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Abstract

There is growing evidence that gene expression profiling of peripheral blood cells is a valuable tool for assessing gene
signatures related to exposure, drug-response, or disease. However, the true promise of this approach can not be estimated
until the scientific community has robust baseline data describing variation in gene expression patterns in normal
individuals. Using a large representative sample set of postmenopausal women (N = 286) in the Norwegian Women and
Cancer (NOWAC) postgenome study, we investigated variability of whole blood gene expression in the general population.
In particular, we examined changes in blood gene expression caused by technical variability, normal inter-individual
differences, and exposure variables at proportions and levels relevant to real-life situations. We observe that the overall
changes in gene expression are subtle, implying the need for careful analytic approaches of the data. In particular, technical
variability may not be ignored and subsequent adjustments must be considered in any analysis. Many new candidate genes
were identified that are differentially expressed according to inter-individual (i.e. fasting, BMI) and exposure (i.e. smoking)
factors, thus establishing that these effects are mirrored in blood. By focusing on the biological implications instead of
directly comparing gene lists from several related studies in the literature, our analytic approach was able to identify
significant similarities and effects consistent across these reports. This establishes the feasibility of blood gene expression
profiling, if they are predicated upon careful experimental design and analysis in order to minimize confounding signals,
artifacts of sample preparation and processing, and inter-individual differences.
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Introduction

There is growing evidence that transcriptome analysis of

peripheral blood cells is a valuable tool for determining signatures

related to disease [1–5] and drug-response [6]. Differences in blood

gene expression may also reflect the effects of a particular exposure,

such as smoking [7], metal fumes [8], or ionizing radiation [9]. In our

previous research, we studied gene expression profiles from whole

blood related to hormone therapy (HT) use in postmenopausal

women [10] and identified specific challenges raised by inter-

individual variability when isolating signals associated with defined

exposure levels. Although blood gene expression profiling promises

molecular-level insight into disease mechanisms, there remains a lack

of baseline data describing the nature and extent of variability in

blood gene expression in the general population. Characterizations of

this variation and the underlying factors that most influence gene

expression amongst healthy individuals will play an important role in

the feasibility, design and analysis of future blood-based studies

investigating biomarkers for exposure, disease progression, diagnosis

or prognosis [11].

Several studies [12–18] have reported that technical variables

such as collection, transportation, storage of blood samples, RNA

isolation method and choice of microarray platform, in addition to

biological effects, can influence gene expression profiles. These

technical factors associated with the processing and preparation of

human blood and subsequent microarray hybridization represent

significant challenges in the analysis of variability.

Furthermore, a few previous studies have used microarrays to

analyze blood from healthy volunteers and found that inter-individual

sample variation was associated with sex [18], age [13,18], the time of

day the sample was taken [18,19], and the proportion of the different

cell populations comprising the blood sample [13,18,20]. However to

date, all such studies have focused on gene expression profiles

generated from a small set of samples not representative of the general

population using different blood cell subtypes. For several reasons

including the small sample sizes, these studies have been restricted to

the analysis of a small number of variables simultaneously, thus

ignoring possible interaction and confounder effects.

Finally, an understanding of these causes of variability would

represent a significant step forward in the identification and

evaluation of the disease and disease risk biomarkers. Most if not

all genes are involved in molecular pathways that provide

mechanistic insight in response to exposure or disease develop-

ment. Pathway depictions are usually simplified, ignoring
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interactions with other pathways, and we often have incomplete

knowledge about the specific interplay of the many elements in

almost any particular system.

Using a large representative sample set of postmenopausal

women in the Norwegian Women and Cancer (NOWAC)

postgenome study [21,22] processed via a standardized blood

collection procedure and via an experimentally validated micro-

array platform [23], we investigate here the baseline variability of

whole blood gene expression profiles. This represents the first

comprehensive cross-sectional analysis of blood gene expression

changes related to multiple inter-individual and exposure

variables, and opens the new research discipline of systems

epidemiology [24]. In this setting, we investigated blood gene

expression changes due to technical variability, normal inter-

individuality, and exposure variables at proportions and levels

relevant to real life situations, and establish that these effects are

mirrored in the blood transcriptome.

Results

Study design
Population characteristics. Characteristics of women

included in the analyses are described in Table S1A. Most of

the women were non-smokers, not using HT, and 41.8% were not

using any other medication (MED). In average, smokers consumed

2.8 cigarettes (sd 3.8) before blood sampling and 10.2 cigarettes (sd

6.3) the day before. The mean body mass index (BMI) was

25.6 kg/m2 (SD 4.2) with most women either of normal BMI

(51.7%) or overweight/obese (45.8%). Women in our study range

from 48 to 62 years of age (mean 55.7; SD 3.6). Age was

significantly associated with smoking (Chi-square p-value = 0.01).

Data analysis strategy. Using the data analysis strategy

outlined in Figure 1, three among eight reported technical variables

found significant in multivariate global analysis of covariance

(ANCOVA) [25] (Figure 1A), as well as three biological (age, body

mass index, fasting status), and three exposure variables (smoking,

HT and MED) were included in the forward-backward variable

selection by the mixed linear model run for each probe (Figure 1B).

