylated (SssI-treated) genomic DNA [50].

For initial validation of interindividual variation at candidate

SmaI/XmaI intervals, DNA methylation was, whenever possible,

measured at both SmaI/XmaI sites. Subsequent characterization

(measurements in other populations, etc) was performed in the

vicinity of the SmaI/XmaI site showing the greatest interindividual

variation.

We assessed interindividual variation in the Caucasian samples

at 13 of the 40 candidate MEs identified in the MSAM screen:

AK098581, AXIN2, BOLA3, FLJ20433, ITPKB, MN1, PAX8,

RCC1, SLITRK1, SOX10, ZNF561, ZNF696, and ZFYVE28

(primers listed in Table S9). In 5 of these (AXIN2, ITPKB, MN1,

RCC1, and SOX10) the pyrosequencing assays failed to confirm

interindividual variation in DNA methylation. ZNF696 was

excluded because it exhibited interindividual variation in methyl-

ation that was mostly explained by genetic variation at a

neighboring SNP (Figure S10). At the remaining 7 loci we

examined tissue-specificity of interindividual variation in the Asian

liver, kidney, and brain samples. Five (BOLA3, FLJ20433, PAX8,

SLITRK1, and ZFYVE28) exhibited significant inter-tissue corre-

lations in DNA methylation consistent with MEs. Two that did not

(AK098581 and ZNF561) were excluded from further consider-

ation.

Genotyping
We selected 48 autosomal SNPs with previously demonstrated

high reliability for genotyping on the Illumina platform and high

minor allele frequency (MAF,0.3) in the Yoruban HapMap

population (as the best surrogate we had for the Malawi

population). SNPs were selected to be physically distant from

each other. These were genotyped on all of the Malawian twin

samples. PREST (Pedigree RElationship Statistical Test) was used

to estimate the probability of the putative twins sharing 0, 1, or 2

alleles IBD (p0, p1, p2) based on the pairwise analysis of the 48

SNP markers, and the kinship coefficient estimated as

phi = 0.25*p1+0.5*p2. In the absence of genotyping error, true

MZ twins are expected to have p0 = p1 = 0 and phi = 0.5.

Statistics
Relative enrichment of candidate ME SmaI/XmaI intervals

associated with SmaI/XmaI SNPs, CNVs, and segmental duplica-

tions was analyzed by chi-square tests. Analysis of CGIs and

repetitive elements in the vicinity of MEs and control intervals was

performed by analysis of variance (ANOVA) (Proc GLM, SAS

Version 9.2). Inter-tissue correlations in interindividual variation

in methylation were assessed by Pearson correlation analysis (Proc

CORR, SAS).

A REML multifactorial ANOVA (JMP Version 8.0) was used to

assess factors affecting average methylation in the Gambian season

of conception analysis. Methylation was measured multiple times

within each individual for each locus and averaged, for a total of

539 averaged observations. Individual and locus were assessed as

random factors, with locus nested within locus type (ME or

control). Methylation was arcsine transformed to improve

normality. Normality was assessed by Shapiro-Wilk Tests for each

sample combination of gene and season of conception (18

combinations consisting of 30 individuals each). All samples were

statistically indistinguishable from normal distributions, after

sequential Bonferroni correction for carrying out 18 simultaneous

tests. One interaction, (season of conception) 6 (locus type) was

investigated as an a priori test.

Supporting Information

Figure S1 Localization of ME candidates to sub-telomeric

regions is due to genetic variation. ME candidates are indicated

by red tick marks. The sub-telomeric localization of SNP-filtered

ME candidates (A) is eliminated upon exclusion of known CNVs

and segmental duplications (B).

Found at: doi:10.1371/journal.pgen.1001252.s001 (1.09 MB TIF)

Figure S2 Length of associated CGIs is not different between

control (left panel) and ME (right panel) intervals.

Found at: doi:10.1371/journal.pgen.1001252.s002 (0.41 MB

TIF)

Figure S3 Average distance from associated CGIs is not

different between control (left panel) and ME (right panel)

intervals.

Found at: doi:10.1371/journal.pgen.1001252.s003 (0.39 MB

TIF)

Figure S4 Percent GC of associated CGIs is not different

between control (left panel) and ME (right panel) intervals.

Found at: doi:10.1371/journal.pgen.1001252.s004 (0.45 MB TIF)

Figure S5 Distribution of associated LINE elements is not

different between control (left panel) and ME (right panel)

intervals.

Found at: doi:10.1371/journal.pgen.1001252.s005 (0.58 MB TIF)

Figure S6 Distribution of associated SINE elements is not

different between control (left panel) and ME (right panel)

intervals.

Found at: doi:10.1371/journal.pgen.1001252.s006 (0.62 MB TIF)

Figure S7 Distribution of associated LTR retrotransposons in

the vicinity of control (left panel) and ME (right panel) intervals.

Compared to the symmetrical distribution of those near control

intervals, LTR retrotransposons occur preferentially downstream

of ME intervals (P = 0.001).

