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Abstract

Genome-wide association studies (GWAS) often identify disease-associated mutations in intergenic and non-coding regions
of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed
associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To
identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide
Polymorphisms (SNPs) from the Human Gene Mutation Database (HGMD) that map to the untranslated regions (UTRs) of a
gene. Rather than using minimum free energy approaches (e.g. mFold), we use a partition function calculation that takes
into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome
disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states
(Hyperferritinemia Cataract Syndrome, b-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive
Pulmonary Disease (COPD), and Hypertension), we identified multiple SNPs in UTRs that alter the mRNA structural ensemble
of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize
and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural
ensemble. We observe in several cases (specifically the 59 UTRs of FTL and RB1) SNP–induced conformational changes
analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and
SNP combinations we identify constitute a ‘‘RiboSNitch,’’ that is a regulatory RNA in which a specific SNP has a structural
consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging
GWAS data and an analysis of the mRNA structural ensemble.
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Introduction

Genome-Wide Association Studies (GWAS) pinpoint mutations

associated to a disease state with single nucleotide precision [1–4].

In some cases, the molecular cause of the disease is evident from

the mutation data alone. For example, if the mutation results in a

premature stop codon, the production of a truncated protein is the

cause for the disease [5]. In a majority of cases, however, it is

difficult to identify the molecular cause of the disease from the

GWAS data alone [3,6–11]. This is especially true when

associations are identified in non-coding and intergenic regions

of the genome [10,11]. Since a majority of the human genome is

non-coding and intergenic, it is not surprising that many GWAS

studies are finding disease associations in such regions [12–14]. In

this study we aim to evaluate the role of mutation induced

structural changes in regulatory RNAs of the human genome and

their consequence on the disease state.

The central role of RNA as a major regulator of genetic

networks in the cell is now well established [15]. Furthermore, it is

estimated that up to 95% of the human genome is transcribed,

suggesting that a majority of mutations are transferred to the

transcriptome [1]. This study focuses on the potential structural

consequences of disease-associated mutations on the RNA

transcriptome, in particular single nucleotide polymorphisms

(SNPs) in the 59 and 39 UTRs of genes. UTRs are the regulatory

elements of genes, acting as controllers of translation and RNA

decay, as well as targets for RNA interference (RNAi) [16–18].

Since UTRs are readily transcribed, play a central role in post-

transcriptional regulation, and are integral to the mature mRNA,

they present an ideal starting point for studying the potential

structure/function relationships of disease-associated mutations on

the transcriptome.

Unlike highly structured RNAs such as self splicing introns [19],

Riboswitches [20], and the Ribosome [21], the UTRs of mRNAs

are not generally evolved to adopt single, well-defined structures.

Instead they adopt an ensemble of conformations best described

by a partition function, which is defined as the probabilities of all

possible base-pairs [22–24]. Most mutations in an RNA only have

local effects on the structural ensemble. A small subset of

mutations, however, have a large and global effect [22]. If a

disease-associated mutation belongs to the latter, it can suggest a

role for RNA structure in the molecular mechanism of the disease.

We make several assumptions in this study, which will be borne

out by the data presented below. These assumptions are:
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1.) Certain human disease states are caused by mutation

induced conformational changes in transcribed, regulatory

RNA molecules. If a disease-associated mutation causes a

large change in the ensemble of RNA structure, this suggests

RNA conformational change as a potential molecular cause

of the disease.

2.) Large regulatory RNAs generally adopt multiple conforma-

tions and it is critical to consider how mutations affect this

ensemble rather than just the minimum free energy

structure [25].

3.) A majority (.95%) of mutations result in only small, local

changes in the structure of an RNA.

4.) The same phenotype (disease) can be caused by different

mutations with varying degrees of effect on overall RNA

ensemble structure. A global analysis of the structural

consequences of all disease-associated mutations on a

regulatory RNA can pinpoint the regulatory region of the

RNA.

In this study we investigate known disease associated SNPs that

map to non-coding UTR regions of the human genome with

respect to their effect on the ensemble RNA structure. We identify

disease states in which the associated SNPs significantly alter the

RNA structural ensemble of the UTR. This analysis provides

insight into the potential molecular causes of several genetic

disorders including Hyperferritinemia-cataract syndrome [26], b-

Thalassemia [27,28], and Chronic Obstructive Pulmonary Disease

(COPD) [29,30]. More importantly, our analysis reveals the extent

to which SNPs affect RNA structure, and the nature of those

effects in disease-states.