Additionally, as an interaction between HT and MED use was

significant in the blood expression profiles, we also included an

interaction variable to account for this in our model. Since model

selection based on Bayesian information criterion (BIC) does not take

into account issues of multiple testing, we filtered the gene sets based

on the z-score value from global test [26] and set a threshold which

maximizes the discovery of true positives (weight = 2) versus false

positives (weight = 1) associated to each variable (Figure 1D). The z-

score obtained from the global test [26] is a useful analytical tool to

reduce probes that have previously been found differentially

expressed to a core set by estimating the contribution of each

probe to the overall measure of association for this set to a specific

variable. Throughout this report, we refer to probes filtered by global

test z-score more likely to be true positives as core probes. We applied

functional clustering via the Database for Annotation, Visualization,

and Integrated Discovery (DAVID) [27] (http://david.abcc.ncifcrf.

gov/) and gene network predictions via HEFalMp [28] (http://

function.princeton.edu/hefalmp) to the resultant core gene list for

each phenotype, in order to identify molecular pathways and

processes that are variable across our panel of healthy subjects

(Figure 1E).

As a complementary approach (Figure 1C), we curated gene sets

from published articles focusing on normal variability in blood or

gene expression profiles related to exposure, and subsequently

conducted gene set enrichment analysis via the global test [26]. In

total, 42 such gene sets were identified from 14 published papers

and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database [29] (Table S2).

Investigation of baseline variation in gene expression
changes in blood

Global analysis of covariance. We investigated the effects of

technical variability by searching for associations between the global

blood gene expression profiles and eight reported technical variables

(Table S1B) that catalog day-to-day RNA processing, RNA/cRNA

purity and concentration. All technical variables were highly

significant in the univariate global ANCOVA [25] but three

variables (i.e. array lot number, RNA extraction date, time between

blood collection and freezing) remain significant the multivariate

analysis with permuted p-value less than 0.0001 (Table S3).

EigenR2 analysis and probe sets variability. Via an eigenR2

analysis [30] which is a high-dimensional version of the classic R2

statistic, we estimated that the three above-mentioned technical

variables and the six biological/exposure variables explained 46.5%

and 8.1% of the overall variation in gene expression, respectively.

These results suggest that the contributions of technical variability

result in a level of random noise which is deemed to be high for this

large sample set even after standard normalization.

Under gene-wise linear model selected by BIC criterion, each

probe was found to be associated with 3.4 variables on average

(total 10 variables considered, SD 1.2). As complementary

analysis, we considered only those probes that were uniquely

associated with a single variable to capture specific signals related

to one biological variable. However, since most probes (77%)

showed expression patterns that associate with array lot, we did

not filter probes from this subsequent analysis if they were

associated with this technical variable. Throughout this report, we

refer to probes that meet this criterion as biologically uniquely

associated with a variable of interest (Table S4).

Investigation of variation in gene expression changes in
blood associated with biological and exposure variables

Molecular effects of smoking mirrored in blood. Gene-

wise mixed linear analysis identified 3,024 probes related to

smoking of which 98.1% are core probes (FDR = 0.01; Table 1).

Author Summary

As a major defence and transport system, blood cells are
capable of adjusting gene expression in response to
various clinical, biochemical, and pathological conditions.
Here, we expand our understanding about the nature and
extent of variation in gene expression from blood among
healthy individuals. Using a large representative sample of
postmenopausal women (N = 286) in the Norwegian
Women and Cancer (NOWAC) postgenome study, we
investigated blood gene expression changes due to
normal inter-individuality (age, body mass index, fasting
status), and exposure variables (smoking, hormone ther-
apy, and medication use) at proportions and levels found
in real life situations. Host genes were found to vary by
inter-individual (i.e. fasting, BMI) and exposure (i.e.
smoking) factors, and these gene lists may be used as a
basis for further hypothesis development. Our study also
establishes the feasibility of blood gene expression
profiling for disease prediction, diagnosis, or prognosis,
but underscores the necessity of care in study design and
analysis to account for inter-individual differences and
confounding signals.

Deciphering Normal Blood Gene Expression Variation
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Via DAVID, we identified several biological processes significantly

over-represented in the smoking-associated set of genes (Table 2)

including enrichments for ‘‘rhodopsin-like, G protein coupled

receptor activity’’ (DAVID cluster of 5 biological processes,

median FDR = 1.60 1026; Table 2) and ‘‘olfactory receptor

activity, sensory perception of smell/chemical stimulus’’ (DAVID

cluster of 6 biological processes, median FDR = 0.46%,

Table 2). Two sub-endothelial adhesive proteins (fibronectin

and thrombospondin, Table 2) were significantly deregulated by

smoking. Finally, specific (e.g. monoamine oxidoreductase activity)

as well as more general processes (e.g. substrate-specific/ion trans-

membrane transporter activity and receptor activity) were

significantly enriched in the smoking-associated genes (Table 2).

When investigating core genes biologically uniquely associated by

smoking (N = 174; Table S4), we identified one consistent

significant enrichment in ‘‘oxidoreductase activity acting on

NAD(P)H’’ (DAVID cluster of 5 biological processes, median

FDR = 2.65%). The genes biologically uniquely up-regulated in

non smokers includes ARHGEF19 encoding a Rho GTPase

involved in regulation of small GTPase and signal transduction

processes.

