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Abstract

The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous
recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during
DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and
Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2–4 kb of ssDNA
accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication
(BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in
homology search and prevent recombination within short DNA repeats next to the break. In sgs1D exo1D mutants that form
only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation
resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage
to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1D exo1D, and the
requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and
alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1D exo1D cells, suggesting
that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in
the fidelity of DSB repair.
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Introduction

Homologous recombination is a major mechanism of repair of

both DNA double-strand breaks (DSBs) and gaps that occur

spontaneously or are induced by endonucleases, radiation or

radiomimetic agents. Most of the enzymes involved in recombi-

nation are conserved among bacteria, yeast and human [reviewed

in [1,2]]. A key protein in recombination called Rad51 mediates

DNA strand exchange between a damaged DNA molecule and a

homologous intact DNA template. Rad51 forms a nucleoprotein

filament on 39 single-stranded DNA (ssDNA) that is capable of a

genome-wide search for a homologous template sequence and

subsequent strand invasion. Upon strand invasion, 39 ends initiate

new DNA synthesis that allows recovery of lost information at the

site of the DSB. Subsequent resolution of the recombining

molecules forms a final product that in mitotic cells typically is a

noncrossover.

A necessary prerequisite of Rad51 filaments is the formation of

39 ssDNA tails at DNA breaks. In budding yeast, the Mre11/

Rad50/Xrs2 (MRX) complex together with Sae2 is responsible for

the initiation of resection while two nucleases, Exo1 and Dna2

together with the Sgs1/Top3/Rmi1 (STR) complex form long

ssDNA at DSBs [3,4,5]. Similar pathways of resection operate at

yeast telomeres [6]. A two step mechanism in which mre11 and

rad50 homologues play an initial role has also been described in

the archeal organism Pyrococcus furiosus [7]. Human orthologs of

these proteins, Mre11-Rad50-Nbs1 (MRN) with CtIP, Exo1 and

BLM, play similar roles in 59 strand resection [3,8,9]. In Xenopus

laevis, Dna2 also processes DSB ends [10]. Human Dna2 has an

important role in the maintenance of mitochondrial DNA [11], yet

its nuclear role remains to be determined [12].

Resection of the 59 strand is highly regulated by DNA damage

checkpoint proteins, chromatin remodeling factors and cyclin-

dependent kinase. DNA damage checkpoint proteins exhibit

complex interactions with enzymes involved in resection because

they both stimulate and later limit resection [[13] and reviewed in

[14,15]]. Cell cycle control of resection influences the choice

between DSB repair pathways: nonhomologous end joining

(NHEJ) or homologous recombination (HR) [16,17,18]. The

extent of resection at DSBs is clearly regulated. However, how

resection proceeds during DSB repair and the consequences of

excess or limited resection on the fidelity of repair are not known.

Most estimations of end resection in yeast were made using

DSBs generated by either the HO or I-SceI endonucleases that

cannot be repaired by gene conversion because homologous

sequences are deleted [e.g. [19,20]]. Resection of such breaks is
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unlimited and proceeds at about 4 kb per hour. An alternative

approach used to study resection utilized single strand annealing

(SSA), a repair process relying on extensive resection and

annealing between distant direct DNA repeats [e.g. [21]]. While

these assays were very useful in identifying proteins involved in

resection it remains unknown how resection proceeds when the

break is being repaired by the most natural pathway, gene

conversion. It is important to examine the resection at DSBs that

are repaired normally because resection determines sequences that

are used for homology search and repair. Here for the first time,

we estimated the length of ssDNA generated during DSB repair

using several assays with different kinetics of repair - allelic and

ectopic gene conversion and break-induced replication (BIR). We

demonstrate that about 2 to over 10 kb of ssDNA is generated

depending on the kinetics of repair. Secondly, we determined the

role of resection in the fidelity of DSB repair and gene targeting.

Using mutants exhibiting decreased rates of resection we show that

the length of 39 tails defines the sequences involved in homology

search and recombination donor choice. We demonstrate that

normal resection at a DSB prevents deleterious repair via de novo

telomere addition. Finally, we show that decreased resection was

accompanied by dramatic increases in both the accuracy and

efficiency of gene targeting. Together these results uncover a new

role for resection in the regulation of DSB repair pathways.

Results

3–6 kb of ssDNA accumulates at DSB ends during
ectopic recombination

Formation of ssDNA at DSB ends was extensively studied in

multiple assays where the DSB was unrepairable. These assays

were very useful in identifying enzymes involved in resection,

however DSBs are normally repaired quickly by homologous

recombination. Here for the first time we examined the kinetics

and size of ssDNA generated at DSBs repaired by gene

conversion and investigated the fidelity of DSB repair in mutants

with limited resection. First, we measured ssDNA at a DSB

repaired by an ectopic recombination assay in haploid cells

where HO endonuclease induces a break within a MATa
sequence inserted at the ARG5,6 locus on chromosome V

(Figure 1A) [22]. This MATa sequence shares 1.9 kb (1.4 kb

proximal and 0.5 kb distal from the HO break) homology with

MATa-inc on chromosome III. MATa-inc carries a point

mutation in the HO recognition site that prevents HO cleavage.

The DSB induced at MATa locus is processed to form 39 ssDNA

tails that invade a homologous template MATa-inc sequence

located on chromosome III and initiate new DNA synthesis.

Within one hour of HO nuclease induction a DSB occurred in

all cells and the subsequent repair of the DSB takes about 3 to

7 hours in wild-type cells (Figure 1B) [22]. In this assay as well as

in all other assays presented in this work, HO induction is

continuous, therefore when the break is repaired by nonhomol-

ogous end joining, HO endonuclease cuts the MAT sequence

again. We determined the amount of ssDNA generated during

repair by following the temporary loss of several EcoRI

restriction enzyme cleavage sites in the vicinity of the DSB as

previously described (Zhu et al. 2008). Our goal was to find the

distance from the HO cut site where at least half of the cell

population removes the 59 strand during repair. We used 4

probes that detect resection beyond 0.9 kb, 3.3 kb, 6.5 kb, and

17.3 kb from the break. As shown in Figure 1B, at least 70% of

cells degraded DNA beyond 0.9 kb from the DSB ends and

about half of the cell population degraded the 59 strand beyond

3.3 kb from the DSB ends. Only 85% of cells repaired the break,

therefore degradation of the 59 strand beyond 17.3 kb from the

HO cut site likely results from resection in cells that did not

repair the break. Unrepaired breaks continue to be resected for

at least 36 hours [[5] and data not shown]. The maximum

amount of ssDNA at the DSB is observed at the time when the

first recombination product starts to accumulate at 3 hours after

HO endonuclease induction. To confirm that resection rate at

the DSB induced on chromosome V is comparable to our

previous estimation on chromosome III, we measured the

resection in a strain lacking an essential protein for gene

conversion, Rad51. As in wild-type cells, an HO break was

induced in all cells within one hour (Figure 1C). Resection was

measured 3.3 and 17.3 kb distal to the DSB in rad51D mutant

cells (Figure 1C). The average rate of resection was 3.6 kb/hr,

which is very similar to the rates determined in donorless wild-

type and rad51D strains at the MAT locus on chromosome III

[5]. A similar rate of resection was previously estimated at

several loci on different chromosomes and on a plasmid substrate

[20,21,23]. We concluded that the locus we used to measure

resection during repair is representative and that half of the cell

population resected at least 3–6 kb of the 59 strand on one DSB

end during repair. Given that 39 ends are stable for several hours

following break induction [20,21] this is presumably the average

amount of ssDNA that is active in the search for homologous

sequences in this ectopic recombination assay. This amount of

ssDNA is several times more than the homologous sequence

available (0.5 kb). It is therefore probable that more ssDNA is

formed than is required for repair. However this extensive

resection may help to maintain DNA damage checkpoint arrest

and give cells the necessary time for repair.