Results

Ensemble RNA structural analysis
We first consider the C33G SNP in the 59 UTR of the HBB (b-

globin) gene, which is associated with b-Thalassemia [31,32] to

illustrate the basic premise of our methodology. The SNP is not

located near any transcription, translation start or stop sites

(Figure 1A). A recent study demonstrated that the C33G mutation

(replacing C33 with a G) has a negligible effect on mRNA

transcriptional levels [33]. A possible cause for the disease state is

therefore a conformational change in the RNA structure. In

Figure 1B, we show the result of a partition function calculation for

the wild-type (non-diseased) ‘‘C’’ allele of the UTR. Unlike

traditional Minimum Free Energy calculations (MFE) that predict

a single low energy structure of the RNA, the partition function

computes the probability of pairing for all possible base-pairs

including potential pseudoknots [22–24]. The partition function

therefore is a representation of the RNA structural ensemble, i.e.

all possible RNA structures [22]. Since whole UTRs are generally

not evolved to adopt a single well defined structure, the partition

function illustrated in Figure 1B is a more accurate representation

of the RNA’s structural ensemble than the single structure

obtained by traditional MFE computations such as mFold [23].

We choose to highlight the HBB 59 UTR and the C33G SNP

associated with b-Thalassemia [31,32] because of the difference in

the partition functions illustrated in Figure 1B and 1C. The

partition function calculation using the mutant sequence (replacing

C33 with a G) is dramatically altered by this single SNP,

suggesting a significant change in the overall structural ensemble

of the UTR RNA. In Figure 1D, we compute the base accessibility

(i.e. the probability of the base being paired) by summing the base-

pair probabilities down the columns of the partition function.

When we compare the base-pairing probabilities for the wild type

(C33 non-diseased allele, black line) with the disease-associated

mutation (G33, red line), we see that specific bases show large

changes in nucleotide accessibility while others remain unaffected

by this mutation.

Evaluating the significance of a change in the RNA
structural ensemble

For the purposes of this study, we are particularly interested in

identifying disease-associated SNPs like C33G in the HBB 59 UTR

that have a significant effect on the RNA structural ensemble as

defined by the partition function calculation. We quantify the

overall structural effect of a mutation on an RNA by computing

the Pearson correlation coefficient between the wild-type and

diseased base-pair probabilities (black and red lines, Figure 1D).

For the C33G mutant we determine a WT/mutation correlation

coefficient of 0.797 (Table 1). This simple calculation allows us to

quantitatively describe the overall rearrangement in the structural

ensemble of the RNA caused by the disease-associated mutation.

The Pearson correlation coefficient as computed above provides

a quantitative measure of the overall change in the partition

function caused by a mutation. However, based on this single

calculation, it is difficult to determine the significance of the

structural change. We compute Pearson correlation coefficients for

all 150 possible single nucleotide mutations (the HBB 59 UTR is

50 nucleotides in length) and illustrate their values as a heat map

in Figure 2A. This result illustrates that a majority of mutations in

the HBB 59 UTR only have small effects (Pearson correlation

coefficient .0.95) on the structural ensemble. To better illustrate

this point, we plot in Figure 2B a histogram of Pearson correlation

coefficients for all single nucleotide mutations of HBB.

The distribution of Pearson correlation coefficients is dependent

on both the sequence and its length. This is illustrated in Figure 2C

where we plot the distribution of Pearson correlation coefficients

for the 1599 mutations in the 59 UTR of SERPINA1 (serpin

peptidase inhibitor, clade A (a-1 antiproteinase, antitrypsin),

member 1, which is 533 nucleotides in length), where the

C116U SNP is associated with COPD [34]. The two distributions

are clearly different and these results suggest a straightforward

approach for comparing the extent of conformational change

caused by a SNP in an RNA. The C33G mutation in the HBB 59

Author Summary

Genome-wide association studies identify mutations in the
human genome that correlate with a particular disease. It
is common to find mutations associated with disease in
the non-coding region of the genome. These non-coding
mutations are more difficult to interpret at a molecular
level, because they do not affect the protein sequence. In
this study, we analyze disease-associated mutations in
non-coding regions of our genome in the context of their
structural effect on the message of genetic information in
our cells, Ribonucleic Acid (RNA). We focus in particular on
the regulatory parts of our genes known as untranslated
regions. We find that certain disease-associated mutations
in these regulatory untranslated regions have a significant
effect on the structure of the RNA message. We call these
elements ‘‘RiboSNitches,’’ because they act like switches
turning on and off genes, but are caused by Single
Nucleotide Polymorphisms (SNPs), which are single point
mutations in our genome. The RiboSNitches we identify
are potentially a new class of pharmaceutical targets, as it
is possible to change the structure of RNA with small drug-
like molecules.