Figure 1. Schematic representation of data analysis.
doi:10.1371/journal.pgen.1000873.g001

Table 1. Gene-wise linear analysis conducted for each probe
(N = 16185) and global test z-score filtering conducted for
gene sets associated to each biological variable.

Gene-wise linear
analysis

Global test z-score
filtering

N probes
N of preselected
probes (FDR)

Age class 40 36 (0.01)

Fasting 13,611 269 (0.23)

Body mass index class 3,098 678 (0.20)

Smoking 3,024 2966 (0.01)

Use of medication (MED) 8,636 1302 (0.20)

Hormone therapy use (HT) 5,739 538 (0.21)

Interaction HT*MED 1,807 1245 (0.10)

doi:10.1371/journal.pgen.1000873.t001

Deciphering Normal Blood Gene Expression Variation
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Seventeen of the 42 curated gene sets were found to be

significantly enriched (FDR,0.02) in our dataset with respect to

smoking status (Table 3). Two studies [7,31] have previously

investigated exposure effect of smoking on blood gene expression

and identified two signatures overlapping by only a single gene. In

our dataset, 34 and 19 probes on our microarray could be

matched to the 26-gene and 17-gene signatures from [7] and [31],

respectively. Both of the gene sets induced the most significant

enrichment scores associated with smoking status (Table 3). The

comparative p-value indicates that only 0.2% and 8.2% respec-

tively of random gene sets of the same size as the two signatures

would have a larger standardized test statistic. In the first gene set

[7], we identified the 13 core genes constitutive of a gene network

predicted by HEFalMp involved in response to wounding, acute

inflammatory response and cell chemotaxis (Figure S1). Other

curated gene sets were significantly enriched according to smoking

status with a FDR ,0.02 and comparative p-value ,0.50. In non-

smokers, two gene sets related to growth factor and stress response

signaling due to exercise [32] were up-regulated (Table 3). Several

signatures of blood cell subtype were significantly enriched with

respect to smoking status. In particular, monocyte-specific genes

were up-regulated whereas red blood cell- and natural killer cell-

specific genes were down-regulated in smokers [18]. The seven-

gene signature related to age [13] was enriched with smoking

status in our dataset, as were two hormone-related gene sets

[10,33]. Using the core genes of these two hormone-related gene

sets up-regulated in non smokers, HEFalMp revealed a gene

network (Figure 2) enriched in neuroactive ligand-receptor

interactions. It identifies increased expression of sphingosine 1-

phosphate receptor (EDG8) and predicted interactions of the query

core genes with prolactin (PRLR), glucagon (GL1PR), and

prostaglandin E2 (PTGER3) receptors (Figure 2).

BMI class and mirrored metabolic effect on the blood

transcriptome. Among the probes associated with BMI class in

the gene-wise linear analysis (N = 3098), 678 were core probes

(FDR = 0.20; Table 1). We identified enrichment for several

biological processes involved in adaptive immune related responses

(Table 4). Of particular note is the identification of a signature for

diabetes type I (DAVID cluster of 9 biological processes, median

FDR = 5.60 1026; Table 4). In women with normal BMI, two

curated gene sets related to inflammatory and stress response

signaling due to exercise [32] were up-regulated (Table 5).

Genes related to fasting status, medication, and hormone

therapy use: correlation and interaction of complex

signals. The biological variables fasting, MED, and HT use

induced the most significant probes under our gene-wise mixed

linear models (84.1%, 62.7% and 44.5% of all genes, respectively;

Table 1). In fact, there was a high degree of overlap between all

three variables (40.0%, 5,775 genes in total), and 74.5% are

associated with at least two variables.

As noted earlier, an interaction between HT and MED in

relation to the blood gene expression profiles was statistically

significant (permuted p-value = 0.03). HT use was associated with

the blood gene expression profiles with a multivariate permuted p-

Table 2. Functional enrichment of core probes associated with smoking status in gene-wise mixed linear model based on BIC
criterion and filtered based on global test z-score (N = 2966).

Functional
cluster

GO
terms (N) Keywords Genes

Median
p-value

Median Fold
Enrichment

Median
FDR (%)

Group 1 5 Rhodopsin-like, G protein
coupled receptor activity

GPR92, P2RY6, P2RY11, UTS2R, GPR75,
GPR35, GNAO1, OR2W3, GNAQ, OPRD1,
PLCD3, TBXA2R, OR2B11, GPR56, GNA11,
OR8S1, MRGPRD, GPR171, OR1D5,
OR10H5, OR4A47, OR51G1, PLCD1, ADRB1

4.18E-08 1.88 7.02E-05

Group 2 7 Olfactory receptor activity, sensory
perception of smell/chemical stimulus

OR7A17, OR2W3, OR8A1, OR2B1, OR8S1,
OR13J1, OR4D1, OR6B2, OR3A2, OR10H1,
OR2A14, OR1D5, OR7C2, OR6N1, OR1L8,
OR5L1, OR10H5, OR9G1, OR4M1, OR4A47,
OR51G1, OR2H2, OR2L2

2.28E-04 2.13 0.40

Group 3 3 Fibronectin, type III NPHS1, TRIM67, IL27RA, SDK1, EGFLAM,
IGSF9B, IGF1R, ELFN2, MERTK, IL7R, EPHA4,
LRRN3, DSCAM, LOC221091, NOPE, IL12RB2,
PHYHIPL, IL4R, ROBO4, IFNAR1, IL11RA,
EPHA1, LRFN1