The length of ssDNA at the DSBs depends on the kinetics
of repair

Normally DSB repair occurs with a fully homologous template

molecule such as a sister chromatid or homologous chromosome.

Author Summary

Chromosomal breaks occur spontaneously or are induced
by ionizing radiation and many chemotherapeutic drugs.
DNA double-strand breaks are processed by nucleases and
helicases in yeast and human to generate single-stranded
DNA that is then used for repair by recombination with
homologous chromosome. Single-stranded DNA at chro-
mosomal breaks also constitutes a signal for cells to arrest
cell cycle progression until the DNA damage is repaired.
This study examines the consequences of elimination of
enzymes that process chromosomal breaks to single-
stranded DNA on the fidelity of repair and genome
stability in the model organism yeast. Mutants deficient in
these enzymes often fail to repair the breaks by
homologous recombination and instead add new telo-
meres at the breaks. Formation of new telomeres is
associated with partial loss of the chromosome arm distal
from the break. Such chromosomal aberrations were
frequently observed in tumor cells and are responsible
for about 10% of human genomic disorders resulting from
chromosomal abnormalities. We also observed that
elimination of enzymes that process chromosomal breaks
into single-stranded DNA greatly stimulates genome
manipulation by gene targeting, suggesting that trans-
formed DNA is also a substrate for degradation by these
enzymes. We discuss the possibility of using a similar
approach in mammalian cells where gene targeting is
inaccurate and less efficient when compared to yeast.

Resection Prevents Aberrant DNA Break Repair
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We therefore also estimated the amount of ssDNA generated

during allelic recombination where the break is induced at the

MATa locus on chromosome III and is repaired by homologous

recombination with a MATa-inc sequence on a homologous

chromosome III (Figure 2A). Allelic recombination is faster than

ectopic as it is completed within 2 to 4 hours (Figure 2B and

Figure S1). Faster kinetics of allelic recombination in diploid cells

when compared to ectopic recombination in haploid cells is not

due to MATa/a heterozygosity. We previously demonstrated that

ectopic recombination in MATa/a heterozygous haploid cells and

in MATa haploid cells is equally slow [22]. Also resection rate in

haploid and diploid cells is the same (Figure S2). The maximum

amount of ssDNA during allelic recombination accumulates at

2 hours after break induction (Figure 2B). We measured resection

beyond 1.2 kb, 2.6 kb, 3.8 kb, 5.0 and 10.2 kb from the DSB ends

(Figure 2B). Southern blots for each probe used in this assay are

shown in Figure S1. At least half of the cells resected DSB ends

beyond 1.2 kb and 2.6 kb from the DSB and only 20% beyond

5.0 kb. These are significantly shorter sizes of ssDNA than in

ectopic recombination. Interestingly, a small fraction of cells (10%)

resected beyond 10.2 kb of ssDNA, suggesting that sometimes

sequences far away from DSB ends can be active in the homology

search even during fast allelic recombination. We think that during

gene conversion most of the detected ssDNA is formed prior to

strand invasion and is likely active in search for homologous

sequence because new DNA synthesis and final product occurs

1.5–3 hours after DSB formation and only 20 minutes after strand

invasion (Figure 1 and Figure 2; [24] and J. Haber, personal

communication).

The third assay we used to measure resection was break-induced

replication (BIR) where only one DSB end is homologous to the

template DNA and, after strand invasion, the 39 end is extended to

copy the chromosome to its very end (Figure 2C) [25]. In this assay

the break is induced at the MATa locus, identical to the allelic

recombination assay investigated above. It is a slow repair pathway

as it takes about 6 to 10 hours to see the recombination product

(Figure S3) [25]. The slow kinetics of initial DNA synthesis in BIR

is not caused by terminal nonhomology, because BIR is equally

slow even when the DSB end is perfectly homologous with its

template [25].We measured 59 strand resection in the BIR assay at

2.6 kb, 15.5 kb and 27.5 kb from the DSB end (Figure 2C).

Southern blots for all probes used for this assay are shown in

Figure S3. As shown in Figure 2D, most cells resected the 59 strand

beyond 2.6 kb and about half of the cell population resected DSB

ends beyond 15.5 kb from the break. No significant resection was

observed beyond 27.5 kb from the cut site. BIR is distinct from

gene conversion because strand invasion in BIR monitored by

Rad51 recruitment (ChIP) to template DNA, occurs with kinetics

Figure 1. Measurement of resection in DSB–induced ectopic recombination. (A) Schematic representation of the ectopic recombination
assay between MATa on chromosome V and MATa-inc on chromosome III. Positions of EcoRI sites (E) and DNA probes used for hybridization with
respect to the HO recognition site on chromosome V are shown (tGI354). MATa and MATa-inc share 1.9 kb of homology in total. (B) Plot showing the
percentage of unprocessed 59 strand for each EcoRI site and the corresponding Southern blots are shown. Kinetics of DSB repair product formation is
indicated by the red line. Plotted values are the mean values 6SD from three independent experiments. (C) 59 strand processing was monitored and
plotted from an ectopic recombination assay in rad51D cells (tGI379) as in (B).
doi:10.1371/journal.pgen.1000948.g001

Resection Prevents Aberrant DNA Break Repair
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similar to gene conversion (Jain et. all, 2009) while new DNA

synthesis is detectable only 2–3 hours after strand invasion.

Therefore the very long ssDNA created during BIR suggests that

resection continues after strand invasion but before new DNA

synthesis. Altogether we conclude that the amount of ssDNA

created during repair depends on the kinetics of repair and

secondly that resection, at least in BIR assay, continues after strand

invasion and probably helps to maintain DNA damage checkpoint

arrest until new DNA synthesis and final repair product forms.

Resection determines the sequences involved in
homology search and donor choice

An implicit idea in current models of homologous recombination

is that ssDNA determines sequences used for the homologous

template search [26]. Now that we have verified the amount of

ssDNA at DSBs, and the enzymes involved in resection are known,

allowing us to manipulate the rate of ssDNA formation, we decided

to verify this general concept. As shown above, an average of at least

several kb of ssDNA is generated on one side of the break, which is

much greater than the minimum homology required for efficient

DSB repair. In DSB-induced recombination there is no difference in

the efficiency of repair when homology is increased above 250 bp on

each side of the break in a chromosomal context [27] and above 80

bp in a plasmid context [28]. Moreover, in yeast mating-type

switching where an HO-induced break at the MAT locus is very

efficiently repaired by recombination with the HMR and HML

templates, the homology is limited to a few hundred base pairs [29].