Disease-Associated Mutations and RNA
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Figure 1. Partition function analysis of the C33G SNP in the 59 UTR of HBB associated with b-Thalassemia [28]. (A) Schematic
representation of the HBB gene, showing the 59 UTR and the start of the first exon (black). The C33G SNP position is indicated in green. (B) Partition
function heat map for the wild-type (non-diseased) 59UTR RNA illustrating base-pair probabilities. The rectangle to the right of the heat map is a
legend, with zero probability being black and a probability of one colored white. (C) Partition function heat map for the HBB 59 UTR RNA with the
diseased G allele at position 33. The appearance of alternative structures is apparent when compared to the non-diseased C allele above. (D)
Nucleotide base-pair probability (or accessibility) of the HBB 59 UTR for the wild-type (non-diseased, black) and mutant (disease-associated) RNA (red).
The base-pair probability is computed by summing the rows (or columns) of the partition function. We compute the Pearson correlation coefficient
between the wild-type (black) and disease-associated mutation (red) lines to quantify the change in the structural ensemble caused by mutation. In
this case, we compute a Pearson correlation coefficient of 0.797 for the C33G mutation.
doi:10.1371/journal.pgen.1001074.g001

Disease-Associated Mutations and RNA
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UTR has the sixth lowest correlation coefficient out of the 150

possible mutations and we therefore compute a p-value of 6/

150 = 0.04 for this SNP (Table 1). Similarly, the C116U mutation

in the 59 UTR of SERPINA1 results in a Pearson correlation

coefficient of 0.664 and this yields a p-value of 21/1599 = 0.013.

This simple calculation allows us to compare the effects on SNPs

on different UTRs and thus rank order the disease-associated

SNPs in the Human genome with respect to the significance of the

structural rearrangement they induce.

Genomic scan of all known disease-associated SNPs in
HGMD

We analyzed a total of 514 disease-associated SNPS in 350

UTRs and non-coding RNAs from the HGMD (Human Gene

Mutation Database) [35,36]. HGMD is a curated database that

records the results of published GWAS and other disease

association studies [35]. This database is unique in that it provides

flanking sequence for a majority of its entries, allowing us to

automatically validate the location of SNPs within UTRs using the

latest human genome annotations [37,38]. Of the 350 RNAs we

analyzed, 206 were 59 UTRs, 132 were 39 UTRs and 12 were

non-coding RNAs. The SNPs we analyzed map only to the

untranslated regions of mature mRNA and are at least 10 nt away

from any transcription or translation start or stop sites.

Furthermore, the HGMD annotation stores SNPs associated with

alternative splicing in a separate table, which we did not include in

our analysis. Our data therefore represents a comprehensive subset

of known disease-associated mutations within mRNA UTRs that

are not expected to directly affect splicing, translation or

transcription through sequence variation. We chose to perform

our analysis on this particular subset of disease-associated SNPs to

maximize our chances of finding disease states where RNA

structural rearrangements are likely to be causative in the

association. We map in Figure S5 all SNPs in strong LD (Linkage

Disequilibrium, R2.0.9) for common variants identified in

Table 1.

Our results are presented in Table 1 and in Table S1. We report

on all the disease-associated SNPs that alter RNA structure with a

p-value,0.1. We therefore report the top 10 percent of disease-

associated SNPs in regulatory non-coding RNA that alter their

RNA structural ensemble within the human genome. The disease-

states reported in Table 1 are particularly interesting to this study,

as they potentially offer mechanistic insight into how RNA

structural rearrangement can affect gene regulation and lead to

disease. We begin our analysis of SNP induced RNA conforma-

tional change by considering the four SNPs associated with

Hyperferritinemia Cataract Syndrome listed in Table 1.

Table 1. Disease states and phenotypes in which two or more associated SNPs were found to alter the structural ensemble of the
RNA.

Disease/phenotype Gene
HGMD
Accession UTR NTs SNP

Corr.
Coeff p-val ref. Motifs1

RBP2

Binding
dbSNP3

ref. ID

Alteration of plasma
zymogen TAFI concentration

CPB2 CR080756 3 427 T310A 0.640 0.001 [45] uORF,
MBE, PAS

- rs1087

453 T336A 0.826 0.094

Chronic obstructive
pulmonary disease

SERPINA1 CR061339 5 533 C116T 0.664 0.013 [34] uORFs - rs8004738*

554 0.784 0.033 uORFs -

551 0.777 0.040 uORFs -

Retinoblastoma RB1 CR961736 5 166 G17C 0.679 0.014 [65] IRES ELAVL1 -

CR086248 G18T 0.766 0.098 [66] -

Hyperferritinemia
Cataract Syndrome

FTL CR011064 5 199 C14G 0.673 0.020 [67] IRE - -

CR061336 A56T 0.713 0.042 [68] -

CR061334 T22G 0.766 0.065 [68] -

CR031001 C10T 0.792 0.072 [69] -

Cartilage-Hair Hypoplasia RMRP CR063415 nc-RNA 265 T252G 0.738 0.029 [70] - - -

CR054274 G40A 0.761 0.047 -

CR054268 G182T 0.801 0.083 -

b-Thalassemia HBB CR900265 3 132 A11G 0.794 0.033 [27] PAS - rs63751128

CR984119 C47G 0.799 0.038 [71] -

CR014260 T110G 0.815 0.045 [72] -

CR880076 A113G 0.841 0.071 [73] rs33985472

CR961734 5 50 C33G 0.797 0.040 [28] - - rs34135787

HBD CR075247 5 195 G66A 0.771 0.070 [74] uORF, MBE - -

Hypertension AGT CR971935 5 508 G465A 0.694 0.051 [75] uORFs ELAVL1PABPC1 rs5051*