4.99E-04 2.08 0.94

Group 4 3 Receptor activity, molecular/signal
transducer activity

ASGR1, ITGA10, P2RY6, P2RY11, UTS2R,
PTCHD2, GPR75, OR2W3, PRKCG, MED8,
OR2B11, TNFRSF25, PRKCZ, TRPV4, KIR2DS4,
OR8S1, MRGPRD, FGFR2, GPR171, OR10H5,
IGSF10, LILRB4, EPHA1, ILDR1

8.99E-03 1.16 14.7

Group 5 4 Substrate-specific/ion transmembrane
transporter activity

SLC6A17, KCNMA1, SEC61B, AKAP8, PLLP,
KCNF1, SLC6A7, P2RX2, SLC16A8, AQP5,
ATP5G3, COX4I1, KCNIP3, IMAA, LSR, SEC61G,
FLJ20433, TRPV4, PEA15, KCTD10, SLC6A8

0.009 1.27 14.6

Group 6 1 Thrombospondin, subtype 1 SEMA5B, ADAMTS2, SSPO, C8B, ADAMTS10,
ADAMTS12, ADAMTS14

0.007 3.52 12.3

Group 7 1 oxidoreductase activity, acting on
paired donors, with incorporation or
reduction of molecular oxygen, reduced
flavin or flavoprotein as one donor, and
incorporation of one atom of oxygen

CYP2B6, CYP1B1, CYP4F11, CYP4F8, TBXAS1,
CYP2B7P1, CYP2D6

0.007 3.53 11.3

doi:10.1371/journal.pgen.1000873.t002
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value of 0.09 and 0.44 in users and non-users of other medications,

respectively. MED was associated with the blood gene expression

profiles with a multivariate permuted p-value of 0.06 and 0.38 in

non-users and users of HT, respectively. Further analyses are

required in order to investigate the different categories of MED,

HT regimens informed by questionnaire and hormone levels

measured in plasma, as well as their interactions in relation to

blood gene expression profiles.

Of the 13611 probes identified as related to fasting (Table 1),

269 were identified as core probes (FDR = 0.23). This latter probe

list was significantly enriched in regulation of transcription and

RNA metabolic process (DAVID cluster of 11 biological processes;

median FDR = 8.30%, Table 6) partly involving deregulation of

zinc finger proteins (DAVID cluster of 3 biological processes;

median FDR = 0.65%, Table 6) or bromo-domain containing

proteins (DAVID cluster of 1 biological process; median

FDR = 7.7%, Table 6) involved in chromatin modification. In

accordance with these results, the core probes (N = 36, Table S4)

biologically uniquely associated with fasting women were signif-

icantly enriched in chromatin modification and control of gene

expression by vitamin D receptor (DAVID cluster of 2 biological

processes; median FDR = 10.3%).

Finally, none of the 14 gene sets curated from the literature were

significantly enriched in our dataset with respect to fasting status. A

similar absence of significant enrichment was observed for a list of

1356 genes associated with fasting in peripheral blood mononuclear

cells [34], of which 784 probes were identifiable in our dataset.

Age difference in postmenopausal women and its weak

effect on blood gene expression profiles. No significant

enrichment of biological processes was observed for the 40 probes

including 36 core probes associated with age group (FDR = 0.01;

Table 1). With respect to gene set enrichment analysis, the

immunoglobulin gene set (N = 36) had the lowest global test

enrichment p-value (p-value = 0.03), but a high false discovery rate

(FDR = 0.92). One publication [13] found a gene list (N = 14

genes; N = 9 after mapping to our Applied Biosystems probe IDs)

derived from blood and associated with age but was not

significantly enriched in our dataset (global test p-value = 0.45).

Discussion

Peripheral blood is an ideal surrogate tissue as it has the

potential to reflect responses to changes in the immediate and

distant environments by alterations of gene expression levels.

Given the number of factors that influence gene regulation and

expression, it is not surprising that often more than one strong

signal is present in any given high-dimensional dataset. The

external validity of NOWAC as a representative sample of the

Norwegian female population has been verified in several

methodological analyses and found to be acceptable [35]. Studies

of the internal validity, including reliability, have been undertaken

for dietary questions [36,37], menopausal status, and use of HT

[36,38], whereas validation of variables measuring physical activity

remain ongoing.

Table 3. Significant gene sets curated from the literature associated with smoking status using the global test.