Therefore, the length of ssDNA generated during resection at a

DSB is greater than the minimum amount of sequence needed for

efficient homology search and repair. It is possible that the

formation of long ssDNA tails at DSBs increases the fidelity of

repair by activating longer sequences in the homology search.

Indeed, previously it was demonstrated that sequences located

further away from the break are used for homology search

preferentially over sequences within the first 0.5 kb from the break

[30]. To verify whether resection determines the sequences involved

in homology search and impacts template sequence choice we used

a competition assay designed by Inbar and Kupiec [30]. In this

assay, an HO break is induced on chromosome II at a ura3 sequence

that was inserted in the middle of the LYS2 gene. A DSB at this site

can be repaired by recombination with one of two homologous

template sequences, URA3 located on chromosome V or LYS2

located on chromosome XV (Figure 3A). The total homology

between ura3 sequences is 1.1 kb and between lys2 sequences is

4.9 kb. In agreement with the original report [30] we observed that

lys2 sequences that are further from the break are used preferentially

as a recombination template. Only about 2063% of wild-type cells

repair the DSB by recombination with the URA3 donor sequence.

Given that during ectopic recombination an average of 3–6 kb of

ssDNA accumulates at both sides of a DSB (Figure 1B), it is likely

that LYS2 sequences are used 4 times more often than URA3 simply

because they are 4 times longer. With the average rate of resection

of 4 kb/hr, ura3 sequences are resected within 7–8 minutes and lys2

sequences are completely resected within an additional 30–40

minutes after DSB formation. When URA3 sequences were

increased to match the LYS2 length, both templates were used with

almost equal frequency [30]. Here we tested whether additional

copies of URA3 on centromeric or multicopy plasmids could

influence the donor choice. As previously demonstrated, plasmid

DNA can be efficiently used for repair of chromosomal DSBs [28].

When an additional URA3 sequence was provided on a centromeric

plasmid we did not observe any change in donor choice (data not

shown). However, the presence of a multicopy plasmid (2m) carrying

URA3 sequences increased URA3 sequence usage for DSB repair to

55% (Figure 3B). This result suggests that sequences further away

from the break are used often as a template for repair even if short

sequences close to the break have multiple copies of intact templates.

Another conclusion is that long Rad51 nucleofilaments have a

higher chance of identifying single homologous sequence than short

nucleofilaments even when multiple homologous sequences are

available. This feature of homology search may inhibit recombina-

tion between short repeats. Finally, when both processive resection

pathways dependent on Sgs1 and Exo1 were eliminated, URA3 was

almost the only donor used for repair (.95%) demonstrating that

Figure 2. Kinetics of repair determine the amount of ssDNA
during DSB repair. (A) Schematic representation of the allelic
recombination assay between MATa and MATa-inc loci on chromosome
III. Positions of EcoRI (E) and HindIII (H) sites and DNA probes used for
Southern hybridization to analyze 59 strand processing with respect to
the HO recognition site are shown (yGI234). (B) Plot showing the
percentage of unprocessed 59 strand for each restriction site. Plotted
values are the mean values 6SD from three independent experiments.
Kinetics of DSB repair is indicated by the red line. (C) Schematic diagram
of the BIR assay used for resection analysis. (D) 59 strand processing was
analyzed in the BIR repair strain (AM1003) as described in (B).
doi:10.1371/journal.pgen.1000948.g002

Resection Prevents Aberrant DNA Break Repair
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the ssDNA exposed during resection determines the sequences

involved in homology search (Figure 3B and 3C). The viability of

wild-type cells and of sgs1D or exo1D single mutants was comparable,

while in the double mutant sgs1D exo1D, repair by gene conversion

and viability are decreased to ,11%. Altogether our data suggest

that resection activates long stretches of ssDNA in the homology

search and plays an important role in the choice of donor sequences.

de novo telomere addition is a frequent pathway of DSB
repair in resection-deficient sgs1D exo1D mutants

We previously found that decreased resection in sgs1D exo1D
cells leads to a partial deficiency in homologous recombination. In

haploid cells it is not possible to follow the fate of broken

unrepaired chromosomes because these cells die due to the loss of

essential genes upon resection and missegregation of the acentric

part of the chromosome. To verify the fate of broken

chromosomes where the breaks are very poorly resected, we used

a disomic strain that carries a second truncated copy of

chromosome III with the HO break site close to its end

(Figure 4A). In this assay most wild-type cells repair the break

by BIR (82%), a small fraction of cells can repair the break by gene

conversion (13%) using very short homology (46 bp) distal to the

DSB, and the frequency of chromosome loss is only 4%

(Figure 4B). These cells survive normally even when the DSB is

not repaired because there is second copy of chromosome III that

is not cut. The efficiency of repair was estimated by plating wild-

type, sgs1D, exo1D and sgs1D exo1D cells on YEPGal plates and

replica-plating the grown colonies onto plates lacking adenine or

leucine. In exo1D and sgs1D single mutants, there was a slight

increase of chromosome loss and gene conversion at the expense of

BIR consistent with a previous report (Figure 4B) [31]. In sgs1D
exo1D cells, DSB repair efficiency unexpectedly is comparable to

wild-type cells and most cells maintain the chromosome that was

cut by HO endonuclease. Importantly, Ade+ colonies are not

sectored, indicating that the chromosome that was cut by HO

endonuclease is maintained well for generations. Previous

estimations of DSB repair by gene conversion in sgs1D exo1D
mutant haploid cells showed a decrease by half or more [4,5]. To

make sure that the Ade+ Leu2 colonies correspond to repair by

BIR, we verified the size of 27 individual repair products from

Ade+ Leu2 colonies using pulsed-field gel electrophoresis (PFGE)

and subsequent probing with an ADE1 probe. We observed that

all cells have products corresponding to the expected BIR repair

product size, however 10 out of 27 have an additional product or

several products similar in size to the initial chromosome III or

slightly shorter. Examples of these products are shown in

Figure 4C. Short chromosome products correspond to 9% of

total products from 27 Ade+ Leu2 colonies as measured by the

relative band intensities of all the repair products. The presence of

two or more products, often observed as bands with different

intensities, suggested that the repair process occurred after cells

divided or that the two sister chromatids were repaired by different

pathways. As previously demonstrated, sgs1D exo1D cells are

deficient in the damage checkpoint response [3,5], and because

DSB ends are not processed normally in these cells, a broken

chromosome is not lost but instead cells divide with the damaged

chromosome that eventually is repaired. To check whether these

repair products are within the same cell or in independent cells we

streaked several Ade+ Leu2 colonies for single cells and further

analyzed five such newly grown individual colonies for their repair

products. In this case only either a BIR product or a single short

product was observed (Figure 4C). The alternative products are

very similar in size to the cut chromosome III, suggesting that they

arose by de novo telomere formation. To verify this, we sequenced

short chromosome ends and confirmed new telomere formation

mostly within the first 5 kb from the DSB (Figure 5A and 5B).