CR973338 A451C 0.765 0.089 [76] rs5050*

1Structural and sequence motifs identified in mRNA UTRs using UTRScan [62].
2RNA Binding Protein as determined by RIP-chip [46].
3dbSNP reference IDs for common variants. A star (*) indicates LD data is available and reported in Figure S5.
doi:10.1371/journal.pgen.1001074.t001
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Figure 2. Comprehensive single mutation analysis of the HBB 59 UTR to determine the significance of the observed rearrangement
in the structural ensemble caused by mutation. (A) Heat map diagram illustrating the Pearson correlation coefficients for all possible mutations
in the HBB 59 UTR. The heatmap color scheme is identical to that used in Figure 1B and 1C. The four rows on the diagram each indicate a different

Disease-Associated Mutations and RNA
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Hyperferritinemia Cataract Syndrome
We identify four SNPs in the 59 UTR of the FTL (ferritin light

chain) gene that significantly affect the RNA structural ensemble

(Table 1) and that are associated with Hyperferritinemia Cataract

Syndrome. The FTL gene encodes the Ferritin light chain protein,

and deregulation of this gene leads to the disease phenotype [39].

Recent studies on the regulation of FTL have revealed an Iron

Response Element (IRE) in the 59 UTR to which a regulatory Iron

Response Protein (IRP) binds [26,39]. The IRE is an RNA hairpin

and mutations in the 59 UTR disrupt the structure of the IRE and

thus alter the binding affinity of the IRP, leading to aberrant FTL

regulation [26]. This type of regulatory system is precisely what we

aim to identify with our genomic analysis.

One limitation of the partition function representation

(Figure 1B, for example) is in the visualization and interpretation

of the structural ensemble change induced by mutation. UTRs

generally do not adopt single well-defined structures and classic

representations of RNA structure (commonly referred to as

‘‘airport terminal diagrams’’) cannot accurately be used to

visualize overall changes in the ensemble. An alternative

visualization of the structural ensemble is illustrated in Figure 3A

for the wild-type (non-diseased) FTL 59 UTR. We carried out a

Boltzmann sampling of RNA structures using the sFold procedure

[40,41] and generated an ensemble of 5000 alternative RNA

structures from the wild-type and mutant sequences. We then

perform principal component analysis (PCA) on the full ensemble

of structures. The ensemble of structures that belong to a

particular sequence (wild-type or a specific mutant) were then

projected onto the first two principle components as shown in

Figure 3. This allows us to visualize the structural heterogeneity in

the ensemble of structures for a sequence, keeping in mind that

two points that are close together in our projection diagram

indicate the two corresponding structures are similar in structural

space.

For the FTL wild-type sequence we find that a majority of our

sampled structures are grouped in a single cluster in the right

center quadrant of the PCA graph. Representative structures for

the three main structural clusters identified for FTL are illustrated

in the Figure 3A insets as linear diagrams. We clearly see the

formation of the IRE in the representative structure (red),

indicating that a majority (97%) of wild-type RNAs adopt this

structure. It is when we perform the same Boltzmann sampling

procedure for the four diseased SNP sequences that we are able to

visualize the nature of the structural ensemble change caused by

these disease-associated mutations.

In Figure 3B–3E we project Boltzmann sampled structures onto

the same principle components as those used in Figure 3A for the

four Hyperferritinemia Cataract Syndrome associated SNP

sequences. This analysis immediately reveals the nature of the

structural change that putatively is the cause of the disease

phenotype. The U22G and A56U mutations result in all three

structural clusters populated (Figure 3B and 3C) while the C10U

and C14G mutations selectively populate one of the mutant

clusters (Figure 3D and 3E). In all cases, we find that the disease-

associated mutations populate alternative conformations where the

IRE is not formed. For FTL, the non-diseased UTR adopts a

compact structural ensemble where the IRE is formed, while the

diseased-associated SNPs shift the ensemble to include a significant

number of structures where the IRE is disrupted in favor of long-

range base pairs. In Table 2, we compute the relative population

of the three clusters for the wild type and mutant sequences and

find that all four disease-associated mutations significantly reduce

the percentage of structures containing an IRE. Nonetheless, we

see that no single mutation completely abolishes the cluster with

the IRE, suggesting a shift in the relative populations of each

conformation.

One phenotype, multiple genotypes
The four SNPs we identify in the 59 UTR of FTL as having a

large effect on its structural ensemble are a subset of the 30 SNPs

associated with Hyperferritinemia Cataract Syndrome reported in

HGMD. Since HGMD is based on existing published literature,

one can assume that these 30 SNPs represent only a subset of all

mutations that can cause the Hyperferritinemia phenotype. A

majority (28) of the known SNPs associated with Hyperferritine-

mia Cataract Syndrome occur in the 59 UTR of FTL, suggesting

that the UTR is central in the regulation of the gene. The four

mutations we identify using our partition function calculation and

correlation analysis (which we will now refer to as the SNPFold

algorithm) identify SNPs that have a major effect on the RNA

structural ensemble. By design, SNPFold identifies the SNPs that

alter the global structural ensemble of the RNA, and will not

identify SNPs that have only local structural effects on the RNA. It

is clear, however, that a global effect on the RNA structural

ensemble is not a prerequisite for disease association. Clearly,

multiple molecular mechanisms can cause the same phenotype; in

the case of Hyperferritnaemia Cataract Syndrome any mutation

that either directly or indirectly affects the IRE and its ability to

bind the corresponding Iron Response Protein (IRP) can result in

the phenotype.