Tested
genes p-value

FDR
adjusted

Comparative
p-value

# core genes
(probes) up-
regulated in smokers

# core genes (probes) up-
regulated in non smokers

Smoking signatures [7];[31]

Lampe et al. 26 5.77E-08 1.21E-06 0.002 IL1B, CYP1B1 ZNF609,
EPB41L3, VCAN, DNAJC7,
TNNT1(10)

AOC2, NRG1(3)

Van Leeuwen et al. 10 8.27E-04 6.67E-05 0.09 SERPINB2, IL1B, PCK2,
ERCC5, ENO1(5)

HAMP, ACO1 (3)

Exercise signatures [32]

Growth factor and transcription 12 1.90E-06 2.66E-05 0.008 CYP1B1, TCF8 (2) CLIC3, GPR56, AKR1C3 (4)

Stress response 10 1.22E-04 6.67E-04 0.09 HSPA1A (1) SPON2, HSPB1 (2)

Blood cell subtype
signatures [13,18]

Monocytes 17 4.33E-04 0.002 0.23 FLJ20701, CSPG2, PLA2G7,
MARCO, VNN1, IFIT1, CD1D,
CD14, RNASE6, MX1, PGD
(11)

CGI-38 (1)

Red blood cells 33 0.002 0.004 0.45 CSDA, SELENBP1, MKRN1, EPB42,
MAP2K3, BAG1, UBB, FKBP8, GMPR,
BNIP3L, BCL2L1, PPM1A, NXPH3, CHI3L2,
GSPT2, GSPT1, SNCA (21)

Natural killer cells in PBMC 17 9.27E-04 0.003 0.35 CSPG2 (1) SPON2, GPR56, MLC1, CX3CR (4)

Hormone-related signatures

Estrogen-related genes [29,33] 65 1.06E-04 6.67E-04 0.31 EPB41L3, ANXA3, RAB31,
SRD5A1, SLC39A6 (6)

PDZK1, TFF1, SELENBP1,HSD3B2, EPOR,
WISP2, PIB5PA, PTGES (8)

Hormone therapy signature [10] 46 4.32E-04 0.002 0.34 RNF144, CREB5, NME6 (4) CSMD2, SLC9A3, SLC36A1, C8B, GPR75,
EDG8, CHGA, LCN6,GAS2L1, FBXL14,
PAPPA (12)

Divers

Age signature [13] 9 1.27E-04 6.67E-04 0.08 IGJ (1) HLA-DQB2 (1)

doi:10.1371/journal.pgen.1000873.t003
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Inter-individual variability
In addition to technical variability, substantial differences in

gene expression profiles were identified between individuals with

respect to exposure. Overall, the functional enrichment of

significant single genes and gene set enrichment analyses show

that high-throughput gene expression studies implicate similar

(although not identical) underlying biology across several studies.

Whereas age did not induce a large effect in blood gene expression

for our cohort of postmenopausal women aged from 48 to 62

years, pathways and gene sets affected by smoking and, to a lesser

extent both BMI and fasting, are numerous and interconnected.

Some expression profiles associated with these variables may also

Figure 2. Network between top genes (in grey) in the two hormone-related gene sets up-regulated in non-smokers and genes (in
white) predicted by HEFalMp in relation to this query considering all genes in all biological processes.
doi:10.1371/journal.pgen.1000873.g002

Deciphering Normal Blood Gene Expression Variation
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be associated with other factors (e.g., lower levels of exercise, age).

A host of new candidate genes for regulation by inter-individual

(fasting, BMI) and exposure (smoking) factors were identified

which could be used as a basis for hypothesis development.

Several processes associated with smoking were involved in

cardiovascular regulation by G-coupled receptors (i.e. purinergic,

adrenergic beta-1, urotensin II or thromboxan A2 receptors) or

protein activity (i.e. thrombospondin type-1, fibronectin type-3).

Consistent with previous observations that smoking reduces

olfactory sensitivity in a dose- and time-dependent manner

[39,40], we find that smoking significantly impairs blood gene

expression of olfactory receptors. We also observed that smokers

have deregulated gene expressions of several P450 cytochromes

which catalyse mono-oxygenase activity that can both toxify and

detoxify carcinogenic compounds. As established in normal lung

[41] and rats [42], smokers tend to have a small increase in

NAD(P)H:(quinone-acceptor) oxidoreductase compared to non-

smokers.

Two previous studies [7,31] have examined the effects of

cigarette smoking on leukocyte gene expression in circulation and

both of the associated signatures had the most significant

enrichment scores over all gene sets considered here. Inflamma-

tory responses previously associated with smoking [7] were up-

regulated in the blood expression of smokers in our dataset.

Lending support that smoking has immune and inflammatory

effects, specific blood cell gene signatures [13,18] (i.e. increased

monocytes and decreased red blood cell and natural killer cell

signalling) were differentially expressed according to smoking

status. This is consistent with previous observations showing that

the total numbers of peripheral leukocytes differ by smoking status

[43,44]. Core genes up-regulated in non-smokers from the

enriched hormone-related gene sets [10,33] were predicted to be

involved in neuroactive ligand-receptor interactions like prosta-

glandin receptors. Elevated prostaglandin E2 synthesis has been

previously reported in smokers in comparison with non-smokers

[45,46]. The predicted gene network also reflects the effect of

smoking on hormone levels with increased secretion of prolactin

and glucagon [47]. Two pathways related to exercise [32] were

also found up-regulated in non-smokers, which may simply be due

to an underlying prevalence of active exercisers in non-smokers

[48].

In our study, we found BMI class associated with blood gene

expression changes involved in several immune processes includ-

ing diabetes type I. It has been reported that several immune

functions are dysregulated in obesity [49,50] and both genetic and

environmental factors such as obesity have been implicated as

Table 4. Functional enrichment of core probes associated with BMI class in gene-wise mixed linear model based on BIC criterion
and filtered based on global test z-score (N = 678).