Rarely telomeres were added at a distance of over 10 kb away

from the break, suggesting that even in sgs1D exo1D cells the

broken chromosome is eventually degraded and telomeres are

added far from the HO break site. The 39 ends are stable only for

several hours and later are degraded [20]. Therefore, it is likely

that both strands of unprotected ends are eventually degraded in

sgs1D exo1D cells and telomeres can be added further away from

the break. Examples of sequences where de novo telomeres were

formed are shown in Figure 5A and 5B. Most telomeres were

added at short 1–5 GT-rich sequences, a characteristic similar to

spontaneous telomere formation [32]. Therefore, slow resection

greatly stimulates de novo telomere formation, but does not change

the sequence preference where telomeres are added. Importantly,

we verified 30 Ade+ Leu2 colonies in sgs1D exo1D single mutant

and in wild-type cells and did not observe any short de novo

telomere products (data not shown) suggesting that these enzymes

have a redundant function in inhibiting de novo telomere formation

at DSBs likely related to their role in resection.

New telomere formation during allelic recombination in
sgs1D exo1D cells

In the BIR assay we described above, the HO break is close to a

chromosome end that could stimulate telomere formation in cells

with poor resection. To test whether proximity to telomeres affects

Figure 3. Resection at DSB ends determines the choice of
recombination donor. (A) Schematic diagram of the competition
assay used to determine whether sequences immediately next to the
break (ura3) or sequences farther from the break (lys2) were used
during gene conversion [30]. Details of the assay are described in the
text. Sequence sizes are in kilobase pairs. (B) Southern blotting analysis
of the competition gene conversion assay shown in (A). The LYS2 gene
was used as a probe. The positions of two gene conversion products
called GC-ura3 and GC-LYS2 are indicated. (C) Frequencies of the choice
of the ura3::HOcs-inc donor for DSB repair measured at 24 hr timepoint
as the density of the band corresponding to the GC-ura3 product
divided by the combined density of both GC-ura3 and GC-LYS2
products in different mutants are shown in the table.
doi:10.1371/journal.pgen.1000948.g003

Resection Prevents Aberrant DNA Break Repair
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new telomere formation in resection deficient cells, we used a

diploid sgs1D/sgs1D exo1D/exo1D strain to carry out an allelic

recombination assay between two chromosomes III identical to the

one used for resection verification (Figure 2A). Here the break is

induced at the MATa locus in the middle of the chromosome. The

proximal and distal parts of the chromosome that is cut by HO

endonuclease has ADE1 and THR4 markers, respectively, that

allowed us to follow product formation on minimal media plates

(Figure S4). 19% of cells repair the break by gene conversion (Ade+

Thr+) and only 2% show chromosome loss (Ade2 Thr2). The

lower level of gene conversion in this assay compared to the

ectopic recombination assay between MATa and MATa-inc [5]

likely results from the necessity for resection of a 0.7 kb long Ya
sequence during allelic recombination between MATa and MATa-

Figure 4. De novo telomeres are frequently formed at poorly processed DSB ends. (A) Schematic diagram showing chromosome structure
of the disomic strain (AM1003) that carries an original chromosome III (350 kb) and a fragmented chromosome III (215 kb). Sequences distal to the
HO recognition site were replaced by the LEU2 gene and telomere sequences as described [25]. Three major pathways of repair with their respective
product sizes are shown: BIR, gene conversion and de novo telomere addition (NT). Products can be distinguished by markers and/or by sizes on PFGE
gels. (B) Frequency of DSB repair by BIR and gene conversion in the AM1003 strain and its derivatives is shown in the table. (C) PFGE analysis of
products from Ade+ Leu2 colonies exo1D sgs1D, (D) pif1-m2 exo1D sgs1D, (E) pif1-m2 med1D sml1D (F) pif1-m2 and (G) pif1-m2 exo1D sgs1D yku70D
mutant strains. To separate BIR repair products and telomere-added products (NT) in the exo1D sgs1D strain (C) originating from one survivor we
streaked single colonies on YEPD plates and analyzed products from individual colonies by subsequent PFGE. Genomic DNA of products repaired by
de novo telomere addition was purified and used for sequencing to identify telomere addition sites [(C,D) and Figure 5]. ‘‘0’’ indicates control with no
break induction. Position of chromosome I (Chr.I) that carries ade1–1 allele and is detected with ADE1 probe is shown.
doi:10.1371/journal.pgen.1000948.g004

Resection Prevents Aberrant DNA Break Repair
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inc. The rest of the cells maintained the ADE1-marked

centromeric part of the chromosome that could correspond to

either BIR or de novo telomere addition. To distinguish between

these repair pathways, we analyzed products from 29 Ade+ Thr2

colonies by PFGE and again observed a dramatic increase in new

telomere formation at the DSB sites. All tested Ade+ Thr2 colonies

contained BIR products and 6 out of these (,20%) also contained

de novo telomere products (Figure S4). Therefore, slow resection

stimulates de novo telomere formation even when the break is in the

middle of the chromosome. In a similar study at the same locus in

rad52D mutant cells that simply cannot repair a DSB but resect

normally, de novo telomeres are not formed unless long telomere

seeding sequences are provided [33]. Altogether these data suggest

that slowly processed DSB ends gain features that predispose them

to form de novo telomeres.

Resection and Pif1 independently suppress de novo
telomere formation at DSBs

Pif1 is a major telomerase inhibitor in budding yeast [34]. In

pif1D mutants, telomeres are longer and new telomeres are formed

more frequently at spontaneous and induced chromosomal breaks

[[35,36,37]; reviewed in [38]]. Interestingly, Pif1 was shown

recently to be phosphorylated upon DNA damage in a Mec1-

Rad53-Dun1-dependent manner and this phosphorylation is

needed for Pif1 to inhibit de novo telomere formation [39].

Previously, we and others demonstrated that during G2/M DNA

damage checkpoint arrest, Mec1/Ddc2 recruitment and Rad53

phosphorylation are partially defective in sgs1D exo1D cells [3,5].

Therefore, we thought that increased de novo telomere formation in

sgs1D exo1D mutant cells could be due to poor damage checkpoint

activation and lack of phosphorylated Pif1 [39]. To explore this

possibility, we tested whether the frequent de novo telomere

formation phenotypes observed in both sgs1D exo1D and pif1D
mutants are epistatic. We examined DSB repair products in pif1-

m2 and pif1-m2 sgs1D exo1D mutant cells. The pif1-m2 mutation

eliminates the nuclear form of Pif1 while mitochondrial Pif1 is still

present [37]. Surprisingly, we found that pif1-m2 single mutants

are defective in BIR, as only half of the colonies retain growth on

ade- plates (Figure 4B). The detailed analysis of Pif1’s role in BIR

will be presented elsewhere (W.H.C. and G.I., data not shown).