In the supplement (Figure S2) we illustrate a natural extension

of the SNPFold algorithm for analyzing multiple disease-associated

SNPs. We average the change in base-pair probability for each

nucleotide and for all Hyperferritinemia Cataract Syndrome

associated SNPs. This global analysis of the effects of SNPs on the

RNA structure clearly identifies the IRE in the 59 UTR, which is

where on average, the largest changes in base-pair probability are

observed. As more associated genotypic information becomes

available, it is likely that it will be possible to use this data to

identify other RNA structural elements within the transcriptome.

Discussion

Our analysis of the effects of disease-associated human genetic

variation on mRNA and regulatory non-coding RNAs reveals the

extent to which specific SNPs affect the RNA structural ensemble.

The SNPfold algorithm we propose is unique in that it takes into

account the effects of mutation on the ensemble of possible RNA

structures, and not just a single minimum free energy structure.

UTRs are not evolved to adopt a single, well-defined structure

(unlike catalytic RNAs, for example [42]) but will rather adopt a

large ensemble of structures [43]. We find that a majority of

mutations have small, local effects on the structural ensemble

nucleotide (A, C, G, or U) while each column represents a position in the UTR. The wild-type sequence is indicated with black boxes. Only a few
mutations (e.g. C33A, C10A) including the C33G result in small (,0.8) Pearson correlation coefficients. (B) Histogram of Pearson correlation coefficient
values for all 150 possible mutations in the HBB 59 UTR. A majority of mutations (,95%) have correlation coefficients greater than 0.9. We use these
calculations to estimate a p-value for the significance of the observed structural change in the ensemble. (C) Similar histogram for all mutations in the
59 UTR of the SERPINA1 gene where C116U is associated with Chronic Obstructive Pulmonary Disease (COPD) [34]. The distribution of Pearson
correlation coefficient values gets steeper with longer RNAs (the 59 UTR of SERPINA1 is 533 nucleotides long).
doi:10.1371/journal.pgen.1001074.g002

Disease-Associated Mutations and RNA
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Figure 3. Structural analysis using Boltzmann sampling and principal cponent analysis of FTL 59 UTR and four Hyperferritinemia
cataract syndrome–associated mutations [39]. (A) Boltzmann sampling and principal component decomposition of 5000 alternative structures
of the FTL 59 non-diseased UTR. Each cross in the diagram represents one of the 5000 structures projected onto the first two principal components
[40]. We use linear (or arc) diagrams to illustrate representative structures in the principal component space. In this case, three main clusters are

Disease-Associated Mutations and RNA
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(Figure 2), while certain specific mutations can profoundly alter it.

In Figure S3, we compare the performance of MFE (mFold)

algorithms to the partition function approach we used and show

that our approach is far less sensitive to mutation. We identified

those disease-associated mutations in human UTRs that have a

large effect on the RNA structural ensemble and report them here.

We identified a broad range of disease phenotypes that are

associated with SNPs that alter the RNA structural ensemble. For

all the disease states presented in Table 1, the mRNA is either

hypothesized or has been shown to play a causal role in the

association. In certain cases, assays have already been carried out

to show that the SNP causes a change in translation efficiency

[26,39], and/or mRNA stability [44,45]. We also identified the

mRNAs in which RIP-chip [46] experiments measured an

interaction with an RNA binding protein (Table 1). We find that

several RNA binding proteins including ELAVL1 (embryonic

lethal, abnormal vision, Drosophila)-like 1), PABPC1 (Polyade-

nylate-binding protein 1), and IGFBP2 (insulin-like growth factor

binding protein 2) are found to co-IP with our mRNAs of interest

(Table 1 and Table S1). This suggests that the SNP induced

structural changes could affect protein binding for the mRNAs

identified in Table 1. Furthermore, our analysis of pre-mRNAs

(Table S2) suggests that the conformational changes induced by

SNPs are most significant in the mature mRNA. Finally, analysis

of eQTL (expression Quantitative Trace Locus, Table S3) data

reveals that for all but two of the common SNPs we identified in

our RNA structural analysis, there is no measured effect on

transcriptional levels [47].