Functional
cluster

GO
terms (N) Keywords Genes

Median p-
value

Median Fold
Enrichment

Median
FDR (%)

Group 1 5 Immunoglobulin/major
histocompatibility
complex motif,
Immunoglobulin C1-set

HLA-DMB, CD1C, CTSE, HLA-DPA1, HLA-DMA, HLA-DOA,
HLA-DQA2, IGKC, HLA-DPB1, IGHG2, HLA-DRA, HLA-DRB5,
HLA-C, HLA-DRB5, IGHM, IGHD, HLA-B

9.92E-08 6.89 1.51E-04

Group 2 9 Type I diabetes mellitus,
MHC class II

GZMB, HLA-DMB, CTSE, HLA-DPA1, HLA-DMA, HLA-DOA,
LTA, HLA-DQA2, HLA-DPB1, HLA-DRA, HLA-DRB5, HLA-C,
HLA-DRB5, HLA-B

1.78E-07 14.2 3.11E-04

Group 3 4 MHC class II, alpha chain HLA-DPA1, HLA-DMA, HLA-DOA, HLA-DQA2, HLA-DPB1,
HLA-DRA, HLA-DRB5, HLA-C, HLA-DRB5, HLA-B

8.44E-05 13.4 1.71E-01

Group 4 5 positive regulation of
immune system process

IL15, HLA-DMA, CD40, UBASH3A, CD46, TRAF2, CD55,
IGHM, SMAD3, KRT1, FCER1A

0.001 3.81 1.12

Group 5 3 Immunoglobulin E binding MS4A2, FCER2, LGALS3, FCER1A 0.001 16.1 1.80

Group 6 7 Lymphocyte B/
immunoglobulin mediated
immune response, adaptive
immune response

HLA-DMA, CD40, CD46, CD55, IGHM, TNFSF13, TRAF2,
FCER1A, IL15, KRT1

0.008 3.41 13.86

Group 7 2 Immunoglobulin C region IGKC, IGHG2, IGHM, IGHD, TRA@ 0.006 10.8 9.94

doi:10.1371/journal.pgen.1000873.t004

Table 5. Significant gene sets curated from the literature associated with BMI class using global test.

Tested genes p-value FDR adjusted
Comparative
p-value

Core genes up-regulated
in women at normal BMI
(N probes)

Core genes up-
regulated in
overweighted
women (N probes)

Exercise signatures [32]

Inflammatory response 18 0.0005 0.02 ,0.0001 GZMB, XCL1, PTGDS, GNLY, NCR3, XCL2,
CST7, CCL4, GZMA, CTSW (10)

CD22(1)

Stress response 10 0.0009 0.02 0.004 DUSP2, DUSP1, HIF1A (3)

doi:10.1371/journal.pgen.1000873.t005
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triggers in the pathogenesis of diabetes. The role of autoimmunity

in the origins of type I diabetes is well-known, including a role in

latent autoimmune diabetes in adults [51] and several observations

suggest that autoimmunity may be part of type II diabetes [52–

55]. Finally, two pathways related to exercise [32] were also up-

regulated in women with normal BMI which may be due to a

higher prevalence of physical exercise than in overweight/obese

women.

Of all the variables considered, fasting was associated with the

largest number of genes, but few genes were identified as core

genes possibly due to the limited number of fasting women

(N = 28) at the time of blood sampling. Selection of core genes

aims to select a subset of true positives which work together

(possibly in similar pathways) towards significance of the set. The

significant core genes associated with fasting were generally

involved in gene expression regulation and chromatin modifica-

tion [56–58]. Much of our understanding of the effects of nutrition

on chromatin structure has been gleaned from model organisms,

especially S. cerevisiae, C. elegans, Drosophila, and mice [59]. In

humans, two previous studies were unable to characterize acute

effects of food intake in blood gene expression profiles [13,18].

One putative 784-gene signature exists [34], however only 49

genes associated with fasting overlap with this signature. This may

simply be due to chance.

Due to a significant interaction between HT and MED within

our profiles, further analyses with a larger sample size are needed

in order to investigate the different categories of medications, HT

regimens and hormone levels, as well as their interactions in blood.

Consistency with other studies
Differences between the genes identified and the interpretation

of results in the various studies discussed here are likely to have

resulted from technical differences in the array platforms used, the

subset of blood cells analyzed, and the chosen analytical

procedures. Several studies [12–18] examined how gene expres-

sion profiles of blood samples are affected by technical variables.

Specific blood sample collection methods result in the isolation of

different blood cell subpopulations. White blood cells have been

defined as the most transcriptionally active of all cell types in blood

and may give the most sensitive gene expression profiles in

response to defined factors [60]. In large epidemiological studies,

RNA stabilization is compulsory and PAXgene tubes have been

found satisfactory to stabilize and enable RNA extraction from

whole blood cells [61]. While high proportions of globin RNA

could reduce sensitivity with respect to certain microarray

platforms [60,62,63], we previously investigated two globin

reduction protocols and determined that they were not beneficial

when Applied Biosystems (AB) microarrays are used [23]. We

found that RNA extraction and one variable related to RNA

degradation (i.e. time between blood collection and freezing) had a

significant global effect on blood gene expression profiles. In

addition to normalization preprocessing, our results suggest that

technical variability should not be ignored and possible adjustment

for technical sources of variability should be considered in any

analysis. Techniques such as surrogate variable analysis [64] may

adjust for hidden sources of heterogeneity and large-scale

dependence in gene expression studies [65]. As an example in

our study, 25 significant surrogate variables were highly correlated

to the strongest identified technical sources of noise, array lot

number (canonical correlation r2 = 0.95), time between blood

collection and freezing (canonical correlation r2 = 0.62) and RNA

extraction (canonical correlation r2 = 0.43).