Here we analyzed repair products from 30 individual Ade+ Leu2

colonies of pif1-m2 sgs1D exo1D triple mutant cells and 60

individual Ade+ Leu2 colonies of pif1-m2 mutant cells (Figure 4D

and 4F, and data not shown). Only 1 out of 60 Ade+ Leu2

products from pif1-m2 cells showed repair by de novo telomere

formation (Figure 4F). However, in pif1-m2 sgs1D exo1D triple

mutants almost all (29/30) products contained either BIR and de

novo telomere or just de novo telomere products (Figure 4D). De novo

telomere products constituted 53% of all products from Ade+

Leu2 colonies as measured by the intensity of the bands

corresponding to the BIR and de novo telomere products. In pif1-

m2 sgs1D exo1D triple mutants, we observed much better

maintenance of the broken chromosome when compared to pif1-

m2 cells (Figure 4B), however this increase in Ade+ colonies turned

out to correspond to repair via new telomere addition. Similar

results we obtained in pif1-4A sgs1D exo1D mutant where pif1

phosphorylation mutant protein was defective in inhibiting new

telomere formation at DNA breaks [39]. In pif1-4A sgs1D exo1D
mutant 19 out of 20 products from Ade+ Leu2 colonies formed

new telomeres (data not shown). In conclusion these results

demonstrate that Pif1 actively suppresses new telomere formation

even in cells that are partially defective in the DNA damage

checkpoint response. We sequenced the ends of de novo telomeres

in pif1-m2 sgs1D exo1D mutant cells and showed that most of them

are formed within the first 1 kb from the DSB, which are even

closer than those observed in sgs1D exo1D double mutant cells

(Figure 5A and 5B). In triple pif1-m2 sgs1D exo1D mutants, there is

no further decrease in resection when compared to sgs1D exo1D
cells (Figure S5), indicating that Sgs1/Exo1 and Pif1 indepen-

dently and in different way suppress de novo telomere formation at

DSB ends.

Figure 5. Analysis of telomere formation in exo1D sgs1D
mutants. (A) The positions of new telomere addition in 14 products
from exo1D sgs1D (5 triangles) and pif1-m2 exo1D sgs1D (9 circles) cells
were determined by sequencing. (B) Exact position and sequence
where telomeres were added is presented in the table. (C) ChIP analysis
of Cdc13-13Myc binding to the region flanking the DSB was conducted
in wild-type, pif1-m2, exo1D sgs1D and pif1-m2 exo1D sgs1D strains
using polyclonal anti-myc antiserum. Samples were collected before
and 8 h after DSB induction. Immunoprecipitated DNAs were amplified
by qPCR using primer pairs to amplify a region located about 1 kb away
from the HO break site. The 8 h time point IP values were normalized to
the time 0 samples to yield the fold-IP values plotted on the Y-axis for
the wild-type and each mutant strain. Error bars represent one standard
error of the mean for three independent experiments.
doi:10.1371/journal.pgen.1000948.g005
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Analysis of new telomere formation at DSBs in
checkpoint deficient cells

In sgs1D exo1D mutant cells, checkpoint response in response to

a single DSB is decreased [3,5]. Therefore one possible reason for

the very high rate of new telomere formation observed in sgs1D
exo1D cells is the decreased damage checkpoint response. However

we clearly demonstrated in the section above that Pif1, which

needs to be phosphorylated by Mec1 in order to inhibit new

telomere formation, is still active in sgs1D exo1D cells. To examine

further whether decreased checkpoint response in sgs1D exo1D cells

is exclusively responsible for the very high level of new telomere

formation, we tested DSB repair (BIR assay) in rad24D and rad9D
mutants that are damage checkpoint deficient. Again we analyzed

20 products from Ade+ Leu2 colonies from each mutant by PFGE.

We found only 1 out 40 products in rad24D corresponds to new

telomere formation (data not shown). Further we constructed a

triple mutant mec1D sml1D pif1-m2 and again analyzed the

frequency of new telomere formation. We found only 5 out of 30

products correspond to new telomere formation (Figure 4E), which

is significantly more than in pif1-m2 but also much less than in

sgs1D exo1D pif1-m2 where almost all Ade+ Leu2 colonies

contained new telomere products. Together these data suggest

that checkpoint deficiency in sgs1D exo1D cells alone does not

explain the very high rate of new telomere formation, and points

towards resection as an important factor.

Slow resection stimulates recruitment of Cdc13 and
partially bypasses the Ku complex requirement for de
novo telomere formation

Telomerase is recruited to single-stranded overhangs at the ends

of chromosomes via Cdc13 and the Ku complex [reviewed in

[40]]. Both proteins are needed for de novo telomere formation at

DSBs [36,41]. Deletion of YKU70/80 almost completely suppress-

es the increased de novo telomere formation observed in pif1D cells

[36]. Another function of Ku at telomeres is protection from

nucleases [42,43,44]. In sgs1D exo1D cells, DSB ends are processed

minimally and so the function of the Ku complex is presumably

limited to telomerase recruitment. To test whether slow resection

at DSBs bypasses the need for Ku in de novo telomere formation,

we constructed the quadruple mutant pif1-m2 sgs1D exo1D yku70D
and measured the frequency of de novo telomere formation at DSB

ends. As shown in Figure 4G, most of the DSBs still lead to de novo

telomere formation (22/29), however the total intensity of new

telomere products dropped to 15% compared to 53% observed in

pif1-m2 sgs1D exo1D cells. Similarly in sgs1D exo1D yku70D cells we

observed a relatively high number of new telomere formation (10

out of 40 products) comparable to sgs1D exo1D. However, the

intensity of new telomere product was again reduced (data not

shown). Therefore, slow resection exhibited by sgs1D exo1D
mutants partially suppresses the need for the Ku complex in de

novo telomere addition at DSBs. The Ku complex plays the

opposite role of Sgs1 and Exo1 as it protects DNA ends from

degradation. Because in the absence of resecting enzymes Ku

becomes partially dispensable for new telomere formation, we

propose that the role of Sgs1 and Exo1 specifically in resection,

rather than other functions of these enzymes, is important in

preventing new telomere formation at DSBs.

Cdc13 was shown to be recruited to a DSB in the middle of a

chromosome even in wild-type cells where telomeres are not

formed [45]. To verify whether Cdc13 recruitment is stimulated at

poorly resected DSB ends we performed chromatin immunopre-

cipitation (ChIP) with Myc-tagged Cdc13 in wild-type, pif1-m2,

sgs1D exo1D and pif1-m2 sgs1D exo1D mutant cells. We measured

Cdc13 recruitment before HO break induction and 8 hours after

break induction when significant BIR products start to accumulate

[25]. As shown in Figure 5C, recruitment of Cdc13 increased at

8 hr after break induction in sgs1D exo1D and pif1-m2 sgs1D exo1D
cells about 3- to 6-fold relative to wild-type cells. These results

suggest that slow resection results in higher or longer lasting

recruitment of Cdc13 that may then stimulate de novo telomere

formation.

Gene targeting efficiency and accuracy increase
dramatically in sgs1D exo1D cells

While constructing additional gene deletions in sgs1D exo1D
strain we observed that gene targeting in sgs1D exo1D mutants was

surprisingly very efficient. This is in contrast to a general decrease

in DSB-induced recombination which we tested in the different

assays described above. We attempted to delete several genes in

sgs1D exo1D cells and in each case gene targeting was highly

efficient. For example, deletion of ygr042w ORF with ygr042w::-

KanMX cassette was 140-fold higher in sgs1D exo1D than in wild-

type cells. To examine more carefully the efficiency of gene

targeting we transformed a thr4::URA3 cassette containing 1.1

SmaI-HindIII URA3 fragment into ura3–52 wild-type cells, and

derivative sgs1D, exo1D, dna2D pif1-m2 and sgs1D exo1D mutant

cells and determined the amount of Ura+ and Ura+ Thr2 colonies.