To ascertain the relationship between our predicted changes in

base-pairing probability and RNA functional elements we

performed additional analyses reported in the supplement (Figure

S4). We find that predicted changes in base-pairing probability

overlap significantly with known RNA functional elements

including IREs, IRES (Internal Ribosome Entry Sites), uORFs

(upstream Open Reading Frames), PAS’s (Polyadenylation Sites),

TOPs (Terminal Oligopyrimidine tracts), MBEs (Musashi Binding

Elements), K-Boxes and GY-Boxes. The IRES is an alternate

translation initiation site that allows the ribosome to bind the

mRNA in a 59 cap independent manner [48]. uORFs are found

upstream of the normal ORF and lower the translation of the

main ORF, and in some cases lead to the production of a short

regulatory transcript [49,50]. A PAS is a variable AU-rich

sequence that is essential for the recruitment of the polyadenyl-

ation machinery needed to add the polyA tail to a given RNA

[51]. TOP elements tag the mRNA for growth associated

translational repression [52]. MBEs recruit and bind the Musashi

protein, an evolutionarily conserved RNA-binding protein known

to have the ability to regulate mRNA translation [53]. K-Boxes

and GY-Boxes are conserved negative regulators, acting as

binding platforms for the 59 seed regions of miRNAs [54,55].

We therefore observe SNP induced changes in base-pairing

probability in a majority of the RNA functional elements in our

UTRs of interest. For each of these elements, accessibility is key to

function, and the base-pairing probability changes we predict

affect accessibility.

We performed a complete analysis of the structural changes

caused by disease associated mutations in the 59 UTR of FTL,

because it is already established that an IRE is present in the UTR

and is responsible for regulating FTL [26,39]. Our structural

analysis of the FTL 59 UTR (Figure 3) begins to reveal the

molecular complexity of disease caused by mRNA structural

rearrangement. We see in Figure 3 that no single SNP has the

exact same effect on the structural ensemble. Nonetheless, the

structural changes observed are limited in the case of this

phenotype to three major structural clusters. Mutations shift the

equilibrium between the different structural clusters. However, all

structures sampled when projected in principal component space

fall into these same clusters. A different behavior is observed in the

59 UTR of RB1 (retinoblastoma 1), where the two disease-

associated SNPs we identified also significantly repartition the

structural ensemble (Figure S1). In this case, the disease-associated

SNPs have the opposite effect to that observed in the FTL 59

UTR. For the RB1 59 UTR, the Retinoblastoma associated SNPs

collapse the structural ensemble from three clusters to one.

Structural rearrangement of a UTR as a post-transcriptional

regulatory mechanism is common in bacterial Riboswitches

[16,20]. In this case, the binding of a small molecule, in general

a metabolite, changes the secondary structure of the RNA so as to

promote or inhibit Ribosomal binding and gene translation [16].

It is therefore not surprising that certain specific mutations can

have profound structural consequences on a human UTR. The

UTRs and their associated SNPs we report here are in fact a type

of ‘‘RiboSNitch,’’ that is a molecular switch that is activated by

SNP. Unlike the Riboswitch, however, a RiboSNitch results in a

permanent change in regulation and thus leads to the disease

phenotype. RiboSNitches represent a novel therapeutic target,

since small molecules can repartition the RNA structural

ensemble.

The U310A and U336A mutations in the 59UTR of CPB2 are

particularly noteworthy. CPB2 codes for the Thrombin-Activable

Fibrinolysis Inhibitor (TAFI) [45]. An activated form of TAFI is

known to slow down Fibrinolysis [44]. Mutations that alter the

expression level of this protein are associated with various

thrombotic disorders, including ischemic stroke [56]. Results from

mRNA decay assays show the presence of these SNPs result in an

mRNA with an altered stability [45]. Our results suggest that the

associated SNPs significantly alter the RNA conformational

ensemble of the TAFI 59 UTR and that this could affect RNA

Table 2. Relative population of the three structural clusters
for the FTL 59 UTR.

RED CLUSTER1 GREEN CLUSTER2 BLUE CLUSTER3

Wild-Type 98% 1.6% 0.4%

U22G 12% 83% 5%

A56U 17% 18% 64%

C10U 36% 0% 64%

C14G 25% 75% 0%

1Middle-right quadrant in Figure 3, red structure containing IRE.
2Lower-left quadrant in Figure 3, green structure.
3Upper-left quadrant in Figure 3, blue structure.
doi:10.1371/journal.pgen.1001074.t002

observed, with the right, middle quadrant (red representative structure) being most highly populated for the WT sequence. Structures within this
highly populated cluster all contain an IRE element (indicated in the figure), which has been shown to be critical in regulating FTL [39]. (B) Effect of
the U22G mutation on the RNA structural ensemble involves populating both of the alternative RNA conformations. (C) A similar redistribution occurs
with the A56U mutation. (D) Only the top, left hand cluster is populated with the disease-associated C10U mutation. (E) The C14G populated the
lower, left hand quadrant, which also does not form the regulatory IRE.
doi:10.1371/journal.pgen.1001074.g003
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decay. Therefore, conformational change is also a likely

determinant of mRNA stability which indirectly controls protein

expression.