Found at: doi:10.1371/journal.pgen.1001252.s007 (0.51 MB TIF)

Human Metastable Epialleles

PLoS Genetics | www.plosgenetics.org 8 December 2010 | Volume 6 | Issue 12 | e1001252



Figure S8 Distribution of associated low complexity repeats is

not different between control (left panel) and ME (right panel)

intervals.

Found at: doi:10.1371/journal.pgen.1001252.s008 (0.49 MB TIF)

Figure S9 Distribution of associated simple repeats is not

different between control (left panel) and ME (right panel)

intervals.

Found at: doi:10.1371/journal.pgen.1001252.s009 (0.51 MB TIF)

Figure S10 Interindividual variation in DNA methylation is

predicted by genotype at ZNF696. The top panel shows average

percent methylation in Gambian PBL DNA at three CpG sites

measured at ZNF696 versus genotype at a neighboring A/G

polymorphism (dbSNP build 130 rs28529670) (A/A, n = 25; A/G,

n = 10; G/G, n = 5). The box plots indicate median (thick bar),

25th–75th percentiles (box), and 5th–95th percentiles (whiskers).

The bottom panel shows representative bisulfite pyrograms for the

three genotypes. A reverse sequencing primer was used; the A/G

SNP is therefore detected as T/C (upward arrows). The shaded

areas of the pyrograms encompass a C within a CpG site. Most

interindividual variation in DNA methylation at the locus is

explained by genetic variation at the A/G polymorphism.

Found at: doi:10.1371/journal.pgen.1001252.s010 (0.52 MB TIF)

Figure S11 Correlation within MZ twin pairs for percent

methylation at three MEs. Correlation within MZ twin pairs

(blue triangles) is compared with correlation among independent

replicate PCR and pyrosequencing measurements (red diamonds).

Significant inter-twin correlation is found at PAX8 (C), but in

every case MZ twins show biological variation that is much greater

than the measurement error.

Found at: doi:10.1371/journal.pgen.1001252.s011 (0.31 MB TIF)

Figure S12 Annual variation in the effect of seasonality on birth

weight in Keneba, the Gambia. Average birth weight during the

peak rainy season (August-September) is compared with that

during the peak dry season (March–May). Whereas some years

(such as 1993) show minimal effects of season of birth, we focused

on 1991, 1994, 1995, 1997, and 1998 as years with dramatic

effects of seasonality.

Found at: doi:10.1371/journal.pgen.1001252.s012 (0.20 MB TIF)

Figure S13 MEs exhibit similar variation in % methylation

across diverse human populations. Average % methylation at

BOLA3 (A), FLJ20433 (B), PAX8 (C), SLITRK1 (D), and

ZFYVE28 (E) is compared across Asians (n = 8), Caucasians

(n = 8), and Gambians (n = 20). The box plots indicate median

(thick bar), 25th–75th percentiles (box), and 5th–95th percentiles

(whiskers). Despite their genetic dissimilarity, these populations

exhibit a similar range of interindividual variation in DNA

methylation at each ME.

Found at: doi:10.1371/journal.pgen.1001252.s013 (0.71 MB TIF)

Table S1 Numbers of SmaI/XmaI intervals that showed tissue-

specific, non tissue-specific, or no interindividual variation in

MSAM signal.

Found at: doi:10.1371/journal.pgen.1001252.s014 (0.02 MB

XLS)

Table S2 S2A: Candidate MEs, unfiltered. S2B: Candidate

MEs, filtered for SmaI/XmaI SNPs. S2C: Candidate MEs, filtered

for SmaI/XmaI SNPs and genomic variants.

Found at: doi:10.1371/journal.pgen.1001252.s015 (0.05 MB

XLS)

Table S3 Inter-tissue correlation of interindividual variation in

DNA methylation at MEs and control genes.

Found at: doi:10.1371/journal.pgen.1001252.s016 (0.02 MB

XLS)

Table S4 Correlation matrix of average methylation in the

Gambian individuals (N = 50) at the five studied MEs. Each box

indicates the Pearson correlation coefficient (top) and the P value

(bottom). The two significant correlations are highlighted.

Found at: doi:10.1371/journal.pgen.1001252.s017 (0.02 MB

XLS)

Table S5 Caucasian individuals represented in the original

MSAM screen.

Found at: doi:10.1371/journal.pgen.1001252.s018 (0.02 MB

XLS)

Table S6 Asian individuals represented in the liver, kidney,

brain comparisons.

Found at: doi:10.1371/journal.pgen.1001252.s019 (0.02 MB

XLS)

Table S7 Malawian individuals represented in the MZ twin

studies.

Found at: doi:10.1371/journal.pgen.1001252.s020 (0.03 MB

XLS)

Table S8 Gambian individuals represented in the season of

conception comparisons.

Found at: doi:10.1371/journal.pgen.1001252.s021 (0.03 MB

XLS)

Table S9 Primers for bisulfite-sequencing assays.

Found at: doi:10.1371/journal.pgen.1001252.s022 (0.03 MB

XLS)

Text S1 Detailed statistical analyses.

Found at: doi:10.1371/journal.pgen.1001252.s023 (0.48 MB

DOC)
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