We further normalized the level of Ura+ colonies to the plating

efficiency of each strain and compared the efficiency of gene

targeting in wild-type and mutant cells. As shown in Figure 6A, the

targeting efficiency increased in all single mutants, by 3- to 4-fold

in the absence of Sgs1 or Dna2 and over 30-fold in the absence of

Exo1, relative to wild-type cells. Strikingly, when both Sgs1 and

Exo1 are absent the efficiency of targeting increases over 600-fold.

It is likely that in the absence of enzymes which process DSB ends

the stability of transformed DNA is increased and therefore gene

targeting is more efficient. We also measured the accuracy of

targeting among over 200 Ura+ colonies and observed that in

sgs1D exo1D mutant cells almost all targeting events are accurate

(99%), which is significantly higher than in wild-type cells (72.2%;

p,0.05). It is possible that in wild-type cells quick degradation of

the 59 strands exposes the URA3 marker sequence of the targeting

cassette and activates it in a homology search that leads to

integration at a locus other than THR4. The strain we transformed

was ura3–52, therefore one possibility was that the thr4::URA3

cassette was integrated at ura3–52 locus. To test this possibility we

transformed the same thr4::URA3 cassette into the strain where the

entire URA3 ORF was deleted [46]. In this strain, the URA3

marker within the cassette shared no homology with the genome.

However, again we observed that only 78% of gene targeting was

accurate. Therefore inaccurate integration is not caused by

resection reaching URA3 sequences within cassette that stimulates

integration at the ura3–52 locus. However it is still possible that

marker sequence within the cassette can, when resected, inhibit

accurate integration. The accuracy of gene targeting rose from

72% to 87% or 95% when we increased the flanking homology

length within thr4::URA3 cassette from 1.1 to 2.5 or 6.5 kb. This

suggests again that cells use longer stretch of ssDNA in homology

search and it is beneficial for the repair accuracy. With longer

homology we also observed 6–7 fold increase in targeting

efficiency in wild-type cells, which is still 2 orders of magnitude

less than the increase observed in sgs1D exo1D cells. Only a slight

increase in efficiency of targeting with longer homology but

normal resection is not surprising because the resection rate (4 kb/

hr) is high enough to degrade the cassette very quickly even when

flanking homology is relatively long.

Resection Prevents Aberrant DNA Break Repair
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Discussion

Benefits of extensive resection during DSB repair: fidelity
of repair and checkpoint maintenance

We determined for the first time the length of ssDNA generated

during DSB repair and showed that resection determines

sequences used for homology search. Three different assays with

different kinetics were used to measure resection: allelic recom-

bination, ectopic recombination and BIR. Allelic recombination

lasts about 2–3 hours which is similar to recombination between

sister chromatids [47] and the average length of ssDNA

accumulated during such repair is only 2–4 kb on each side of

the break. Longer ssDNA (3–6 kb) was formed during the slower

ectopic recombination assay. In these two assays, most of ssDNA

accumulated before strand invasion, as the final repair product is

formed 1.5 to 3 hours after DSB induction and only 20 minutes

after strand invasion (Figure 1 and Figure 2; [24] and J. Haber,

personal communication). We suggest that most ssDNA we

detected in gene conversion assays participates in homology

search. The 2–6 kb of ssDNA greatly exceed the amount of

homology needed for efficient repair but may be beneficial for the

fidelity of repair. If only very short sequences next to the break are

involved in the homology search it may lead to recombination

with short repeats. Involvement of longer ssDNA tails in the

homology search would limit such recombination events. Indeed

we demonstrated that in a mutant that generates only very short

ssDNA at DSB ends, the homology search is limited to the vicinity

of the break and repair involves only a short repeated sequence. In

genomes with high numbers of short repeats, such as the 1 million

copies of the 0.3 kb-long Alu repeats found in the human genome,

involvement of longer sequences in the homology search can

constitute an additional barrier for nonallelic recombination

besides mismatch repair or the cohesin-mediated bias toward

intersister chromatid recombination. However, resection is a

double-edged sword as activation of longer ssDNA in the

homology search also brings the risk of involvement of repetitive

sequences located further away from the break [48]. Equal

involvement of both DSB ends probably decreases such events

[49]. Also, cells are able to downregulate resection to prevent too

extensive chromosome degradation at DSBs [13].

Another reason why cells resect long ssDNA during repair

probably relates to DNA damage checkpoint activation and

maintenance. This could be particularly important during very

slow repair by BIR where we found 10–15 kb of ssDNA. In BIR

strand invasion occurs with kinetics comparable to gene

conversion but 39 ends prime new DNA synthesis only 2–3 hours

later [25,49]. The much longer ssDNA formed during BIR than

during gene conversion suggests that resection continues after

strand invasion. It is likely that this extensive resection after

heteroduplex formation stimulates maintenance of DNA damage

checkpoint arrest until cells repair the break. In conclusion short

ssDNA might be sufficient for strand exchange processes but not

for the checkpoint arrest that is needed to complete repair.

De novo telomere formation at poorly resected DSB ends
Telomere addition at spontaneous or induced DSBs was

previously described in yeast, mouse and human cells [reviewed

in [38]]. It is an extremely rare chromosome aberration in wild-

type cells but frequent in tumor cells. Here we observed that cells

in which resection is limited to a few hundred base pairs frequently

use the alternative pathway of repair via de novo telomere addition.

When the yeast inhibitor of telomerase, Pif1, was eliminated in

poorly resecting mutants, most cells repaired the DSB using de novo

telomere addition. Why do sgs1D exo1D mutant cells very

frequently use the alternative pathway of repair via de novo

telomere addition? We think that a combination of repair,

checkpoint and resection defect in this mutant is a key for the

high level of new telomere addition at DSBs. Separately repair or

checkpoint defective mutants do not affect new telomere formation

so dramatically. In mutants such as rad52D that do not repair the

breaks, new telomeres are not added [33] or added infrequently

[35]. Also in checkpoint deficient cells like rad24D or rad9D there is

Figure 6. Elimination of enzymes that degrade DNA ends greatly stimulates gene targeting. (A) A 2.1 kb thr4::URA3 cassette was used for
a gene replacement assay in wild-type and mutant strains lacking one or more enzymes involved in DSB resection. Efficiency and accuracy of gene
targeting measured as the amount of Ura+ or Ura+ Thr2 colonies is displayed. Error bars represent standard deviation for three independent
experiments. (B) Hypothetical model presenting gene targeting in cells exhibiting normal processing of DNA ends and in cells with decreased
resection. Extensive resection exposes the nonhomologous URA3 marker sequence and eventually degrades the transformed cassette. Exposed 39

homologous tails are likely to be degraded faster in wild-type cells than in sgs1D exo1D mutant cells.
doi:10.1371/journal.pgen.1000948.g006
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only a slight increase in new telomere formation at DSBs.