Low-cost whole genome sequencing, SNP microarrays specif-

ically focused on non-coding regions of the genome, and greater

phenotypic information available through electronic medical

records will necessarily yield new phenotypic associations in the

non-coding regions of the genome. The SNPfold algorithm

provides a novel approach to gain structural insight into the

structural consequences of mutations on a transcript. We therefore

developed a web server (http://cloud.wadsworth.org/snpfold) that

reproduces the computational functionality we describe in this

manuscript. In particular our web server allows the simultaneous

analysis of multiple SNPs. This computational tool will provide the

GWAS community with a simple way to quantitatively evaluate

the effects of SNPs (and other mutations) on the RNA structural

ensemble.

Materials and Methods

Identification of a set of disease-associated SNPs in UTRs
The Human Genetic Mutations Database (http://www.hgmd.

cf.ac.uk/) was utilized [35,36] as a primary source of genotype/

phenotype associations in our study. The professional version of

the database, obtainable through a yearly subscription fee,

contains the ‘‘prom’’ table. The 2009.1 version of HGMD that

we utilized contains 1459 entries in the prom table. Each entry

contains DNA sequences that flank the disease associated SNP.

These flanking sequences were mapped to the human reference

genome, in order to determine the genomic coordinates of the

corresponding SNPs [37]. 1385 mutations from this table were

successfully mapped to some specific coordinate within a specified

chromosome.

Once the coordinates of the SNPs in the table were obtained,

the ‘refgene’ table from the hg18 build of the Human genome [38]

was used to identify SNPs that map on a UTR of a gene. For a

given gene transcript, the corresponding chromosome and strand

are provided, as well as coordinates of the transcription and

translation start/stop sites, and the exon start/stop sites. SNPs

whose coordinates map between the transcription start/translation

stop sites or the translation stop/transcription stop sites were

classified as mapping onto a UTR region. SNPs that either

mapped onto intronic regions of UTRs (not between an exon start

and stop coordinate) or were less than 10 nucleotides away from

either end of the UTR were excluded from our analysis.

Obtaining sequences of UTR regions
The gene coordinates in ‘refgene’ were used to extract UTR

sequences for a given disease associated UTR SNP in ‘prom’. For

this, full sequences for each chromosome in the human reference

genome were required. We used UCSC genome build hg18 [37].

If the gene was on the ‘minus’ strand, we used the reverse

complement of the extracted sequence, as the human reference

genome consists entirely of sequence from the ‘plus’ strand. Using

the mapped coordinates for each UTR SNP, two different UTR

sequences were produced: the wild type sequence, and the

sequence containing the disease-associated SNP. It should also

be noted that the UTR sequences produced were from the mature

transcripts, and are fully spliced.

SNPfold algorithm
The SNPfold algorithm that was developed utilizes the RNA

partition function calculations implemented in RNAfold [57,58].

The algorithm requires an input of two different RNA strands that

are identical in length. For the analysis of any RNA SNP, the wild

type RNA sequence and the RNA sequence containing the disease

associated SNP of interest was obtained as previously described.

The sum of the columns of each partition function was used to

compute the Pearson Correlation coefficient for each WT/SNP

pair.

To normalize for sequence length, we computed a non-

parametric p-value for a given correlation coefficient. This value

represents the likelihood of a random mutation in the RNA of

interest producing the same or lower correlation coefficient. For a

sequence of length n all possible 3n mutations are computed and

the mutation of interest ranked compared to all the other possible

mutations. The non-parametric p-value was then estimated as the

rank of the mutation of interest divided by 3n.

Principal Component analysis of the structural ensemble
The structures for the Principal Component analysis were

generated using the statistical sampling algorithm in the sFold

software [40]. The structures were then parameterized into a

vector of ones and zeros (with one representing the base being

paired). A sample of 1000 structures from each mutant and WT

sequence was randomly selected and used to generate the basis

vectors of the principle component analysis. The two firsty basis

vectors representing the variances in the data were used to project

the 5000 structures from each sequence onto the same principle

components. The resultant data took the form of a 2D scatterplot.

The linear structure diagrams for the wild type were generated

using the VARNA software [59].

Scanning UTRs for RNA regulatory motifs
A search for known RNA regulatory motifs was carried out in

every UTR reported in Table 1 and Table S1. The UTRscan

algorithm (which searches a user-submitted RNA sequence for

known UTR motifs listed in the UTRsite database) was utilized

[60,61]. In 39 UTRs, an additional search for miRNA binding

sites was conducted using RegRNA which predicts splicing sites

and miRNA binding sites in mRNA sequences [62].

Detection of RBP binding to transcripts of interest
RIP-Chip Data obtained from Scott Tenenbaum (UAlbany)

was analyzed in the context of the mRNAs reported in Table 1

and Table S1 [46]. The data included analyses of RNA transcript

coprecipitation with three different RNA-binding proteins (Elavl1,

Pabpc1, and Igfbp2) in two different cell lines (Gm12878 and

K562). p-values (2log10) above 1.3 were deemed statistically

significant for RNA binding, and are reported in Table 1 and

Table S1.