After adjustment for technical variability, our analysis demon-

strates the ability to find significant similarities between studies by

focusing on the biological implications of the gene sets from each

individual study, rather than the specific single genes that met the

criteria for significant differential expression in each individual

study. They lend support to the idea that blood gene expression

studies can indeed detect exposure-specific differences and that

failure to consider this type of biological variation can result in the

misidentification of genes when investigating predictive, diagnostic

or prognostic signatures in blood.

In conclusion, this study extends the limited baseline informa-

tion currently available that describes normal patterns of variation

in blood gene expression. The data generated have been made

freely available and should represent a useful resource for the

design of future studies including power calculations. Our results

confirm the feasibility of identifying signatures of inter-individual

factors (e.g. fasting, BMI) and exposure factors (e.g. smoking) in

blood-based gene expression profiles, and reinforces the need for

proper study design, sample preparation, and technical analysis.

Methods

Ethics statement
We have received approval from the Regional Committee for

Medical Research Ethics for the collection and storing of

questionnaire information and blood samples. The informed

consent formula explicitly mentions that the blood samples can be

used for gene expression analyses as well as large-scale genotyping.

All data are stored and handled according to the permission

given by the Norwegian Data Inspectorate. The Directorate of

Health and Social affairs (SHD) has given us an exemption from

the confidentiality of information in national registers.

Table 6. Functional enrichment of core probes associated with fasting status in gene-wise mixed linear model based on BIC
criterion and filtered based on global test z-score (N = 269).

Functional
cluster

GO
terms (N) Keywords Genes

Median p-
value

Median Fold
Enrichment

Median
FDR (%)

Group 1 13 Regulation of transcription, cellular
metabolic process, RNA metabolic
process, nucleobase, nucleoside,
nucleotide and nucleic acid
metabolic process

ACAD8, MYCBP2, MED29, MTA2, EID2, ZNF182,
LIMD1, RBM9, BAZ2A, LOC344167, SLC6A3, SUDS3,
ZNF395, BRD7, ZNF555, POGZ, ZNF282, ATF7IP,
PBXIP1, ZKSCAN2, ZNF324, ZNF740, CEBPE, KHSRP

0.001 1.60 1.26

Group 2 1 Zinc finger C2H2 type 2 KLF13, POGZ, PRDM2, RLF, ZNF264, ZNF282,
ZNF333, ZNF345, ZNF396, ZNF585A

1.05E-02 2.55 19.66

Group 3 1 Bromo domain SMARCA2, SMARCA4, CREBBP, BAZ1B 0.009 9.0 17.1

doi:10.1371/journal.pgen.1000873.t006
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Before use of the biological material, a request has been sent to

the regional ethical committee for Northern-Norway. Use of

biological material requires permission according to laws pertain-

ing to biotechnology and gene technology, both of which are

administered by the SHD.

Subjects
The women are part of the Norwegian Women and Cancer

(NOWAC) study (http://uit.no/kk/NOWAC/) consisting of

172471 women who were 30 to 70 years of age at recruitment

from 1991 to 2006 [22]. The NOWAC postgenome cohort study

[21] consists of approximately 50,000 women born between 1943

and 1957, randomly drawn in groups of 500 from the NOWAC

registers, who gave blood samples between 2003 and 2006 and

filled in a two-page questionnaire. The two-page questionnaire

included questions regarding menopausal status, weight, height;

past week exposure to smoking, HT, oral contraceptives, other

MED, omega-3 fatty acid, soy or other dietary supplements; and

details concerning blood specimen collection (date, hour, posture).

Women included in the present study received a blood collection

kit and an accompanying two-page questionnaire by mail in April

2005. Among the group of 500 women, 444 (89%) returned both

citrate and PAXgene blood RNA (PreAnalytiX GmbH, Hem-

brechtikon, Switzerland) tubes; 3.3% declined to participate, 0.7%

had died or migrated and 7% did not respond. Samples were

included in the study according to the following inclusion criteria:

the donor was postmenopausal (99 donors excluded), blood was

successfully collected in one PAXgene tube and in two plasma

collection tubes (8 donors excluded), and the samples were frozen

within 3 days from blood collection (9 donors excluded). Based on

these criteria, 328 PAXgene blood samples were included for

RNA extraction.

RNA isolation and quality control
PAXgene blood RNA tubes were thawed at room temperature

for 4 h. 500 mL of blood was removed and stored on 270uC for

future use. Total RNA was isolated using the PAXgene Blood

RNA Isolation Kit, according to the manufacturer’s manual. RNA

quantity and purity was assessed using the NanoDrop ND-1000

spectrophotometer (ThermoFisher Scientific, Wilmington, Dela-

ware, USA). The absorbance ratio of 260 nm and 280 nm (A260/

A280) was between 1.93 and 2.1 for all samples included for

further analysis. The Experion automated electrophoresis system

(BioRad, Hercules, CA, USA) and the RNA StdSens Analysis Kit

was used to evaluate RNA integrity of a randomized 32% of the

samples, according to the instruction manual. The electrophero-

grams were inspected for clear ribosomal peaks. We were not able

to analyze any numerical criteria corresponding to electrophoresis

patterns, because this information was not available. Thirty nine

samples were excluded from further analysis due to insufficient

RNA purity, yield or integrity. RNA samples were kept at 270uC
until further use.