However in a sgs1D exo1D mutant, besides repair and checkpoint

deficiency, decreased degradation at a DSB site prevents

chromosome loss that gives cells more chance for alternative

repair. Indeed all de novo telomeres in sgs1D exo1D and more than

half in pif1-m2 sgs1D exo1D mutants formed only when cells

divided once or more times after DSB induction. Another factor

stimulating de novo telomere formation is that in sgs1D exo1D cells

binding of Cdc13, a protein essential for telomerase recruitment, is

increased. It is possible that at poorly resected DSBs like at

telomeres that have very short ssDNA overhangs, Cdc13 can

successfully compete with RPA for ssDNA. We also demonstrated

that decreased resection partially bypassed the need for Ku70/80

for de novo telomere formation. The Ku complex is required for

spontaneous and MMS-induced de novo telomere addition in cells

with normal resection [36,41]. Ku contributes to this process by

direct recruitment of telomerase and/or by protecting DSB ends

from degradation. Here we demonstrate, in a strain where ends

are relatively stable with minimal ssDNA formation, a dramatic

increase in de novo telomere formation even in the absence of Ku.

The fact that deletion of both Sgs1 and Exo1 partially bypasses the

need for the Ku complex that protects DNA ends from

degradation indicates that the role of Sgs1 and Exo1 in resection,

rather than another function of these enzymes, is important in

preventing new telomere formation at DSBs.

Gene targeting in the absence of enzymes that degrade
ssDNA

Gene targeting is a major technique in molecular biology that

allows the precise modification of the genome and is envisaged as

being a major future therapeutic approach for genetic disorders.

One of the major problems of gene targeting in higher eukaryotes is

the low efficiency and particularly the very low accuracy of this

process. Here we observed a dramatic increase in gene targeting

efficiency and accuracy in the absence of enzymes which resect 59

strands, Sgs1 and Exo1 (Figure 6A). In the absence of both Sgs1

and Exo1, DSB ends are processed by the MRX complex and Sae2

to generate 100–1,000 bp of ssDNA [4,5]. This is similar in size to

the homologous sequence frequently provided as transformed DNA

for gene targeting. We suggest that transformed DNA is similarly

processed initially by the MRX complex and later by Exo1 and

Sgs1. In the absence of both Sgs1 and Exo1, this transformed

targeting cassette is probably stable for much longer than in wild-

type cells, having only short ssDNA at the ends active in the

homology search (Figure 6B). Together this gives a higher chance

for correct integration into the genome. Longer homology within

the transformed cassette increases gene targeting only slightly (6–7

fold), and is not comparable to the increase observed in the absence

of processive resection enzymes. This is not surprising given the

high 4 kb/hr resection rate. Sgs1 has an additional role in DSB

repair as it suppresses the crossover pathway, presumably by double

Holliday junction dissolution [22,50]. Gene targeting presumably

relies on crossover events between the transformed DNA cassette

and the chromosome, therefore it is possible that besides decreased

resection the absence of Sgs1 can stimulate targeting by increasing

the crossover pathway. In the absence of both Sgs1 and Exo1 the

accuracy of gene targeting is also increased. One possibility is that

exposure of marker sequences within the transformed cassette

inhibits correct integration even when the marker has no homology

within the genome. Future experiments with cassettes that do not

have a marker will help to investigate this possibility. An alternative

explanation could be that quick exposure of the 39 ends may lead to

their degradation [20] leaving less homology on the ends of the

transformed cassette and therefore more inaccurate targeting. It is

likely that in human cells where Exo1 and BLM play comparable

roles in resection to their yeast counterparts [3], gene targeting

efficiency or accuracy could be increased by temporary depletion of

both enzymes. Indeed, in human cells depletion of BLM helicase

stimulates gene targeting [51]. However, in human cells there are

additional nucleases that are not present in yeast such as

cytoplasmic/nuclear TREX1 39 exonuclease that is expressed in

all cells. TREX1 was shown to degrade DNA arising from DNA

replication, DNA damage, endogenous retroviruses or viral

infection and TREX1-null mice accumulate DNA leading to

chronic damage checkpoint activation [52,53] [54]. These

phenotypes strongly suggest that transformed DNA cassettes are a

substrate for TREX1 as well. We think that one reason for the

relatively less efficient and much less accurate gene targeting

observed in human and other organisms when compared to yeast is

due to the presence of additional nucleases that degrade

transformed DNA. Future experiments will examine whether

TREX1 interferes with gene targeting. A tempting speculation is

that Sgs1 and Exo1 degrade any linear DNA in cells like the cDNA

of retrotransposons or viral DNA thus protecting the genome from

integration of foreign DNA. Accordingly in the absence of Sgs1, the

frequency of retrotransposition increases in yeast [55].

Taking these observations together we have demonstrated that

the extent of resection from a DSB has a fundamental role in

determining the outcome of DSB repair and in the maintenance of

genome stability. It will be important to understand how resection

is regulated at a molecular level by checkpoint proteins and by

chromatin remodeling to diminish the deleterious pathways of

repair.

Materials and Methods

Strains
All strains used here are derivatives of four strains: (i) tGI354 to

study ectopic recombination (hml::ADE1 MATa-inc hmr::ADE1 ade1

leu2–3,112 lys5 trp1::hisG ura3–52 ade3::GAL::HO arg5,6::HPH::MATa);

(ii) MK181, a gift from Martin Kupiec, to study recombination

template choice with respect to resection distance (MATa-inc ura3-

HOcs-inc ade3::GAL-HO ade2-1 leu2–3,112 his3–11,15 trp1–1 can1–

100); (iii) yGI234 to study allelic recombination (hml::ADE1/HML

MATa/MATa-inc hmr::ADE1/HMR ade1/ade1 leu2–3,112/leu2–

3,112 lys5/LYS5 trp1/trp1 ura3–52/ura3–52 THR4/thr4::URA3 ade3::

GAL::HO/ADE3); and (iv) disomic AM1003 to study BIR (MATa-

LEU2-tel/MATa-inc ade1 met13 ura3 leu2–3,112/leu2 thr4 hml::ADE1/

hml::ADE3 hmr::HPH ade3::GAL-HO FS2::NAT/FS2). A list of all

strains is presented as supplemental material (Table S1).

Measurement of 59 strand resection and DSB repair
Measurement of resection during DSB repair was done by

following the transient loss of restriction enzyme cutting sites at

different distances from the break. DNA isolated by glass bead

disruption using a standard phenol extraction method was

digested with restriction enzymes and separated on 0.8% agarose

gels. Southern blotting and hybridization with radiolabeled DNA

probes was carried out as described previously [56]. Multiple

DNA probes used for hybridization to detect 59 strand resection

beyond the restriction site, as well as the sequences of DNA

primers used to prepare the probes by PCR, are listed in Table

S2. Intensities of bands on Southern blots corresponding to

probed DNA fragments were analyzed with ImageQuant TL

(Amersham Biosciences). Quantities of DNA loaded on gels for

each time point were normalized using a TRA1 gene DNA

probe. DSB end resection beyond each restriction site for each

time point in the ectopic recombination assay was estimated as a

Resection Prevents Aberrant DNA Break Repair

PLoS Genetics | www.plosgenetics.org 10 May 2010 | Volume 6 | Issue 5 | e1000948



percentage of the signal intensity loss corresponding to the

fragment of interest before break induction. In allelic recombi-

nation and in BIR assays both the HO cut chromosome and the

homologous template chromosome have the same sequences and

only the cut chromosome is being resected. In these two assays,

therefore, we calculated DSB end resection beyond each

restriction site as a percentage of the signal intensity corre-

sponding to half of the signal of the fragment of interest before

break induction. The donor choice assay was performed as

previously described [30]. The probe used for detecting products

of DSB repair was almost the entire LYS2 ORF (XbaI – HindIII).