LD and eQTL analysis of SNPs
We searched dbSNP to identify common variants (SNPs) with

accession IDs (rs numbers) from Table 1 and Table S1. For the

mRNAs in which we identified common variants, LD data from

HapMap was downloaded [63] and reported above a significant

(R2.0.9) threshold. eQTL data from [64] was queried using the

common dbSNP IDs.

Supporting Information

Figure S1 Principal component decomposition of Boltzmann

sampling of the RB1 59 UTR where mutations are found to be

associated with Retinoblastoma [65]. (A) Wild-type structural

sampling showing four distinct clusters; representative structures

for each cluster are presented as blue arc diagrams. The three

upper clusters are most populated, with 98% of the structures. (B)
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Effects of the disease-associated G17C mutation on the RNA

structural ensemble. The mutation causes a radical shift towards

an alternative structure with far fewer long-range interactions. (C)

Effects of G18U on the structural ensemble resulting in a complete

shift in structures as well.

Found at: doi:10.1371/journal.pgen.1001074.s001 (0.97 MB PDF)

Figure S2 Average change in base-pair probability due to

mutation for the 30 known Hyperferritinaemia Cataract Syn-

drome associated SNPs. SNP locations are indicated as vertical

green lines, and the average change is plotted in red. This graph

clearly identifies the largest average changes in nucleotides 20–50,

which make up an Iron Response Element in the 59 UTR of the

FTL mRNA.

Found at: doi:10.1371/journal.pgen.1001074.s002 (0.60 MB PDF)

Figure S3 Comparison of WT/SNP correlation coefficient

distributions for all possible mutations in nine selected UTRs in

which we have identified a putative RiboSNitch (see Table 1). The

black line is using our novel partition function calculation, while

the red line is using a standard minimum free energy (MFE)

approach (like mFold). The partition function calculation is far less

sensitive to mutations and produces a continuously decreasing

distribution, allowing us to accurately estimate the significance of a

conformational change and will thus lead to fewer false-positives.

Found at: doi:10.1371/journal.pgen.1001074.s003 (0.29 MB PDF)

Figure S4 Schematic representations (heat maps) of the change

in base-pairing probability upon disease-associated SNP mutations

in their respective UTRs. Red indicates high differences in base-

pairing probability between the wild-type and disease genotype.

Motifs detected using the UTRscan program are indicated with

green boxes. miRNA binding targets in 39UTRs detected with

RegRNA are indicated via blue boxes. Gene names, 59 or 39 UTR

and UTR length are indicated under each diagram, and the

corresponding SNP is indicated to the left of each heatmap.

Found at: doi:10.1371/journal.pgen.1001074.s004 (0.70 MB PDF)

Figure S5 pre-mRNA gene maps of SNPs that are in high LD

(R2.0.9) with our predicted RiboSNitch SNPs. Exonic regions

are indicated as thick lines, introns as thin horizontal lines. Vertical

black lines indicate the postions of high LD SNPs. SNPs that cause

missense mutations in the coding region of the listed gene are

colored in pink, and have an associated rs number listed above

their respective positon. (A) rs1087 (in CPB2 39UTR, 427 nt), (B)

rs1087 (in CPB 39UTR, 453 nt), (C) rs8004738 (in SERPINA1

59UTR, 533 nt), (D) rs8004738 (in SERPINA1 59UTR, 551 nt),

(E) rs8004738 (in SERPINA1 59UTR, 551 nt), (F) rs5051 (in AGT

59UTR, 508 nt), (G) rs5050 (in AGT 59UTR, 508 nt), (H)

rs1010167 (in GSTM4 59UTR, 314 nt), (I) rs1799794 (in XRCC3

59UTR, 380 nt), (J) rs6141 (in THPO 39UTR, 528 nt), (K)

rs2016520 (in PPARD 59UTR, 309 nt), (L) rs2302009 (in CCL26

39UTR, 169 nt), (M) rs12386703 (in PEX1 59UTR, 96 nt).

Found at: doi:10.1371/journal.pgen.1001074.s005 (0.39 MB PDF)

Table S1 Disease states and phenotypes in which one associated

SNP was found to alter the structural ensemble of the RNA.

Found at: doi:10.1371/journal.pgen.1001074.s006 (0.09 MB PDF)

Table S2 (A) Lengths of pre- and mature mRNAs where we

have identified a RiboSNitch. (B) SNPFold analysis of RiboSNitch

in pre and mature mRNA UTRs revealing that a majority of the

RiboSNitches identified affect the mature mRNA only. The *

indicates an approximate p-value computed from a distribution of

random sequences, due to the computational limitations of

calculating the p-value for the longer (.2000) pre-mRNAs.

Found at: doi:10.1371/journal.pgen.1001074.s007 (0.40 MB PDF)

Table S3 eQTL data for common variant SNPs identified as

potential RiboSNitches. A minority of the SNPs we identified

affect transcriptional levels.

Found at: doi:10.1371/journal.pgen.1001074.s008 (0.06 MB PDF)
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