Microarray-based profiling and image analysis
After exclusion based on study design and RNA quality and

quantity criteria, samples were analyzed using the Applied

Biosystems (AB) expression array system (Foster City, Lousiana,

USA). 500 ng total RNA was used for amplification by the

NanoAmp RT-IVT labeling kit from AB for one round of

amplification, in accordance with the manufacturer’s manual.

Briefly, the 1st strand of cDNA was synthesized by reverse

transcription using the T7-oligo (dT) primer, followed by 2nd

strand synthesis. The double-stranded cDNA was purified, and

used as template for in vitro transcription (IVT). During IVT,

digoxigenin (DIG)-labeled UTP was incorporated into the

cRNA. The quantity and purity of the cRNA was measured

on the NanoDrop ND-1000, and the cRNA was stored on

270uC until further use. 10 mg of DIG-labeled cRNA was

fragmented and hybridized to AB Human Genome Survey

Microarray V2.0, in accordance with the Chemiluminescence

Detection Kit Protocol.

The AB Human Genome Survey Microarray V2.0 contains 277

control probes and 32,878 probes for the interrogation of 29,098

genes. AB Expression System software was used to extract signal

intensities, signal to noise ratios (S/N) and flagging.

Data analysis
A total of 304 arrays including 15 technical replicates were

analyzed. Data analysis was performed using R (http://cran.r-

project.org), an open-source-interpreted computer language for

statistical computation and graphics, and tools from the Biocon-

ductor project (http://www.bioconductor.org), adapted to our

needs. Using R, we set the expression intensity to ‘‘missing’’ for

genes with flagging value .8191 (threshold recommended by the

microarray manufacturer). For a set of technical replicate arrays

from the same subject, we excluded the array with the least

number of probes that had a S/N exceeding 3. Furthermore,

arrays (N = 3) where less than 40% of the probes had a S/N$3

were also removed from the analysis. Individual probes were not

considered, if the S/N exceeded 3 in less than 50% of the samples.

After sample and probe filtration, we proceeded with a log2

transformation, quantile normalization and imputation of missing

values using 10-nearest neighbourhood method [66]. A total of

286 arrays and 16185 probes are analyzed. Microarray data have

been deposited at Gene Expression Omnibus (GEO; http://www.

ncbi.nlm.nih.gov/geo) accession number GSE15289.

The global ANCOVA [25] was carried out by comparison of

linear models via the extra sum of squares principle to test for the

univariate and multivariate association between global expression

values and technical variables. All significant technical variables

with a permuted p-value ,0.001 identified in the ANCOVA

multivariate analysis were included in the gene-wise linear model

selection as random (array lot number, RNA extraction date) and

fixed (time between blood collection and freezing) variables.

Forward-backward variable selection was used to select gene-

wise model based on BIC. Linear mixed models were used to test

the association of each gene with the significant technical and all

biological variables. The z-score from the global test [26] was used

to select core probes that most strongly explain the difference

between groups setting a FDR [67] threshold which maximizes the

discovery of true positives (weight = 2) versus false positives

(weight = 1) associated with each variable. Gene set enrichment

analysis was conducted using the global test [26], which offers the

opportunity to compare two or more groups while taking into

account the association between probe sets as well as their

individual effects. When testing several gene sets curated from the

literature, we adjusted for multiple testing using FDR [67].

Functional clustering and gene networks prediction were per-

formed with the Database for Annotation, Visualization, and

Integrated Discovery (DAVID) at http://david.abcc.ncifcrf.gov/

[27], and the Human Experimental/Functional Mapper (HE-

FalMp) [28] at http://function.princeton.edu/hefalmp, respec-

tively.

Supporting Information

Figure S1 Network between core genes (in grey) related to

smoking in the gene set identified by Lampe et al. [7] and genes (in
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white) predicted by Hefalmp in relation with this query

considering all genes in all biological processes.

Found at: doi:10.1371/journal.pgen.1000873.s001 (1.17 MB EPS)

Table S1 Characteristics of (A) women included in the analysis

and (B) blood sample processing.

Found at: doi:10.1371/journal.pgen.1000873.s002 (0.06 MB

DOC)

Table S2 Gene sets curated from literature.

Found at: doi:10.1371/journal.pgen.1000873.s003 (0.13 MB

DOC)

Table S3 Univariate and multivariate global ANCOVA analysis

investigating technical variables.

Found at: doi:10.1371/journal.pgen.1000873.s004 (0.03 MB

DOC)

Table S4 Gene-wise linear analysis conducted for each probe

(N = 16,185) and global test z-score filtering conducted for gene

sets biologically uniquely associated to each biological variable.

Found at: doi:10.1371/journal.pgen.1000873.s005 (0.03 MB

DOC)
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