The kinetics of product formation (repair) at each time point was

determined by dividing the normalized intensity of the band

corresponding to the product by the normalized intensity of the

initial uncut band at time 0.

Pulsed-field gel electrophoresis (PFGE)
To analyze DSB repair products in AM1003 derivative mutant

strains, chromosomal DNA plugs were prepared and separated on

a 1% agarose gel at 6 V/cm for 30 hrs (initial time = 10 s, final

time = 35 s) by using the CHEF DRII apparatus (Bio-Rad),

followed by Southern blotting and hybridization using a DNA

fragment containing ADE1 sequence as a probe.

Detection of de novo telomere addition sites
To determine where de novo telomeres were added, PCR was

carried out using one primer complementary to telomeric repeat

sequence (CA16; 59-CACCACACCCACACAC-39) [57] and

another primer at a different distance from the HO break site

(Telo-F10 [,5 kb upstream of HO]; 59-GTCGTGCAGGTAC-

GACTTTA-39, Telo-F8 [,4 kb upstream of HO]; 59-TCTT-

TCCCTCGCTACTCACA-39, Telo-F6 [,3 kb upstream of

HO]; 59-GTGAGCGTACAAGAAGCAAA-39, Telo-F2 [,2 kb

upstream of HO]; 59-GTTAAGTAGTAAGTTTGCGGAG-39,

Telo-F4 [,1 kb upstream of HO]; 59-CCAACTTTCTAG-

TATTCGGACA-39). Amplified PCR products were isolated from

agarose gels and sequenced.

Chromatin immunoprecipitation (ChIP)
ChIP analysis of Cdc13 binding was performed and quantifica-

tion was done as described previously [5]. a-Myc antibody was

purchased from Sigma (9E10). After immunoprecipitation and

reverse crosslinking, SyBrGreen-based real-time PCR was carried

out on an ABI 7900 machine using a pair of primers which anneal

1 kb upstream of the HO break site (MATX-F2, 59-GGTAGGC-

GAGGACATTATCTATCA-39; MATX-R3, 59-GAAGAATAC-

CAGTTTATCTCGCATTCAAATC-39) as well as primers specific

for the PRE1 gene located on chromosome V as a control.

Gene targeting efficiency and accuracy assay
An approximately 2.1 kb thr4::URA3 cassette was PCR

amplified from genomic DNA of the AM476 strain and 1 mg

was used as a gene replacement construct for transformation of

16108 JKM139 cells and its derivative mutant cells. To calculate

gene targeting efficiency, the number of Ura+ colonies was

normalized by plating efficiency and transformation efficiency

with uncut centromeric YCp50 plasmid for each strain. The

accuracy of gene replacement was calculated as the number of

Ura+ Thr2 transformants.

Supporting Information

Figure S1 Kinetics of resection and HO induction in allelic

recombination assay. (A) Schematic representation of allelic

recombination assay between MATa and MATa-inc loci on

chromosome III. Positions of EcoRI and HindIII sites and DNA

probes used for Southern hybridization to analyze 59 strand

processing with respect to the HO recognition site are shown

(yGI234). (B) Southern blotting analysis of resection and HO

induction in allelic assay. The quantification is shown in Figure 2B.

The same blot was probed subsequently with 8 different probes.

Probes used for resection analysis recognize both the cut

chromosome and the uncut homologous chromosome. Therefore,

complete resection beyond each studied restriction fragment will

eliminate only half of the studied restriction fragments. (C)

Kinetics of HO break induction and DSB repair in allelic

recombination assay.

Found at: doi:10.1371/journal.pgen.1000948.s001 (0.61 MB TIF)

Figure S2 DSB end resection in wild-type diploid cells. (A) The

position of the restriction enzyme sites and the probes used to

follow the resection kinetics in wild-type diploid cells at two

different loci. (B) Southern blot analysis and plot demonstrating

kinetics of resection are shown.

Found at: doi:10.1371/journal.pgen.1000948.s002 (0.24 MB TIF)

Figure S3 Kinetics of 59 strand resection and repair in BIR

assay. (A) Schematic representing BIR assay and the position of

the restriction enzyme sites and the probe used to follow DSB

repair via BIR. The probe used in this assay detects repair by BIR

but not by gene conversion. (B) Southern blot analysis of HO

break induction and repair in BIR assay. Quantification of repair

and HO cut induction is shown. The kinetics of product formation

in BIR assay at each time point was determined by subtracting the

pixel intensity of the band corresponding to the initial (time 0)

MATa template DNA EcoRI fragment from the sum of the

intensities of the bands corresponding to the template MATa and

the product DNA fragments multiplied by 100%. Quantities of

DNA loaded on gels for each time point were normalized using a

TRA1 gene DNA probe. (C) Southern blot analysis of 59 strand

resection in BIR assay. Quantification of 59 strand resection is

shown in Figure 2.

Found at: doi:10.1371/journal.pgen.1000948.s003 (0.73 MB TIF)

Figure S4 Analysis of repair products in allelic recombination

system. (A) Schematic representation of allelic recombination assay

between MATa and MATa-inc loci on chromosome III. (B) The

fate of the repair products was determined based on their

auxotrophic markers in wild-type (yGI234) and exo1D sgs1D
mutant (yWH847) cells. (C) To distinguish between BIR and de

novo telomere formation, repair products from individual

survivors that are Ade+ Thr- were analyzed by PFGE using an

ADE1 probe. ‘‘0’’ indicates control before break induction.

Position of chromosome I that carries the ade1–1 gene is shown,

as the parental strains used to make the diploid strain carry

chromosome I of different sizes.

Found at: doi:10.1371/journal.pgen.1000948.s004 (0.47 MB TIF)

Figure S5 Pif1 helicase does not affect 59 end resection at the

DSBs. Comparison of the resection kinetics in wild-type, exo1D
sgs1D and pif1-m2 exo1D sgs1D mutant cells at three different loci

(0, 3, and 28 kb away from the HO break site using MAT,

BUD5, and FEN2 probes, respectively). Southern blot analysis is

shown.

Found at: doi:10.1371/journal.pgen.1000948.s005 (0.64 MB TIF)

Table S1 Genotype of strains used in the study.

Found at: doi:10.1371/journal.pgen.1000948.s006 (0.08 MB PDF)

Table S2 Sequences of DNA primers used in the study.

Found at: doi:10.1371/journal.pgen.1000948.s007 (0.04 MB PDF)
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